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Quanzheng Li, Student Member, IEEE, Evren Asma, Member, IEEE, Jinyi Qi, Senior Member, IEEE,
James R. Bading, and Richard M. Leahy*, Fellow, IEEE

Abstract—The Fisher information matrix (FIM) plays a key role
in the analysis and applications of statistical image reconstruction
methods based on Poisson data models. The elements of the FIM
are a function of the reciprocal of the mean values of sinogram ele-
ments. Conventional plug-in FIM estimation methods do not work
well at low counts, where the FIM estimate is highly sensitive to
the reciprocal mean estimates at individual detector pairs. A gen-
eralized error look-up table (GELT) method is developed to esti-
mate the reciprocal of the mean of the sinogram data. This ap-
proach is also extended to randoms precorrected data. Based on
these techniques, an accurate FIM estimate is obtained for both
Poisson and randoms precorrected data. As an application, the new
GELT method is used to improve resolution uniformity and achieve
near-uniform image resolution in low count situations.

Index Terms—Fisher information matrix, image reconstruction,
PET, uniform resolution.

I. INTRODUCTION

STATISTICAL positron emission tomography (PET) image
reconstruction methods, such as penalized maximum-like-

lihood (ML), can produce improved spatial resolution and vari-
ance properties over traditional filtered back-projection methods
through accurate physical and statistical modeling. In recent
years, properties of such implicitly defined estimators have been
analyzed and applications based on these analyses have been de-
veloped.

Fessler and Rogers [1], [2] used approximations based on the
Taylor series expansion of the implicit function relating the ob-
served data to the reconstructed image to obtain closed form
approximations for the covariances of reconstructions, as well
as the local impulse response (LIR) from which resolution can
be inferred. Qi and Leahy [3] extended these results and de-
rived simplified expressions for the LIR, contrast recovery co-
efficients (CRCs), and variances for each voxel. Stayman and
Fessler designed penalties for both spatially invariant [4] and
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variant [5] systems to achieve near-uniform and isotropic reso-
lution. They also developed a fast method to obtain approximate
resolution and covariance expressions for penalized ML estima-
tors in single photon emission computed tomography (SPECT)
[6].

Bonetto et al. proposed a fast and accurate approximation for
channelized Hotelling observer statistics [7] for computer ob-
servers applied to penalized ML reconstructions. Barrett et al.
[8] derived figures of merit for image quality based on the per-
formances of computer observers on specific detection and esti-
mation tasks. Kijewski et al. investigated the effects of SPECT
collimator sensitivity [9] and system geometry [10] on several
estimation tasks. Qi studied lesion detectability [11], and the op-
timization of PET system design for lesion detection [12], again
for the case of penalized ML reconstructions.

The Fisher information matrix (FIM) is not only important
in itself, in that it provides a bound on the variances of unbi-
ased image estimates, but also all of the expressions derived in
the work mentioned above depend either on the entire FIM or its
diagonal elements. The exact FIM is a function of the reciprocal
of the measurement means at individual sinogram bins, which
are unknown for real datasets. In practical applications, we can
compute an estimate of the FIM by substituting some function
of the data in place of the true mean values. While the approx-
imation , where and denote the mean and ob-
served counts at a sinogram bin, respectively, is commonly used
in the above literature and works well for high count studies, it
is heavily biased in low count situations. An estimate for the
FIM can also be computed by using the forward projection of a
preliminary reconstruction as mean data, however, such an esti-
mate has no proven optimality properties. The primary objective
of this paper is to optimally estimate the FIM under low count
situations.

In practice, most PET data is precorrected for randoms, which
results in a non-Poisson model. Yavuz and Fessler [13] pro-
posed a “shifted Poisson model” to provide an approximation to
the log-likelihood function of the exact distribution of randoms
precorrected data. This approximate log-likelihood function is
widely used in different reconstruction methods [13]–[16]. Here
we use the shifted-Poisson model to adapt the GELT method to
provide an optimized estimate of the FIM for randoms precor-
rected data.

This paper is organized as follows: Section II describes the
proposed estimator for reciprocal means and the FIM. In Sec-
tion III, we evaluate the accuracy of these reciprocal mean and
FIM estimates under the Poisson and shifted Poisson models.
Section IV includes results from a specific application in which
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we demonstrate improvement in resolution uniformity using the
new FIM estimation method.

II. OPTIMAL ESTIMATION OF FISHER INFORMATION

A. The Fisher Information Matrix

The FIM, , provides a bound on the covariance matrix
of an unbiased estimator , whose density depends on a set of
parameters , in the sense that is a positive semi-
definite matrix. Here denotes the covariance matrix of the
estimator and denotes the FIM with elements

(1)

For the problem of estimating an image from Poisson data
with mean , the FIM is given by

(2)

where is the detection probability matrix, denotes a
diagonal matrix, the bar denotes the mean, and we assume that

.
When is estimated from measured sinogram data, the ac-

curacy of the estimate will depend on the accuracy of the recip-
rocal mean estimates at individual sinogram bins (i.e., the
terms). The “direct plug-in” (DPI) method proposed in [1] uses

where ensures the positivity of the denom-
inator when . A simple but quite effective modification,
which we refer to as the “modified plug-in” (MPI), is the esti-
mator [17]. These two estimators lead to the following
FIM approximations:

(3)

(4)

where denotes a diagonal matrix. Fig. 1 shows the relative
biases (i.e., where is the estimated parameter)
of the DPI and MPI methods applied to a single Poisson random
variable as a function of the mean activity . Both methods work
very well at high levels of activity, producing almost unbiased
estimates with low variance for reciprocal means, which in turn
results in accurate FIM estimates. However, both methods per-
form poorly in low count studies, especially when the average
number of counts per sinogram bin falls below 5. This poor per-
formance is primarily due to the large bias in reciprocal mean
estimates which will result in inaccurate FIM estimates.

These methods also provide large variance estimates at
low counts compared to high counts, however, this effect is ame-
liorated in the FIM estimates due to the averaging caused by
premultiplication by and post-multiplication by . This ob-
servation also forms the basis of the FIM estimation technique
presented in this paper. In particular, relatively high variance
reciprocal mean estimates are allowable due to this averaging
effect. On the other hand, bias in the reciprocal mean estimates
is undesirable, since consistent positive or negative bias on the

Fig. 1. The relative bias of DPI and MPI methods versus mean activity �y. The
relative bias is computed as E(�̂=�) where �̂ is the estimator of � = 1=�y.

estimate results in a correspondingly biased FIM estimate.
Therefore, we trade off variance in exchange for low bias in es-
timating reciprocal means, and the resulting FIM estimate out-
performs both DPI and MPI at all activity levels.

B. FIM Estimation Model

Suppose is a realization of a Poisson random variable with
mean . The parameter of interest and the form of the estimator

that we use is as follows:

(5)

where is a sequence of constants defined for integer values
of as

(6)

Note that the constants, , which appear in (6),
define the estimator and are the coefficients that we need to de-
termine. This form is a generalization of the MPI method which
is the special case . In all of the results
presented in this paper, was chosen since we observed
little additional improvement for .

C. Generalized Error

Let be an estimator of the quantity given observation
. The mean squared error (MSE) is defined as

(7)

where and are, respectively, the variance and squared bias
of the estimator

(8)

(9)

Our goal here is to accurately estimate the
. The number of terms contributing to

each diagonal element of the FIM is equal to the number
of nonzero elements in each column of the sparse matrix .
Consequently, the FIM is less sensitive to standard deviation
than bias in the estimates of by a factor of approximately

. This observation leads us to define a generalized error, ,
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Fig. 2. Least squares fit of the gamma distribution (13.14,0.25) to the
histogram of the nonzero entries of the mean value of a sinogram with a total
mean activity of 150 K counts.

that attaches more weight to squared bias than to variance in
the estimation of

(10)

where . Based on the observation above, in practice
we choose a value of equal to the reciprocal of the average
number of lines of response that intersect each voxel.

D. Cost Function

To compute the generalized error in (10) we need to specify
a prior distribution on . We assume an independent identi-
cally distributed gamma distribution for the mean values of the
elements of the sinogram with parameters and

(11)

Shown in Fig. 2 is a fit of the gamma distribution to the
nonzero entries of a noiseless sinogram with a mean of 150 K
counts. The gamma distribution provides a reasonable fit to real-
istic sinogram histograms, and has the added attraction that it is
the conjugate prior for the Poisson data model. With this prior
distribution for , a change of variables gives us the
prior distribution of as

(12)

For each scan, we determine and by fitting the gamma
distribution to the empirical distribution of the data. With a prior
distribution available for the parameter of interest, we now de-
fine our cost function as the generalized error

(13)

where we use the fact that, from (7) and (10), we can write
. Note that are related to

by (6).
By inspection, this cost function can be written in the stan-

dard quadratic form as . We also
note that although infinite summations have to be approximated
to compute , the matrix is a function of only the first
terms in the summations and, hence, can be computed exactly.
In addition to the generalized error being a quadratic function
of , the Hessian matrix is also positive definite so that the
function is convex and the optimal solution is unique. Since the
elements of form a look up table,
we refer to this method as the “generalized error lookup table”
(GELT) method and our FIM estimator becomes

(14)

where

(15)

We note that it may be desirable to compute the integral in
(13) with a lower limit of . While this ignores errors
for , it allows greater control of errors for and
also avoids the singularity at when computing the integral
numerically. We return to this issue in Section III. We also note
that although the integral in (13) can be evaluated analytically
for special cases such as and the integration taken over
its full range of zero to infinity, in general it has to be evaluated
numerically.

E. Randoms Precorrected Data

PET data is often precorrected for accidental coincidences
using delayed windows. In this case, the measurements are no
longer Poisson. To extend the method described above to ran-
doms precorrected data, we combine our FIM estimation tech-
nique with the shifted Poisson model proposed by Yavuz and
Fessler [13], in which , where is the mean of the ran-
doms, is approximated by a random variable with mean and vari-
ance equal to . To apply the shifted Poisson model, an
estimate of the mean randoms rate for each sinogram element is
required. In practice, this can usually be estimated from detector
block singles rate information typically included in the header
of the sinogram data file. In the simulation results presented in
this paper, we used the exact mean random rates.

The FIM resulting from the shifted Poisson model log-likeli-
hood is

(16)

and, therefore, the parameter of interest and the form of the
estimator become

(17)

Squared bias and mean squared error are then given by

(18)
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Fig. 3. Bias of different starting points using GELT (w = 1=11904, � = 5,
� = 2) in estimating 1=�y .

where

(19)
here denotes the smallest integer greater than , and

(20)

where

(21)
This leads to the cost function (22) shown at the bottom of

the page, which unlike the previous formulation, now includes
a dependence on the mean randoms rate, .

From (22) it can be seen that is necessary to compute
this new cost function. As with the ordinary Poisson model, we
fit a gamma distribution to an empirical histogram of the data,
in this case, after it has been corrected for randoms. We used an
empirical approximation to the exact density for the difference
of two Poisson random variables [13] in computing

(i.e., we generated pairs of Poisson random variables and
took the histogram of their differences). This objective function
(22) is again convex and quadratic. Similarly to the case for the
Poisson model in Section II-D, the lower limit of the integral in
(22) can be larger than to improve the performance for
mean values larger than this limit.

We note that although the GELT method is presented here for
a fixed value of , it is applicable to the general case where the

’s are different. For each , we fit the gamma distribution
only to the entries of sinogram bins that satisfy . As
a result, and become functions of and by repeating this

Fig. 4. Generalized errors of different starting points in using GELT (w =

1=11904, � = 5, � = 2) for the estimation of 1=�y .

process over a range of possible values, we form the entries
of our look-up table, which is now two-dimensional (2-D), i.e.,
a function of both and .

We also note that the DPI and MPI methods can simply be
modified to use and , respectively, for
estimating under the shifted Poisson model and we use these
two forms for comparison in the following.

III. ESTIMATION ACCURACIES

A. Choice of Starting Point

We studied the effect of lowering the lower limit of the inte-
gration for the Poisson approximation in Section II-C and the
results are shown in Figs. 3 and 4 for a one-dimensional (1-D)
Poisson random variable whose mean ranges from 0 to 15. As
the lower limit increases, bias and generalized error after the
starting point improve, while performance prior to the starting
point deteriorates. Based on the results in Figs. 3 and 4, we chose
0.7 as our integration starting point for the remainder of the
studies in this paper. In all of the results presented in this paper,
we chose , which is approx-
imately the reciprocal of the average number of detector pairs
to which each voxel contributes in the small animal scanner that
we simulated.

B. Accuracies of Estimates for Poisson Data

The bias and variances were compared for the DPI, MPI, and
GELT methods and the results are shown in Figs. 5 and 6. For
mean values , all three methods perform almost identically.
This also explains why the use of the simple DPI method works
well for high count studies. When mean activity falls below
20, the methods exhibit markedly different behavior. As activity
drops below 5, the bias of the GELT becomes significantly lower

(22)
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Fig. 5. Bias of 1=�y estimates for the DPI, MPI, and GELT methods. The
parameters of the gamma distribution in the GELT method were � = 5, and
� = 2.

Fig. 6. Variance of 1=�y estimates for the DPI, MPI, and GELT methods. The
parameters of the gamma distribution in the GELT method were � = 5, and
� = 2.

than that of the MPI, which in turn is far lower than that of the
DPI.

From the variance curves in Fig. 6 we see that the variance of
the GELT method is larger compared to other methods, which
is consistent with its design. This bias-variance trade off works
to our advantage since the FIM estimates are a weighted combi-
nation of the estimates and the variance is reduced through
this averaging process.

C. Accuracies of FIM Estimates for Poisson Data

We simulated a simple single ring scanner, which had
the same parameters as the ECAT HR+ (CTI PET Systems,
Knoxville, TN). A single slice from the Hoffman brain phantom
[18] shown in Fig. 7 was used in our simulation studies. This
2-D simulation configuration was used throughout the simula-
tions presented in the paper.

Monte Carlo simulations were performed to compare the es-
timates of the diagonal FIM entries computed with
different estimation methods. Five levels of low activity were
simulated in which average counts per sinogram bin were 1, 2, 3,
4, and 5. For each level of activity, 50 noisy sinograms were sim-
ulated according to the simulation setup described above. The

Fig. 7. All simulated sinogram data in this paper were based on this 2-D slice
from the 3D Hoffman brain phantom. The white line indicates the 1-D profile
through the image at which the FIM or � values are compared in Figs. 8, 9,
12, and 13. Also shown are 11 points (indicated by small black squares) at
which the local resolution was measured for the resolution uniformity study in
Section IV-B.

Fig. 8. Profiles of the mean of the � estimates along a line through the center
of the field of view of the scanner shown by the white line in Fig. 7. The mean
was computed in each case from � values computed from 50 Monte Carlo trials;
we show results here for an average of 1 count per sinogram bin.

estimates from each sinogram for each activity level were cal-
culated using the three different estimation methods. The mean
and variances of these values for each activity level were com-
puted and compared. For each activity level, we also computed
the mean values of the sinograms and used these to compute the
true values.

Fig. 8 shows a transaxial profile of the means of the values
over the Monte Carlo trials at approximately 40 K counts (1
count/sinogram bin). Note that values outside the support of
the object have no importance. The MPI improves considerably
over the DPI, but GELT gives the estimate of the values with
the lowest bias.

Fig. 9 shows the Monte Carlo standard deviations in esti-
mates using the three methods. While the MPI exhibits smaller
variance than GELT, it also has larger bias compared to GELT
(as seen in Fig. 8), so that the overall mean squared error for
GELT is significantly lower than that for the MPI. Figs. 8 and
9 also clearly demonstrate that the DPI method performs very
poorly in both bias and standard deviation. These results are for
a mean sinogram count of 1. As the mean activity is increased,
differences between the MPI and GELT methods are reduced,
with the latter consistently better in terms of mean squared error.
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Fig. 9. The Monte Carlo standard deviations of the � estimates for the data in
Fig. 8.

Fig. 10. Bias of 1=(y + 2�r) estimates for MPI and GELT (w = 1=11904 ,
� = 5, and � = 2) for two different randoms means (0.3 and 1.2) over a range
of mean activity values (0–15). GELT outperforms MPI over the entire range of
typical randoms fractions (10%-30%).

Fig. 11. Variance of 1=(y + 2�r) estimates for MPI and GELT (� = 5, and
� = 2) for two different randoms means (0.3 and 1.2) over a range of mean
activity values (0–15). MPI has lower variance over all mean activity values but
the lower bias in the GELT method results in more accurate � estimates.

D. Estimation Accuracies for Randoms Precorrected Data

The accuracy of estimates of are dependent on
the randoms rate for randoms precorrected data. We, therefore,
show the bias and standard deviation of the GELT, as well as
the MPI method, for two randoms rates, .3 and 1.2., in Figs. 10

Fig. 12. The mean profile of � estimates from 50 Monte Carlo trials for a line
through the center of the field of view of the scanner under the shifted Poisson
model (mean trues: 1 count/sinogram bin; mean randoms: 0.3 counts/sinogram
bin).

Fig. 13. The Monte Carlo standard deviations for the data in Fig. 12.

and 11, respectively. In both cases, bias and variance for the
DPI method were considerably worse and are not shown here.
For both randoms rates, the GELT shows lower bias and higher
variance than the MPI at the same randoms rate. The effect on
the estimated FIM is shown in Figs. 12 and 13 for a mean trues
rate of 1 count per sinogram element and a mean randoms rate
of 0.3. As with the uncorrected Poisson case, the improvement
in bias of the GELT more than outweighs the effect of increased
variance compared to the MPI so that the mean squared errors
for the FIM estimates using GELT are significantly lower than
those using the MPI.

IV. APPLICATION TO UNIFORM RESOLUTION RECOVERY IN

PENALIZED ML RECONSTRUCTION

A. Uniform Resolution in Penalized ML Reconstructions

Images reconstructed using a penalized ML objective func-
tion under the Poisson model maximize the objective function
formed by the log-likelihood plus a penalty or regularizing term

(23)

where is the penalty and is the regularization or hyper-
parameter controlling the resolution-noise trade-off in recon-
structed images.
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Given such an implicitly defined estimator, Fessler and
Rogers [1] defined the LIR at a given voxel as the change in
the mean reconstructed image in response to a small perturba-
tion at that voxel

(24)

where denotes the estimated image and is the measurement
mean vector.

The LIR for the objective function (23) has the following ap-
proximate form that includes the FIM, :

(25)

where is the second derivative matrix of the penalty at
. In this paper, we consider only quadratic penalties so that

. A more accurate expression for the LIR is given in
[5, Eqns. (22) – (24)], however, this form is rather complex to
work with, and the approximation in (25) has been been shown
to give reasonably accurate results [2], [3], [17].

The th element of the LIR, also known as the local CRC, is
a measure that can be used to characterize the resolution of a
reconstructed image. Qi and Leahy [3], [17] gave the following
approximation to the relation between the local CRC at voxel
and the smoothing parameter :

(26)

where is the three-dimensional (3-D) Fourier transform of the
central column of the second derivative of the penalty function,
and is the 3-D Fourier transform of the approximation of
the central column of the block-Toeplitz matrix formed from
the th column of with the th
element of .

The LIR and, therefore, the CRC depends explicitly on the
FIM. By spatially modifying the smoothing parameter so that

is constant over all voxels, we can achieve approximate
invariance in CRC and, hence, approximate invariance in resolu-
tion. In particular, we use the following data-dependent penalty
[1]:

(27)

where is the reciprocal Euclidean distance between voxels
and , and denotes the estimate for . Using the methods

described in this paper we can apply this idea of spatially
varying smoothing even for low count data using an estimate of
the ’s based on the GELT method described above.

We note that more accurate corrections for nonuniform reso-
lution, which take into account the spatially variant response of
the scanner itself, have been proposed [5], [17]. However, our
purpose here was to demonstrate the specific effects of more
accurate estimation of the FIM and we have not included these
factors here.

B. Resolution Uniformity

We selected 11 points of interest on the Hoffman brain
phantom for resolution calculations that are shown by dark
squares in Fig. 7. The resolution measurements given in this
paper are the full-width at half-maximum (FWHM) values of

Fig. 14. Resolution at 11 points in the Hoffman brain phantom slice. Even at
low counts, the GELT method still gives high spatial uniformity.

the LIR computed using Monte Carlo simulations in which we
performed 100 reconstructions using the Hoffman phantom
shown in Fig. 7 and performed another 100 reconstructions with
the value at the point of interest perturbed by . The difference
between the mean reconstructions in both cases divided by
gave us an approximation for the LIR. We repeated this process
for all 11 points shown in Fig. 7. Although FWHM and CRC
are different measures of resolution, they are highly correlated
since high CRC values will lead to small FWHM values and
vice versa.

The same set of noisy sinograms used to compute were
also used to compute and compare resolution uniformity ob-
tained from different methods. We reconstructed the data using
the MAP reconstruction method in [16] using spatially variant
smoothing parameters computed using each of the three FIM
estimation methods (DPI, MPI, GELT).

Fig. 14 shows the uniformity of resolution at different points
when mean activity is 1 count/sinogram element. The figure in-
dicates that the proposed method can achieve superior resolu-
tion uniformity compared to the other two methods at low count
rates. The vector of parameters for GELT
was .
The mean and standard deviations of the FWHM values for MPI
were 2.8710 and 0.1350, respectively, whereas those for GELT
were 2.9028 and 0.0584, indicating more than a factor of 2 re-
duction in the standard deviations of FWHM values with GELT.

V. CONCLUSION

We have presented a new method for optimally estimating the
FIM under ordinary Poisson and shifted Poisson models. Pre-
vious FIM estimation methods were highly biased at low counts
and caused significant artifacts in applications that used the bi-
ased FIM estimates. Our minimum generalized error estimator
trades off reduced bias for increased variance in the estimation
of reciprocal means to optimally estimate the FIM. These im-
proved FIM estimates can be applied for very low count data to
the range of applications outlined in our introduction.

The GELT method can be readily incorporated into any sta-
tistical image reconstruction algorithm. A gamma distribution
can be fit to the empirical density of the data using MATLAB’s
gamfit function. The , and , which appear in the standard
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quadratic form, can be computed to arbitrary accuracy by in-
creasing the number of terms used in approximating the infinite
summations in (13) or (22) and the resulting convex, quadratic
cost function can be maximized using any convex optimization
algorithm.

The computation of the look-up table ( ) for the ordi-
nary Poisson case took less than 5 min using MATLAB on a
Pentium III 900-MHz machine. This is approximately the same
time it takes to compute one forward or back projection (for
ECAT HR+) on the same machine. Therefore, the use of GELT
has a minimal effect on the overall image reconstruction time.
An alternative would be to precompute the constants for the
GELT off-line based on representative data, in which case there
would be no added run-time for using this approach.

We expect GELT to be particularly useful for FIM estimation
in studies that typically have low counts, such as whole body
scans or dynamic PET studies with many short frames. As such
an application, we demonstrated how uniform resolution could
be achieved with low count Poisson data in a single-ring scanner.
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