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Multiple Dipole Modeling and Localization from
Spatio-Temporal MEG Data
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Abstract—An array of biomagnetometers may be used to
measure the spatio-temporal neuromagnetic field or magne-
toencephalogram (MEG) produced by neural activity in the
brain. A popular model for the neural activity produced in re-
sponse to a given sensory stimulus is a set of current dipoles,
where each dipole represents the primary current associated
with the combined activation of a large numer of neurons lo-
cated in a small volume of the brain. An important problem in
the interpretation of MEG data from evoked response experi-
ments is the localization of these neural current dipoles. We
present here a linear algebraic framework for three common
spatio-temporal dipole models: i) unconstrained dipoles, ii) di-
poles with a fixed location, and iii) dipoles with a fixed orien-
tation and location. In all cases, we assume that the location,
orientation, and magnitude of the dipoles are unknown. With
a common model, we show how the parameter estimation prob-
lem may be decomposed into the estimation of the time invari-
ant parameters using nonlinear least-squares minimization,
followed by linear estimation of the associated time varying pa-
rameters. A subspace formulation is presented and used to de-
rive a suboptimal least-squares subspace scanning method. The
resulting algorithm is a special case of the well-known MUlItiple
SIgnal Classification (MUSIC) method, in which the solution
(multiple dipole locations) is found by scanning potential loca-
tions using a simple one dipole model. Principal components
analysis (PCA) dipole fitting has also been used to individually
fit single dipoles in a multiple dipole problem. Analysis is pre-
sented here to show why PCA dipole fitting will fail in general,
whereas the subspace method presented here will generally suc-
ceed. Numerically efficient means of calculating the cost func-
tions are presented, and problems of model order selection and
missing moments are discussed. Results from a simulation and
a somatosensory experiment are presented.

I. INTRODUCTION

N array of Superconducting QUantum Interference
Device (SQUID) biomagnetometers may be used to
measure the spatio-temporal magnetoencephalogram
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(MEG) produced by the brain. Given these external mag-
netic field measurements, one would like to compute a
‘‘neuromagnetic image,”’ specifying the three-dimen-
sional current density that produced the magnetic field.
Accomplishing this requires inversion of the Biot-Savart
law. Unfortunately, this general inverse problem is ill-
posed because different neural current distributions may
produce the same external field measurements. As a re-
sult, physical models of the underlying current distribu-
tions are employed (see [1] for an overview).

Of particular interest is the localization of the neural
currents evoked in response to a given sensory stimulus,
such as auditory or visual. An external magnetic field may
be produced by this primary neural current, for which the
simplest and most widely used composite model is the
‘‘dipole in a sphere.”” Here, the primary current is mod-
eled as a current dipole or set of dipoles, and the head is
modeled as a conductive sphere. A current dipole can ac-
curately model neural activity localized to one site, rep-
resenting the coherent activation of a large number of in-
dividual neurons [2]. The return or global volume currents
are distributed over the sphere of the head, and the exter-
nal magnetic field generated by the volume currents has
no component normal to the head surface [3]-[5]. Thus,
in this simple model, the component of the magnetic field
oriented radially from the head is produced by the primary
dipole current alone.

Given a suitable source and head model, the inverse
problem can be reduced to the nonlinear optimization
problem of computing the location and moment parame-
ters of the set of dipoles whose field best matches the MEG
measurements in a least-squares sense. Singh ez al. [6]
discussed neuromagnetic imaging (NMI), which extends
the dipole model by assuming a large set of current di-
poles, each with a fixed location at the center of a voxel
(volume element) of a three-dimensional volume within
the brain. The MEG data and image are linearly related;
however, because of the large number of unknowns in the
three-dimensional image, there is generally not a unique
solution. Ilmoniemi er al. [4] described the general for-
ward problem and presented minimum norm inverse so-
lutions. Jeffs et al. [7] investigated several cost functions
to select an appropriate solution from the set of feasible
solutions. Dallas [8] investigated the imaging problem
using a direct Fourier-based inversion approach, Alvarez
[9] recently presented Fourier-based solutions for the two-
dimensional case, and Wikswo er al. [10] have had suc-
cess in imaging two-dimensional objects with their
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MicroSQUID apparatus. In this paper we present methods
for solving for a small parsimonious set of dipoles as a
means of avoiding the ill-posedness associated with the
full three-dimensional image model.

As in all modeling situations, a tradeoff exists between
model complexity and generality and the ability to esti-
mate reliably the model parameters from the given mea-
surement data. Initial MEG dipole models used single time
‘‘snapshots’” of the measured spatial magnetic field,
where a spatial dipole model was fitted at an instance in
time, usually at a local or global response peak. These
MEG models are direct counterparts of EEG dipole
models, known as instantaneous state dipole models [11]:
To increase the complexity of the source models that can
be effectively employed, researchers have begun to incor-
porate temporal modeling assumptions. The addition of a
temporal model increases the range of the measurements
that can be used in model fitting. A spatio-temporal di-
pole model and the necessary associated assumptions are
presented in detail in [2], [12].

The spatio-temporal models differ in the manner in
which they describe the time dependence of the data.
Scherg and von Cramon [2], [13] use dipoles fixed in an
unknown location and orientation, and therefore the time
dependence is represented by a scalar time series speci-
fying the magnitude and polarity of the current flow.
Maier et al. [14] implicitly assume the same model, but
use principal components analysis (PCA) to derive the lo-

cations. Achim et al. [15] compare the instantaneous state

dipole model with PCA dipole fitting and spatio-temporal
modeling; in their three-dipole fixed orientation spatio-
temporal model, they assume that two of the dipoles are
known in orientation and location (information obtained
from the instantaneous state dipole model), and thus
search for only one unknown dipole location and orien-
tation. In [16], Scherg and von Cramon have fixed loca-
tion, but unconstrained orientation, and they introduce the
idea of dipole source potentials, or regional dipoles [12],
where three elemental dipoles with orientations in orthog-
onal directions may occupy the same physical location.

These differences in formulation can be grouped into
three spatio-temporal dipole models: i) unconstrained
(*‘moving and rotating’’) dipoles, ii) dipoles with a fixed
location (*‘rotating’’ or ‘‘regional’’), and iii) dipoles.with
a fixed location and a fixed orientation (*‘fixed’’). We as-
sume that the parameters of location, orientation, and
magnitude are all unknown. Our intent here is not to argue
the merits of one model over another, but rather to show
how each model may be solved efficiently within a com-
mon linear algebraic framework. In each case, we show
that the model can be mathematically reduced to the same
general expression, allowing the same approach to finding
the inverse solution. This expression will unify our ap-
proach to solving the inverse problem, no matter which
model we choose. Preliminary versions of this work ap-
peared in [17], [18].

In Section II, we present each of the three data models,
and in Section III, we discuss the calculation of the error

function in fitting these models to spatio-temporal data.
In Section III-C, we present a computer simulation to il-
lustrate the performance of these spatio-temporal model-
ing techniques. Section IV presents a new suboptimal but
faster method of solving the least-squares problem using
a subspace scanning approach. In Section V, we discuss
how this subspace scanning is statistically equivalent to
the MUItiple SIgnal Classification method (MUSIC) [19].
We also present analysis to show that although PCA di-
pole fitting is similar to these subspace methods, PCA will
generally fail in the multiple dipole case, whereas these
methods will generally succeed. We present a simulation
of this scanning method, using the same example data
from Section III-C. We then present results from an actual
somatosensory experiment.

‘

II. FORwWARD MODELS

As discussed in the introduction, physical models are
used to represent both the neural current sources and the
enclosing head shape and conductivity. Source models
range from simple current dipoles to complex current sur-
faces. Head shape and conductivity models range from
spherically symmetric conductors to finite element models
based on individual anatomy. The combination of source
and head model is known as the forward model. Given
any arbitrary static current distribution, the magnetic field
can be obtained from the Biot-Savart law. For source di-
poles in a spherically symmetric conductor, Ilmoniemi ez
al. [4] point out that the source model can be reduced to
consideration of just the primary source elements, regard-
less of the orientation of the sensors outside of the sphere.
If the measurements are restricted to the radial orienta-
tion, the model simplifies further [4], [5].

Although the degree of complexity can vary greatly, in
all cases the forward model specifies the complete current
distribution within the head via a set of source parameters
(e.g., locations, magnitudes). In other words the forward
model provides a mapping from the source parameters to
the resulting magnetic fields. In general, we can partition
the parameters of any forward model into linear and non-
linear parameters. In this section, we show how this par-
tition of spatio-temporal models provides a convenient al-
gebraic form, a form which highlights the difficult
nonlinear parameters. Although our development utilizes
a‘specific forward model—current dipoles in a spherically
symmetric conductor—the basic approach can be applied
to any forward model.

A. Biot-Savart Law

In this section, we present the Biot-Savart law in a con-
venient discrete matrix notation for discrete source ele-
ments, which we then use to develop the spatio-temporal
dipole models commonly used in MEG research. The
general model in every case requires determining the un-
known set of parameters {L, M, S}. The linear time vary-
ing parameters, S, can always be found using a direct
pseudoinverse solution, but, in general, the time invariant
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location parameters, L, must be found using an iterative
nonlinear minimization algorithm. The block diagonal
matrix, M, depends on whether we use the rotating or
fixed dipole model; in the rotating model, M is simply an
identity matrix, and in the fixed model, M contains the
unit orientation parameters, M. The goal here is to show
that each model can be expressed in a common framework
and solved in a similarly efficient manner.

We begin by examining the model for a single dipole,
then expand this model to account for multiple dipoles.
Establishing an origin, denoting the dipole position as
L, and observing the ith measurement at sensor location
R(i), we can write the Biot-Savart law for a current dipole
as

_ 9 x®i) - D)

B() — =
[RG) — L|?

ey
where k = po/(@4m)isa constant, é is the dipole moment,
L is the dipole location, R(i) is the ith measurement sen-
sor location, and B(i) is the magnetic field at R(). A
SQUID biomagnetometer is used to acquire the magnetic
field at position R(i), but it measures only one component
of the three-dimensional field. Thus, only a scalar mea-
surement is made:

B(i) = B(@i) - $() (2)
where §(i) denotes the unit orientation of the ith sensor.
The operation ‘-’ denotes the dot product of two vec-

tors.
Combining equations (1) and (2) yields

_ RGO - D) x 56) - 0
IRG) - LI

B(i) =g -0
The vector g(i) can be viewed as a gain vector, relating
the moment intensity of the dipole to the measurement at
position R(i). If we let each gain vector be represented as
a1 X 3 row vector and the moment as a 3 X 1 column
vector, then we can arrange the measurements from m lo-
cations in a matrix form:

(R(D) — L) x 5(1) 7]
B(1) IR(1) - L
B=| . |=k :
B(m) (Rim) — L) x 5(m)
L [Rem) - L)
g
“1Q1=| - |10l =GL)0 @)
g(m)

The matrix G(Z) can be considered to be the gain or
relationship between a unit moment source at L and the
column vector of measurement locations {R(i)}. From
this form we clearly see the linear relationship between
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the moment Q and the measurements B. As we will show
in Section I, this form also focuses our attention on the
more difficult nonlinear parameters in the matrix G (we
usually drop the dependence on L for notational simplic-
ity).

Although derived for a single dipole, each column in G
could also be viewed as the model for three elemental di-
poles or dipole source components, with all three sharing
the same location, but in oblique directions [16]. For sim-
plicity, we will continue referring to these collocated el-
emental dipoles as one dipole, with moment Q. This
model easily extends to the multiple dipole (not collo-
cated) case by superposition. For p dipoles,

0
B=1[G, - .G]| - (5)

-

O

or simply B = G(L) T, where G(L) can be partitioned into
the smaller matrices G,;(L)), as defined in (4). Similarly,
T may be partitioned as the concatenation of the moment
vectors for each of the p dipoles. Notationally, we use
over arrows, *, to indicate a row or column vector that is
geometric in three-dimensions, such as a location, L;. We
use underlines and boldface to indicate more general col-
umn vectors and matrices, which in turn may contain
many such geometric vectors. For m sensors and p di-
poles, vector Bis m X 1, matrix G is m X 3p, and vector
Tis3p x 1.

B. Dipole in a Sphere

Our model in (5) describes the external magnetic field
as the sum of the individual fields from p dipoles. For
simplicity in deriving the model, the biomagnetometer is
assumed to make a perfect point field measurement. We
also assume that this field is due to the local primary cur-
rent only, as we are ignoring the global volume or return
currents. In more sophisticated head and source models,
the return currents, the finite coil area, and the gradiome-
ter configuration of a practical SQUID biomagnetometer
could also be included, resulting in a very similar for-
mulation to that presented here {4], [5], [7].

Many researchers have correctly noted that only the two
tangential dipole moment components need be computed
for the “‘dipole in a sphere’” model. A radially oriented
dipole inside a spherically symmetric conductor produces
no external magnetic field, since the field from the surface
return currents cancels the field from the primary dipole
current [3], [4], [5], [20], [21]. Additionally, the mag-
netic field normal to the surface of the sphere (i.e., radial
from the center of the sphere) is due solely to the primary
tangential dipole currents; volume or return currents in
the surface of the sphere contribute nothing to the radial
magnetic field.

A common MEG geometry is therefore an array of sen-
sors arranged radially about the surface of the head, which
is sensitive only to the tangentially oriented primary di-
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pole currents. In this paper we will therefore assume that
the radial component is immeasurable and that only the
two tangential components are measurable. Thus, each
submatrix G; will be m x 2, corresponding to the gain in
the two tangential directions. We can refor to these two
tangential components as ¢ and 6, e.g..G; = [G,G,]. We
emphasize that although we are using the dipole in a
sphere model as an example, all results are sufficiently
general such that extensions to other models containing
all three moment components are straightforward. In-
deed, the methods presented here can be applied to the
EEG models as well, but we will restrict ourselves to the
MEG model for simplicity.

C. Unconstrained Location and Orientation

The instantaneous state dipole [11] is the simplest of
the dipole models, for which we consider just a single
time slice of data, typically at the peak of the observed
MEG response. The straightforward extension to the full
temporal information is simply to treat each time slice with
a separate static model. At each time slice, the locations
and moments are calculated for each dipole, indepen-
dently of all other time slices. Since no constraints are
placed on the parameters of the dipole, this model allows
both moving and rotating dipoles. The model is simply
(5) with a time parameter j inserted, B(j) = G(j )YT(j).
which we would solve for cach Jyj=1- n

D. Fixed Location, Unconstrained Orientation

When the instantaneous dipole model is solved for sev-
eral sequential time points, the location of the dipole can
appear to move as a function of time. Many researchers
believe it is more realistic to assume that different parts
of the cortex with different cortical function are activated
electrically when they perform their specific tasks [22],
[23]. The ‘‘movement’ seen in the instantaneous state
dipole would therefore be more accurately modeled as two
or more stationary dipoles which are activating electri-
cally at different times. Rather than allowing the dipole
locations to vary with time, as in the above model, this
second model restricts the location of the dipoles to be
constant throughout the measurement interval. but allows
the moment intensities and orientations to vary. We begin
with the previous model, fix the gain matrix to be a con-
stant with respect to time, and represent the model in a
compact matrix form:

[B(L), -+, Bm)] = GII(1), - - -, T(n)] (6)

or B = GT. Each column of the T matrix may be parti-
tioned to represent the moments of p dipoles at time ;.

i(j) M(j)Si(j)
Tjy=| « |= : 7
0,(j) M,(j)S,(j)

where each partition é,-(j) can be represented by its unit
moment orientation M,(j) and intensity S;(j). Hence,
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each row of T can represent the time series for one com-
ponent of one tangential dipole [16].

E. Fixed Location and Orientation

Since no constraints are placed on the time series of the
three components for each dipole, the orientation of the
dipole can vary or *‘rotate’’ over time. Some researchers
[2], [13] argue that physiologically a dipole orientation
should not rotate, because the dipole model represents a
fixed neuroanatomical structure. If we fix the unit orien-
tation of each moment to be the same for all time slices
and allow only the magnitude and polarity, S(j), of the
moment to vary, then we can express the matrix T from
above as

[(MS,(1) -+ S,

r= : (8)
M IS,(1) - -+ S,m)]
M, 0[Sy -+ S,
= : ST ©)
o mJLlsm - sm
= MS. (10

Thus, our constrained model is now separated into three
components:

B(1,1) --- B(l, n)
B(m, 1) --- B(m, n)
M, 07 S -~ S
=[G .G, ' ST
0 MILSm - Ssm

(11)
or B = GMS. As before, G represents the m x 2p gain
matrix between p unit dipoles and the array of m sensors.
The 2p X p block diagonal matrix M represents the fixed
unit orientation moments. The moment intensity matrix S
isp X n.

Grouping as B = (GM)S = AS. we retain the same
general separation into two matrices as for the other
models. The difference here is that we have both the time
invariant location L and moment orientation parameters
M in the first matrix A, rather than just the location as
before. Each column of G represents the gain of one com-
ponent of one dipole, but each column of A = [4,,

"+ A,] = GM now represents one complete dipole.

F. General Model

The most general model contains both rotating and fixed
dipoles. We might argue that two fixed dipoles may be so
closely located that they appear in our data as one rotating
dipole. We may also have rotating dipoles that rotate so
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little as to appear fixed in orientation. The general model
accounts for both types and will be useful in deriving fur-
ther results in this paper.

We simply alter our definition of a rotating dipole to be
one which must rotate, such that its two component time
series cannot be partitioned as a fixed moment orientation
and a scalar time series (i.e., the time series are linearly
independent). For p, rotating dipoles and py fixed dipoles,
we partition the pairs of rows of T as the rank two sub-
matrix T, = [T, Tg]T for rotating dipoles and the rank one
submatrix T, = [MS 7 for fixed:

[Id)l Iﬂl]r

(Lo, Ty 1"

v T
Mg, + 1S p,+ ]

| (1,5,

[Ty, To)"

L, 0 :

_ M, 1) (g, Ty )" s

ST
P(prt1)

0 |
57

(12)

where I, is a 2p, X 2p, identity matrix. We can now
express our model as B = GT = G(MS) = HS, where H
= GM is our ‘‘hybrid’’ gain matrix, a combination of the
previously defined G; and 4, submatrices,

GM=H=IG, " ,G

prvél,”' , A

Ayl

(13)

The rank of this matrix H is r = 2p, + p;, which is
effectively the number of dipole source components [16]
in our model. The matrix S is the corresponding time se-
ries for each dipole component; if two dipole components
are collocated, then by our definition they represent one
rotating dipole.

The rotating and fixed models are just specializations
of this model, and the instantaneous dipole model is just
this model for one time slice. For no fixed dipoles (p; =
0), M is simply a 2p, X 2p, identity matrix, and we have
the rotating dipole model of (6), with 3p unknown loca-
tion parameters in the gain matrix H(L, M) = G(L). Sim-
ilarly, for no rotating dipoles (p, = 0), we have the fixed
dipole model of (11), with 4p unknown location and con-
strained unit moment parameters in the gain matrix H(L,
M) = A(L, M). As we will show in Section V, successful
localization requires that we determine the rank 7, i.e.,
the number of dipole components, but not necessarily the
number of rotating and fixed dipoles.
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III. THE LEAST-SQUARES SOLUTION

In this section, we show how a least squares error is
generated by implicitly or explicitly projecting the mea-
surements onto the orthogonal complement of the sub-
space formed from the appropriate forward model. We
use the simple dipole in a sphere model as an illustration,
where the nonlinear parameters are the locations of the
dipoles and possibly the fixed orientation. The cost func-
tion is shown to be a function of these nonlinear param-
eters only, thus reducing the number of parameters to be
searched. The nonlinear parameters are iteratively ad-
justed to minimize this error through standard nonlinear
minimization techniques. The optimal nonlinear parame-
ter set is then used to perform a linear least squares fit for
the linear parameters. We present approaches for effi-
ciently calculating these cost functions, then conclude
with a three dipole simulation example.

A. Separation of Linear Parameters

Consider the general model of p, rotating dipoles and
pyfixed dipoles for our data, B = H(L, M) S, where H(L,
Myism X r, Sisr X n,and r = 2p, + pp. H(L, M) has
3p unknown location parameters and p; unknown con-
strained moment parameters. We collect n time samples
from each of m SQUID biomagnetometers and form a spa-
tio-temporal matrix of data F = [F(1) - - - F(n)]. We
model this data as F — B = N, where N represents the
error between the measurements and our model. We de-
fine our measure of fit as the square of the Frobenius norm,

M=
M:

Jis =

i

{FG,j) — BG, j)}* = |F — Bl}

il

1j=1
IF - HL, M)S|% (14)

The goal is to find the set {L, M, S} that minimizes this
error.

The simple approach is to use this cost function directly
in an iterative minimization algorithm, which would
search for all five parameters for each one of p dipoles at
each point of n time instances, for an overall total of 5pn
parameters [24]. Thus a three dipole model would require
searching a 15 parameter space at every time instance.
This same cost function, however, can be viewed as a
projection minimization that can greatly reduce the com-
putational cost, yet incorporates the information of all the
time slices.

Given L and M (hence, H), a solution for the matrix S
that will minimize J, g is

S=H'F

where H' is the well-known pseudoinverse solution (for
full column rank H),

H = (H™H) 'H"

(15)

(16)
or the more general Moore-Penrose pseudoinverse (min-

imum norm) solution,

H = Vv+yUT, (17)
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where H = ULV is a singular value decomposition
(SVD) and =7 is the diagonal matrix I with its nonzero
elements inverted [25]. This minimization for S will hold
for all sets {L, M}, including the optimal set {L, M}*
that minimizes the cost function J g.

We can replace S with this pseudoinverse solution be-
fore solving for {L, M}. The cost function can be equiv-
alently expressed as

Jis = IIF — HS|; = IIF — HH'F)||?
= — HH)F|; = |d — Py Fll} = |P} FI3.
(18)

The matrices Py and Pj; are projection matrices: Py proj-
ects data onto the column space of the matrix H, and
Pj; is the orthogonal complement projection, that is, the
projection of the data onto the left null space of H. Thus,
the squared error can be explicitly computed from the pro-
jection of the data matrix, F, onto the left null space.

We have used the separation of the unknown parame-
ters into linear and nonlinear components and have fac-
tored out the linear moments. While this method has often
been used by other researchers [12], [14], [15], [23]. the
mathematical details have not always been stated or ex-
plained explicitly; [26], [27] give a full mathematical jus-
tification for this approach. The benefit is that J, ¢ is now
a function of only the parameters in H. An iterative min-
imization routine need only explicitly consider this re-
duced subset of parameters, which can considerably re-
duce the convergence time.

This cost function can be minimized directly by a non
gradient-based method, such as the Nelder-Meade sim-
plex, used by many researchers because of its simplicity
and apparent robustness to local minima [15]. Alterna-
tively, gradient-based methods are typically faster, but re-
quire cither analytical or numerical partial derivatives of
the projection matrix. Simple analytic expressions of the
partials of the projection matrix are derived in [26], [27],
and these expressions, in turn, require only partials of the
gain matrix H. In practice, however, any slight change in
the head or source model requires a recalculation of the
partials, and the simplex method or other nongradient
methods are therefore usually preferred for their simplic-
ity [14], [15].

The computational complexity of the least-squares es-
timation problem is highly dependent on the number of
nonlinear parameters that must be estimated. In the in-
stantaneous state dipole model, the location of each di-
pole must be computed independently for each time slice
i. In comparison, the number of nonlinear parameters in
the rotating dipole model drops dramatically. For p di-
poles and n time slices, in both cases we have 2pn linear
parameters, but the gain matrix G is a function of only 3p
location parameters for the rotating dipole model. rather
than 3pn for the instantancous dipole model. Thus, the
rotating dipole model requires an iterative search of only
the 3p nonlinear location parameters, followed by a sim-
ple 2pn linear fit for the moment parameters. For the fixed
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dipole model, the dimensionality of the search space in
the iterative minimization algorithm is increased relative
to the rotating dipole model from 3p parameters (locations
only) to 4p parameters (locations and constrained unit ori-
entations). Only the pn parameters of the time-series mag-
nitude and polarity of the moments in the matrix S can be
calculated using a simple linear fit.

An approximate approach to the fixed dipole model is
to group the model as B = G(MS), which is effectively
identical to the rotating dipole model B = GT. Once Tis
found, we form a second equation, MS = T. from (10),
and solve for M and S. The advantage of this approach is
that MS = T can be solved efliciently using the SVD.
Each set of two rows of T represents the time series for
the two tangential components of one dipole. If the dipole
is truly fixed in orientation, then this 2 X n matrix parti-
tion is of rank one. An SVD of this partition of the matrix
will give the best rank one fit, and a simple analysis of
the singular values will confirm the quality of this fit. If
the rank one fit from the SVD is perfect, then the solution
is optimal; however, in general this approximate ap-
proach is not guaranteed to give the same result as that
which would be obtained by solving B = AS. The appeal
lies in keeping only 3p unconstrained parameters instead
of 4p constrained parameters in the iterative search space.
An example of this method is shown in Section III-C. One
possible extension of this approach may be to embed this
two-step process into each iterative error calculation,
rather than solving MS = T only once at the end of the
iterations.

B. Error Function Computation

The greatest computational burden in fitting the multi-
ple dipole model occurs in the iterative nonlinear min-
imization routine, which must repeatedly form the nonlin-
ear gain matrix H, then solve the inverse matrix problem
for cost function Jy 5 for different sets of parameters. By
using the SVD and the QR decomposition [25], we can
significantly reduce the number of multiplications re-
quired. This analysis also leads naturally into Section IV,
where we present an alternative method of solving the
least-squares problem using these same decompositions.

If the number of time samples, n, is greater than the
number of sensors, m, then the use of an SVD of F gives
an efficient form for calculating the above error function.
Decomposing as F = ULV, the least-squares cost func-
tion can be rewritten as

Jis Hpﬁ F“% =
IPj UEl; = ilPS WiE

where we are able to drop the term V7 because orthogonal
matrices preserve the F-norm. Since Fis m X n, then the
diagonal matrix L of singular values has at most m non-
zero terms. Therefore W = UL is only m X m. as opposed
to the larger m X n data matrix F.

Greater savings occur if the number of nonzero singular
terms, r. is less than m. i.e., F is not of full row rank,

il

Py UZVTE

(19
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because then W would have correspondingly fewer col-
umns, r. With noise considerations, the singular values
are almost always strictly greater than zero, so we can
amend r to be the number of singular terms *‘signifi-
cantly’’ greater than zero. The corresponding r compo-
nents in the decomposition are the principal components
that ‘‘adequately’’ describe the data, where the user must
decide what is adequate and what is significant. Using
these significant components reduces the computational
cost but results in a suboptimal least-squares solution.
Section IV more fully exploits this possible decomposi-
tion. A two-stage approach would be to use this reduced
r set for the coarse fit, then return to the full m set of
components for the complete fit.

If an SVD is used to calculate the pseudoinverse of H,
then a further reduction in the number of multiplications
can occur. Denoting the decomposition as H =
(U.U,_EVT, where His m X r, then let U, contain the
columns corresponding to the r non-zero singular values,
and let U,, _, correspond to the m — r zero singular val-
ues, where r is the rank of H. Then Pj = U,_, U} _,,
and the cost function can be calculated as

JLS ”PI# WHZ = ”Umer”%' (20)
Wl — 1P, WIE = Wi — lUfWIE @D

where the second form follows from the well-known
equality W7 = [P, WI; + P} WIIZ.

The selection between the two forms depends on the
rank r and the decomposition method used, since either
projection matrix may also be efficiently computed by
using the QR decomposition of the gain matrix H. The
choice of SVD or QR decomposition is application de-
pendent. In general, the calculation of an SVD is more
expensive, because it calculates the two eigenvector
spaces U and V by iteratively converging to a solution.
However, ‘‘economy’” SVD versions [28], [29] can be
run in which only the principal component eigenvectors
are calculated, i.e., U, above, resulting in considerable
savings if the rank r of H is small relative to m. By com-
parison, QR decomposition is noniterative, and it outper-
forms a full SVD calculation. If the rank of H is large,
then QR decomposition generally outperforms even the
economy SVD. Either method of decomposing H will
outperform the undecomposed projection matrix, Py =
HH'. These decomposition approaches also have better
numerical properties than inverting H"H or solving via
Gaussian elimination [25]. We will use these decompo-
sitions as a basis for forming a subspace scanning method
in Section IV.

Il

C. Simulation

We conclude this section by presenting the results of
simulations in which the spatio-temporal models de-
scribed are applied to a set of simulated MEG data. Data
were simulated for the case of three dipoles, all three with
fixed locations, two with fixed moment orientations and
the third with a rotating orientation. The data were com-
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Fig. 1. Simulated MEG data for 37 radially oriented sensors, 100 time
samples from each. Sensors are positioned on an imaginary sphere of radius
12 cm, centered on the origin, with Sensor 1 located 12 cm above the (x,
y) plane at (x, y, z) position (0, 0, 12). Three dipoles were simulated about
3 cm radially below the sensors numbered 9, 13, and 17. Zero-mean Gauss-
ian noise with a standard deviation equal to one-tenth the peak was added,
for an SNR of approximately 10 dB. Each numbered trace represents the
time response for the corresponding sensor, with the plots arranged in their
approximate spatial position in the (x, y) plane.

puted for an array of 37 closely spaced sensors radially
oriented and positioned on the surface of an imaginary
sphere of radius 12 cm.

Because the head model was assumed to be a spheri-
cally symmetric conductor and the sensors were arranged
radially outside of the sphere, then only the fields due to
the primary tangential dipole currents were computed, as
discussed in Section II. However, rather than compute the
parameters in a spherical or rotated coordinate system, we
employ a Cartesian coordinate system and solve for the
three constrained moment parameters per dipole, using the
pseudoinverse form of (17). A total of 100 time samples
were generated and corrupted by additive white Gaussian
noise with an SNR of 10 dB. SNR is computed as the ratio
of the average magnetic field measurement power to the
variance of the noise. The resulting simulated MEG data
are shown in Fig. 1.

The parameters for this data were estimated using two
of the models discussed: a) fixed location but uncon-
strained orientation; and b) fixed location and orientation.
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TABLE 1
ESTIMATED LOCATIONS AND MOMENTS. THE LOCATIONS WERE FOUND USING A NELDER-MEADE SIMPLEX
ALGORITHM FOR THE ROTATING DIPOLE MODEL. THE NUMBER OF DIPOLES, 3, WAS ASSUMED KNOWN, AND
THE SIMPLEX ALGORITHM SEARCHED FOR THE BEST 9 LOCATION PARAMETERS THAT FIT THE DATA IN A
LEAST-SQUARES SENSE. ONCE THE LOCATIONS WERE OPTIMIZED, THE TIME SERIES WERE FOUND ViA A
SIMPLE LINEAR LEAST-SQUARES FIT. THE TIME SERIES FOR THE SECOND AND THIRD DIPOLES WERE
DECOMPOSED INTO A RANK 1 MODEL, FROM WHICH THE FIXED MOMENT ORIENTATIONS WERE FOUND

Dipole | Dipole 2 Dipole 3
True and Estimated Location (cm)
L, L, L. L, L L. L, L, L.
True 2.800 —1.700 8.300 —2.900 —1.600 8.300 0.000 3.300 8.400
Est. 2.817 -1.691 8.335 —-2.910 —1.594 8.225 —0.056 3.320 8.358
True and Estimated Moments (from SVD)
M, M, M. M, M, M. M, M, M.
True (N/A, rotating) 0.770 0.525 0.369 0.516 -0.797 0.313
Est. 0.770 0.518 0.373 0.507 -0.800  0.320
1
g
£
<
020 30 40 S0 6 70 8 90 100 0% 10 20 30 40 S0 60 70 80 90 100
Time Index Time Index
(a) (b)
12
2 z

Time Index

(c)

Time Index

(d)

Fig. 2. Estimated moment time series for three dipoles. Three dipoles of tangential orientation (no radial component) were
given overlapping time series and projected into cartesian coordinates. one time series per coordinate per dipole. The dipole
model for the unconstrained moment orientation was then used in a simplex algorithm to find the locations. The nine time series
were found with a simple least-squares fit and plotted for each of the three components of the three dipoles in (a)-(c). An SVD
was then performed on the second and third dipole time series [(b) and (¢)] to approximate the dipole model for constrained
orientations, and the resulting dipole moment magnitude and polarity is plotted in (d).

For the ‘‘rotating’’ model, the locations of the three di-
poles were estimated using a Nelder-Meade simplex
search to minimize Ji g in (18) over the dipole location
parameters; (15) was then used to find the moment time

series. The true and estimated locations are listed in Table
I and the estimated time series are shown in Fig. 2 over-
layed with the original simulated time series.

For the fixed orientation and location model, rather than
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iteratively search for dipole locations and orientations, we
used the two-step approximate method discussed in Sec-
tion III-A. In this method, we use the results of the rotat-
ing model above, which searched the nine parameter lo-
cation space only. The identified time series were then fit
to a rank one model (per dipole) via an SVD, resulting in
the time series displayed in Fig. 2. The true and identified
moments for the two fixed dipoles are displayed in Table
I. Because the third dipole actually had a rotating mo-
ment, then the SVD of its time series properly revealed a
poor rank one fit.

IV. A NEW APPROACH TO SOURCE LOCALIZATION

In this section we introduce a new MEG inverse algo-
rithm. Although it is generally suboptimal in a least-
squares sense, this algorithm has the strong advantage of
“‘scanning’’ quickly with a one dipole search, rather than
the p-dipole search necessary in a complete fit. In Section
V-A, we discuss how this algorithm is analogous to the
statistically derived MUSIC direction-finding algorithm
for polarized sources [19]. Section V-C examines the re-
lated method of PCA dipole fitting, but shows where this
method differs and why it generally fails. We first develop
the algorithm for the retating dipole, then extend it to in-
clude the fixed dipole model. We then consider the gen-
eral hybrid case of both fixed and rotating dipoles.

A. Order Selection

Perhaps one of the greatest problems in MEG analysis
is determining the number of dipoles: if too few are se-
lected for any of the models, then the calculated dipoles
are biased by the missing dipoles; if too many dipoles are
specified, then spurious dipoles are introduced, which may
be indiscernible from the true dipoles. Since the compu-
tational cost and numerical sensitivity of most iterative
minimization increases dramatically with the number of
parameters, then too many dipoles also adds needless
computational burden.

Other authors have shown that examination of the spa-
tial surface topography can be misleading if time series
are overlapping and/or dipoles are placed such that one
maximum potential cancels another [15], [20]. As an al-
ternative, analysis of the dimensionality or rank of the
data matrix Fis often made in an attempt to determine the
true number of dipoles. In general, for p diodes, the rank
of the model data matrix B will be limited by

Rank (B) = min (Rank (H), Rank (S)) < 2p. (22)

The upper limit comes from either H or S, since each
dipole moment component in S has a corresponding col-
umn in H, with at most two moment components per di-
pole. For the lower limit, the problems usually arise in S,
where the matrix is of full row rank only if all time series
are linearly independent. If all dipoles are rotating, then
S is at most rank 2p; however, if all dipoles are fixed in
orientation, then S is at most rank p. If any combination
of the spatially distinct dipoles have linearly dependent
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time series (perfectly correlated), then the rank of S drops
accordingly.

For the general model with p, rotating and p; fixed di-
poles, the rank of His r = 2p, + p;. As we will show,
we do not explicitly need to know p, and py, if the time
series are sufficiently independent and the SNR suffi-
ciently large.

B. Rotating Dipole Model

We consider first the case where all dipoles rotate, that
isH(L, M) = G(L)M = G(L). From (18), we express the
least-squares cost function as

Jis = IIF — GT |l = |P§ Fll7 (23)

where G is m X 2p, Tis 2p X n, and M is the identity
matrix, since all dipoles are assumed rotating. We can
interpret the least-squares problem as trying to find the
gain matrix G whose orthogonal subspace projector Pg
minimizes Jig. Since G is of rank 2p, then the orthogonal
complement projector P& is of rank m — 2p.

In the method developed here, we first find the best or-
thogonal projector P+, regardless of the gain matrix, and
then find the gain matrix G that best fits this projector.
The first step in this method is to minimize over all pos-
sible orthogonal projectors of rank m — 2p, for which we
form the first cost function,

Jy = |P*Fl 24

Minimizing J, over all P* is equivalent to finding the best
rank 2p projections of F. From [30, corollary 2.3], the
best rank 2p approximation of F is formed from the first
2p components of the SVD. Hence, we decompose F as
F=ULV' = [Uy, U, _,,JEV’, where U,, contains the 2p
left singular vectors associated with the 2p largest singu-
lar values, and U, _,, contains the remaining m — 2p left
singular vectors. The best rank 2p approximation of F is
given then by F,, = (U,, UZTP) F. The best orthogonal pro-
jector is therefore

Pt = (25)

Once we have formed this best orthogonal projector
P+, then the second step is to find the gain matrix G most
orthogonal to this projector. Orthogonality between P*
and G = [G, - - - G,] implies P* is orthogonal to each
G;, where G; is the m X 2 gain matrix for a single dipole.
Since the ith term depends only on the location of the ith
dipole, our scanning function for rotating dipoles, J, (i),
is derived from this orthogonality,

IP*GillF
et

where G; = G;/||G| ¢ is the normalized gain matrix. Nor-
malization is necessary so that a small value for J, (i) is
an indication of closeness to orthogonality and is not sim-
ply due to a relatively small gain.

If P+ is a reasonable approximation to the optimal
P, and a G exists such that [P*G|} = 0, then each
of the G; submatrices will be orthogonal to P, and

T
mfszm—Zp'

J. () = = U} -, Gz, (26)
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J,(i) = 0 when evaluated for each correct location (the
conditions under which these approximations hold true
will be discussed in Section V). Our scanning method
therefore is to search over all possible one-dipole loca-
tions and at each location evaluate J, (i), looking for min-
ima. The explicit steps will be presented in Section V.
The general approach is to evaluate J, (i) over a fine three-
dimensional grid, plot its inverse, and look for p sharp
‘‘spikes.”’

Provided the gain matrices are linearly independent over
the scanning space, the scanning function will not display
more than p spikes, since the existence of more, for in-
stance p + 1 spikes, would suggest there are m + 2 or-
thogonal column vectors in an m-dimensional space,
which is not possible. W may however find fewer than p
spikes. Each evaluation of J,.(i) actually represents the
projection of the column vectors for two tangential com-
ponents in G;. If the dipole is fixed in orientation, then
only a linear combination of the two vectors may be or-
thogonal, and J, (i) would not be a minimum at the dipole
location. The next subsection extends this scanning
method to accommodate these fixed orientation dipoles.

C. Fixed Orientation Dipoles

We now assume all dipoles are fixed, such that our
model for the fixed orientation dipole. as shown in (11),
is B =[GL)M]S = A(L, M)S, where S is the scalar
time series and M is the matrix of fixed unit orientation
moments. The gain matrix G is still m X 2p, but M is 2p
X pand Sis p X n, where p is the number of dipoles.
Thus, A(L, M) is an m X p matrix and the full least-
squares cost function is J, ¢ = min, |P; F|3, where P}
is an orthogonal projector onto an m — p subspace, rather
than an m — 2p subspace as for P&. We otherwise pro-
ceed identically as above, arriving at an analogous cost
function for fixed dipole,

1) = 2 = m—piii E
! 4112 !
where A, = A;/l|A,]l, is the normalized gain matrix for

fixed dipoles, U, _, now contains the m — p left singular
vectors associated with the m — p smallest singular val-
ues, and we note that for vectors the L, norm is equivalent
to the Froebinius norm.

Note that J,(i) is now a function of four parameters. If
Jy(i) were evaluated in the same manner as the rotating
dipole scanning function, then not only would we need to
scan over all possible locations L, but at each location we
would also have to scan over all possible constrained unit
orientations M, thus extending our scan from three di-
mensions to four dimensions. However, we now show that
we can instead continue to search over only the three-di-
mensional locations L and at each location implicitly se-
lect the best orientation M which minimizes our cost func-
tion. We achieve this by using the separability of A4; as 4;
= G;M; and applying the constraint MM, = 1, since M,
is, by our definition, a unit moment orientation vector.

For a given three-dimensional location L, G,(L) is
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completely specified, so we seek to minimize the cost
function J,(i) with respect to M,,

T _, 4
A VY 29
oy, -, G:M, |3
= TlGmi @9
ST ~Tpl ~

subject to MM, = 1.

From (30) we recognize that minimizing this problem
is equivalent to finding the minimum generalized eigen-
value (e.g., [31, p. 277], [30, p. 470]) of the expression

G/P G:M = \GGM.. (31)
If we denote the SVD of G, as G; = Uy L V5, where
Ug, contains only the principal eigenvectors associated
with the nonzero singular values, then the generalized ci-
genvalue problem can be expressed as

Vo Lo, ULIP*[UG T, VEIM,

= NV Lo UGIUGEG VI M., (32)
UGLP UGlLq VM) = NEg Vi M) (33)

such that we can now solve the equivalent simpler mini-
mum eigenvalue problem,

Jf(l) = >\mm{UéhPLUG,} (34)
where A\,i,{-} denotes the minimum eigenvalue of the
bracketed term.

Thus we need not explicitly scan for or calculate the
best moment orientation that minimizes Jy(i), but rather
calculate just the eigenvalue associated with this moment.
Consequently, the fixed dipole scanning procedure is the
same as for the rotating model, except that at each loca-
tion in our 3-D scanning grid we calculate the smallest
eigenvalue of the bracketed term. For the fixed p-dipole
model we expect to find p locations where J,(i) = 0. The
optimal moment orientation at each minimum of Jy(i) is
found as the eigenvector associated with A;,.

Note that calculating this cost function requires finding
the smallest eigenvalue of only a 2 X 2 matrix. Also note
that depending on the dimension p of the orthogonal pro-
jector, this small 2 X 2 matrix may be more efficiently
formed as UG,(I — U, UNUg = I — (U, Ug)"(U]Usg),
where U, again represents the p left singular vectors as-
sociated with the p largest singular values of F. Thus, this
cost function may be calculated with relatively little com-
putational burden.

D. Fixed and Rotating Dipoles

In the mixed case, we have p, rotating dipoles and p;
fixed dipoles for a total of p = p, + p,dipoles. Our gen-
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eral model is therefore
B = HS = [E(z,]gal], T,

(T Tpn"

Ed) ,Iﬂpr] r

] (35)
Loy sT

T
[ Sw i

We have two related scanning functions for rotating and
fixed dipoles, J,(i) and J/(i). Examining J,.(i), we see
that

N 1P+ UGEGHF
J.G) = PGl = IR (36)
GillF
silP Ugell3 + s3llPUgel3
= (37

s%+s%

where s; and s, are the two nonzero singular values as-
sociated with G;. The vectors ¢, = [1, 0]7 and e, =
[0, l]T form an orthogonal unit moment orientation pair
that spans the row space of G;. By comparison, Jy(i) can
be viewed as

Jf(l) )\min{UgiPlUG:}

1

(38)

il

P+ UG M3 (39

where M is the optimal M; that minimizes J;(i) over all
unit moment orientations at that location. Comparing
M with e, and e, above, we can describe the rotating
dipole scanning function as a weighted average measure
of how all dimensions of G; project onto the noise sub-
space, while the fixed dipole function is a measure of how
one optimal dimension of G; projects. Thus when J,.(i) =
0, then Ji(i) = 0.

The rank of H is r = 2p, + pyand is the crucial piece
of information for this model. We otherwise proceed as
for the fixed dipole model. At each location, we calculate
the hybrid scanning function

Ji) = )\min{Ugy Um~rUr€z ArUG,‘}

where U, _, now contains the m — r left singular vectors
associated with the m — r smallest singular values, as
compared to m — 2p and m — p vectors for the two pre-
vious models. If at a location ; we have a fixed dipole,
then G,»M,- represents a linear combination of the vectors
in G; that is orthogonal to the noise subspace projector
(U,,_, UL _), and we obtain J,(i) = 0. Correspondingly,
if at a location i we have a rorating dipole, then G is al-
ready orthogonal to the noise subspace projector, regard-
less of the fixed orientation 1\;1,» we attempt to assign, and
we still obtain J,(i) = 0. Thus we can use the fixed dipole
scanning method for both rotating and fixed dipoles. We
summarize the complete steps in the following section,
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where we show that this same algorithm can be derived
under the proper statistical conditions.

V. Music
A. Signal and Noise Subspaces

In the previous section we examined the rotating, fixed,
and hybrid models separately. In this section we proceed
directly to the general hybrid model B = H(L, M) S and
assume that the hybrid gain matrix may represent any mix
of fixed or rotating dipoles. We state the assumptions nec-
essary for proving some of the MUSIC assertions:

AH (Gain Matrix Assumption) The m X r hybrid gain
matrix H, m > r, is of full column rank r for p di-
poles. In other words, the gain columns of the dipole
components cannot be combined to simulate the gain
columns of a third dipole component. For p, rotating
and py fixed, p = p, + pyand r = 2p, + py.

AS (Asynchronous Assumption) The moment time se-
ries for different dipole components are asynchro-
nous or linearly independent, i.e., the time series of
one component is not simply a scalar multiple of the
time series from another component, nor can any
combination of time series form another time series.
Thus the time series matrix S is also of full rank r.

AW (Noise Whiteness) The additive noise is considered
temporally and spatially zero-mean white noise with
variance ¢2, such that the expectation of the outer
product of the m X n noise matrix is &{N(i)N()"}
= ¢*I, where n is the number of time slices. This
requirement may be eased by prewhitening of the
data, if the noise statistics are known.

The key assumption is that spatially distinct dipoles
have linearly independent time series over the measured
time segment; however, no constraint is imposed on
whether or not the dipole moment is rotating, i.c., the
method will work for either fixed or rotating dipoles.

Our model for noiseless data with m sensors, n time
slices, and r elemental dipole components is B = HS,
where Hism X r,m > r,and Sis r X n, r < n. Consider
the model for the noisy data under the assumption AW of
zero mean white noise, F = HS + N. The spatial auto-
correlation of the data is then

Rp = §{F()Fi)"} = §{[HS(i) + NG)]

- [HSG) + N)]™} = HRsHT + ¢’  (40)

where &{-} is the expectation operator, and Ry =
&{S(1)8(i)"}; by assumption AS, this correlation matrix
Ry is of full rank. The square symmetric matrix Rr may
be written in terms of its €igendecomposition as

T g AS T
where we define A, as the diagonal matrix containing the
r largest eigenvalues and ®, as the matrix containing the
corresponding eigenvectors. By our assumptions, it is well
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known that the eigenvalue equal to the variance of the
noise, N = ¢?, repeats with multiplicity m — r [19]. Ac-
cordingly, A, = ¢°I, and ¥, is the matrix containing the
corresponding m — r eigenvectors.

Comparing Equations (40) and (41) and using assump-
tions AH and AS, it is straightforward to show that the
space spanned by @&, is identical to that spanned by
HR H; therefore, &, is said to span the signal subspace.
The space spanned by &, is the orthogonal complement
of the signal subspace and is referred to as the noise sub-
space. Based on these observations, it can be shown that
the quantity

Auin{ UG, 2,81 UG}, (42)

is zero for any matrix G, = U Zg, VZ;, corresponding to a
true dipole location [19]. Thus we can determine the di-
pole locations exactly using Equation (42) provided Ry,
and hence ®,, is known exactly.

In practice, MUSIC approximates Rr by Rp =
(l/n)FFT Estimates of the signal and noise subspaces,
&, and $,, are formed using an eigendecomposition of Ry.
Using this approximation for &,, (42) is now equivalent
to (34), which was derived using a deterministic subop-
timal least-squares approach. Thus the scanning method
presented in Section IV is also equivalent to the MUSIC
algorithm for ‘‘polarized sources,’’ as defined in [19],
when the assumptions presented here hold true.

B. Summary of the MUSIC Algorithm
Summarizing the MUSIC algorithm:

1) Given the m X n data matrix F for m sensors and »n
time samples, perform the eigendecomposition of
the estimate Ry = (1/n) FFT = ®A®". Order the
eigenvalues, such that A, = N\, = > N\,
Equivalently, perform the SVD of F, where the ei-
genvalues are the square of the singular values.

2) Select the separation point 1 < r < m between the
signal and noise subspace eigenvalues. By assump-
tions AH and AS, r = 2p, + p,, where p, is the
number of rotating dipoles and p; is the number of
fixed dipoles; therefore, r is the number of elemen-
tal dipoles. While theoretically A, = ¢ repeats
with multiplicity (mm — r), in practice there is some
spread among the smaller eigenvalues, depending
on the number of time slices n used to estimate Ry.
If the signals are of sufficient strength and suffi-
ciently uncorrelated during the time interval, then a
distinct drop in the magnitude of eigenvalues will
occur between A, and A\, , ;. (A more detailed treat-
ment of the order determination problem is given
recently by Chen e al. [32].) Form the estimated
matrices ®, and &, from the corresponding signal
and noise eigenvectors.

3) Over a fine grid of three-dimensional locations {(x,
¥. 2);}, calculate the corresponding m X 2 gain ma-
trix G; for each location, obtain the principal
left eigenvectors Ug, of G;, using an SVD such
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that G,- U(,‘ s VG, and evaluate J,(i) =
Aot UL &, &) U}, i.e., the minimum eigenvalue of
the bracketed expression. Form two-dimensional
slices through the three-dimensional space, e.g., (x,
y) planes for constant z, and plot the function Z{(x,
v, 2);} = 1/J,(i) as contours, images, or oblique
mesh plots.

4) At each sharp ‘“‘spike’’ (minimum of J,), check
to see if the entire subspace of G; is orthogonal
to the noise subspace (both eigenvalues of
{Ug@,.,@,TUGl} are approximately zero), indicating
that the dipole is rotating. Alternatively, if memory
storage is not an issue, then at each point when eval-
uating J,(i) we can also calculate the rotating cost
function J,(i) = |®IU;Zgl%/1ILg |2 Locations
where J, (i) = J,(i) = 0 indicate rotating dipoles.
If the dipole is indeed fixed (only J,(i) = 0), we
estimate its orientation by calculating the eigenvec-
tor associated with A\,;,. We repeat this analysis un-
til we find p, rotating dipoles and p, fixed dipoles
such that r = 2p, + p,. We can refine the estimate
of the locations by either using a finer grid in these
areas, or by using these estimates as the initializa-
tion point for a p-dipole least-squares search.

5) Form the hybrid gain matrix H(L, M) and solve for
the time series, S = H'F.

Note that we do not explicitly need to know the number
of rotating versus fixed dipoles, p, versus p;, instead, we
need only r = 2p, + pr. The values of p, and p; are then
found by the MUSIC algorithm. We also note that Step 4
indicates the possibility of detecting rotating dipoles by
examining not only J, (i), but by also examining the other
eigenvalues of {Ug;®, U} found in the calculation of
J(i); however, we have not studied differences in bias
and variance among these various measures of fit.

C. Comparison to Other Dipole Fitting Methods

1) Least-Squares Scanning: 1t should be emphasized
that the MUSIC scanning procedure is quite different from
fitting the full data with a single dipole. The appeal of the
one-dipole model is the relative simplicity with which we
can form G;. An alternative to the MUSIC approach would
be to simply fit a one-dipole model at each point in a scan-
ning grid, i.e., compute the function

Jissi) = P& FI7 (43)

‘‘Least-squares scanning’’ is then the evaluation of this
function as the single dipole is scanned through the head
region. The dipoles are assumed to lie at the locations
corresponding to the local minima of J; 5. Since we are
fitting a one-dipole model, this method will naturally work
when there is a single source. However, this method gen-
erally fails; for example, when there are multiple sources
that are closely spaced or that generate fields of greatly
differing intensities.

Least-squares scanning is equivalent to the beamsteer-
ing approach of conventional direction-finding and suffers
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from the same problems of poor resolution and inter-
source interference. The MUSIC approach itself was first
proposed in the direction-finding arena to overcome these
problems [19].

2) PCA Dipole Fitting: The MUSIC algorithm fits a
one dipole model to a subspace derived from the data.
PCA dipole fitting is a related method often examined in
MEG analysis, usually with poor results [14], [15], [33],
[34]. Although PCA dipole fitting also scans a one-dipole
space derived from a similar decomposition, the subspace
framework presented here allows us to examine this
method and show where it fails.

PCA dipole fitting begins with the identical step of de-
composing the data matrix F into its orthogonal compo-
nents, F = ULV, then selecting the signal subspace. As
described. by Maier et al. [14] and analyzed by Achim er
al. [15], the columns of U are the spatial distribution of
the principal components, and the columns of V are the
corresponding time functions. The matrix W = UYL’ de-
scribes the “‘factor loadings,”” where £’ contains only the
r principal singular terms; this definition of W is consist-
ent with our definition in Section III.

The PCA method fits a series of r single dipole models
to the principal components as follows. The ith dipole
location and moment are chosen as a least squares fit to a
linear combination of the factor loadings,

min ”Gi(zi) éi - Wg,ll%,
Li, Qi

(44)

where G_,;(Z,-) is the gain matrix for a dipole at location
L; and Q; is the dipole moment. In [15], Achim et al.
chose the individual terms of C; to be C; = 1 and Cj =
0 for i # j. In this case a single dipole is fit to each of
the columns of W. Alternative choices of the rotation fac-
tors {Cy}, such as Varimax, are discussed and analyzed
in [33], [34] and elsewhere.
The error in (44) can be written as

Jocald) = |WC; — G,0I} = |WC, — G,(G;WC)lI3

= |PswC|3 (45)

where P represents the orthogonal projection for a sin-
gle dipole. The limitations of PCA dipole fitting are now
apparent. PCA dipole fitting will succeed only if the coef-
ficients in C; are correctly selected, such that WC,; lies in
the two-dimensional subspace spanned by G;. However,
this requires that we know the dipole location before we
begin. As an example of the inaccuracy of PCA, Achim
et al. [15] show a case in which PCA severely mislocates
one of three dipoles in a noiseless simulation.

D. Simulation and Example

In this section, we present results using the MUSIC al-
gorithm for both simulated data and experimental so-
matosensory data. We begin by using the same simulation
model and data as in Section III-C, where at each of 37
sensor locations we simulate 100 time samples. Since by
design we have two fixed dipoles and one rotating, then
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our data model has a rank of four for three dipoles. We
perform an SVD of the simulated noisy data matrix F and
plot the singular values, of which the first ten are shown
in Fig. 3.

The abrupt drop between values 4 and 5 give a clear
indication in this simulation that the number of elemental
dipoles is 4. We form the noise subspace estimate ®, from
the eigenvectors associated with singular values 5 to 37.
We form the gain matrix at each voxel in the region x =
—5S5toScm,y = —5to5cm, and z = 6to 9.5 cm, at
0.5 cm intervals. The minimum eigenvalue at each posi-
tion using (34) is found, then the inverses of these values
are formed into two-dimensional images for fixed z.

The results are shown in Fig. 4. The cost function
shows three distinct peaks in Fig. 4(a) between z = 8 and
z = 9 cm. The true locations, given in Table I, are just
below the plane z = 8.5 cm and agree well with the po-
sitions shown in the figure. Fig. 4(b) shows the inverse
of the second eigenvalue found in the evaluation of (34).
The figure shows a distinct peak for the single rotating
dipole in this simulation. We could refine our estimates
by either scanning more finely around the z = 8.5 plane
or by using these scanning estimates as an initialization
point for a full three-dipole least-squares fit.

For the somatosensory experiment, the data were gen-
erated by vibrotactile stimulation (using a piezoelectric
speaker element) of the right thumb, the right ring finger,
and then both digits simultaneously. The intent was that
the evoked field pattern for ‘‘both digits’’ might reflect a
summation of the fields evoked by the stimulation of
thumb and ring finger alone. The data were collected dur-
ing eleven placements of a seven-sensor, second-order
gradiometer system, at each placement averaging 300
trials. The data were digitized for 300 ms (100 presti-
mulus and 200 poststimulus) at 1 kHz and were filtered
on line between 1 and 100 Hz. Fig. 5 displays the average
absolute time response across all sensors for the three ex-
periments, ‘‘ring,”” ‘‘thumb,’” and ‘‘both.’” Since piezo-
electric stimulation creates a large stimulus artifact, the
data were partitioned into a pre-stimulus interval up to 0
ms and a poststimulus interval after 24 ms.

Fig. 6 plots the first ten singular values from the de-
composition of the spatio-temporal data matrices. The up-
per three curves are from the SVD of the poststimulus
data matrices, and the lower three correspond to the pre-
stimulus. The shape of the poststimulus curves and the
merging of the prestimulus curves leads us to select the
first six eigenvectors as our signal subspace. (For sub-
space orders five and four, we also obtained results sim-
ilar to those presented below.) Fig. 7 displays the results
of a 5 mm grid MUSIC scan for the ‘‘both digits’” stim-
ulation, using the first six principal components of the
poststimulus interval. Each subimage represents an axial
slice of the head in five millimeter increments along the
z-axis, with the left ear at the top of the image and the
nose at the right. The head coordinate system used was
the x-axis through the nose, the y-axis through the left ear,
and the z-axis up through the top of the head.
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Fig. 3. Singular values for simulated noisy data matrix F. For clarity, only
the first 10 of 37 singular values are plotted. The abrupt drop between
singular values 4 and 5 gives a clear indication in this simulation that the
number of elemental dipoles is 4. The noise singular values corresponding
to indexes 5 and upward are seen to be approximately equal.

(by

Fig. 4. Simulation results. Each subimage is a two-dimensional slice in
the (x, y) plane for z = 6 cm to 9.5 cm. Each (x, y) slice was formed at
0.5 cm intervals, from —5 to 5 cm in both the x and y directions. The
simulation data are identical to the least-squares example, where the SNR
is approximately 10 dB. The top set of images (a) is from the fixed dipole
function, J/(i), (34). Here we have encoded the image as white to represent
the minima in the cost function. The lower set of images (b), also from the
fixed dipole model, shows the second (nonminimum) eigenvalue; a mini-
mum in the second eigenvalue indicates the presence of a rotating dipole,
as discussed in the text. The single minimum here correctly identifies the
one rotating dipole. The true locations, given in Table I, are approximately
in the z = 8.3 cm plane, with good agreement in the positions indicated
here.

Thumb, Ring, and Both digits stimulus
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Fig. 5. Average absolute evoked field. The data were rectified across all

sensor locations and averaged to give an indication of the temporal
activity.
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Fig. 6. Singular values of somatosensory data matrices. The top set of
curves correspond to the three sets of poststimulus data (data after 24 ms),
and the bottom set corresponds to the prestimulus data. We selected order
six as our signal subspace; similar results were obtained for orders five and
four.

One millimeter scans were then centered on the ob-
served peaks seen in the 5 mm scans. Figs. 8-10 display
axial scans in one millimeter increments, from x =
—2to2cm,y =3to7cm, and z = 6.1 to 8 cm. We see
a clear shift in the response among the three data sets in
beth the y and z coordinates. Fig. 11 summarizes the re-
sults from the z = 7.3 centimeter slice, where we have
overlayed contour plots with full gray-scale images. Here
we clearly see the distinct separation between the peaks
for the thumb and the ring finger stimulation. The re-
sponse due to the ‘‘both digits’’ stimulation actually peaks
in the z = 6.9 cm plane, but we see in this z = 7.3 cm
plane the indications of a possible summation of the re-
sponse from the two somatosensory centers. A more thor-
ough analysis would include discussions of noise corre-
lation, order selection, and physiological interpretation,
but we defer such analysis, since the emphasis here is
simply to illustrate the utility of MUSIC analysis with real
data. '
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Fig. 7. Axial scans of the “*both digits'* stimulation case. Each subimage
is a two-dimensional slice in the (x, y) plane forx = —10to 10 cm, y =
—10to 10 cm, and z = 4 to 8.5 cm. The scanning grid increment is 0.5
cm in all directions. The head schematic gives the orientation of the axial
slices. Based on these results, a | mm scanning grid was then formed around
the indicated minima.

Fi

g. 9. One millimeter axial scans of thumb data.

Fig. 8. One millimeter axial scans of ring data. Each subimage is a two-
dimensional slice in the (x, y) plane forx = —2t02cm,y = 3to 7 cm,
and z = 6.1 to 8 cm. The scanning increment is 0.1 cm in all directions.
The head schematic gives the orientation of the axial slices, and the box
indicates the region scanned. Fig. 10. One millimeter axial scans of both digits data.




556 [EEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. VOL. 39. NO. 6. JUNE 1992

Fig. 11. Comparisons of the one millimeter scans at 7 = 7.3 ¢m. The (x.
¥) dimensions remain x = —2 t0 2 ecm and ¥ = 3 to 7 cm. Contour plots
of the axial slices are overlayed with a gray scale image of the data. On
the left is the *'ring”" data. in the middle is the ““thumb™" data. and on the
right is the “*both digits™ data.

VI. CoNcCLUSIONS

We have presented general descriptive models for spa-
tio-temporal MEG data and have shown the separability
of the linear moment parameters and nonlinear location
parameters in the MEG problem. A forward model with
current dipoles in a spherically symmetric conductor was
used as an example; however, other more advanced MEG
models, as well as many EEG models, can also be for-
mulated in a similar linear algebra framework. A sub-
space methodology and computational approach to solv-
ing the conventional least-squares problem was then
presented.

A new scanning approach, equivalent to the statistical
MUSIC method, was then developed. This subspace
method scans three-dimensional space with a one dipole
model, making it computationally feasible to scan the
complete head volume. Although PCA dipole fitting is
related to this subspace method, we show how PCA di-
pole fitting fails, while the new scanning method gener-
ally succeeds. Least-squares and MUSIC demonstrations
were presented using simulated noisy data and actual so-
matosensory MEG data. The MUSIC scanning method
may also prove useful in constrained problems, such as
scanning of the cortical regions of the brain using loca-
tions obtained from an MRI scan. In a constrained opti-
mization over a very irregular reconstruction region, lo-
cal minima abound, and conventional error function
searches may be unable to locate the global minimum.

In general, MUSIC may fail when the noise is of suf-
ficient strength to corrupt the estimates of the noisc sub-
space, when the time scries in S are strongly correlated,
or when the sources are closely spaced. Many other au-
thors have analyzed the performance of MUSIC, partic-
ularly the sensitivity of the results to errors in estimation
of the noise subspace, and have also suggested many
modifications of the algorithm [35]1-[38]. These results
may prove useful in improving the subspace scanning
method described here. The challenge lies in advancing
these methods for actual data where the noise statistics are
unknown. The appeal lies in the relative simplicity in
which the data are processed and the entire head region
scanned.
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