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Summary General formulas are presented for computing a lower bound on localization and moment error for electroencephalographic 
(EEG) or magnetoencephalographic (MEG) current source dipole models with arbitrary sensor array geometry. Specific EEG and MEG 
formulas are presented for multiple dipoles in a head model with 4 spherical shells. Localization error bounds are presented for both EEG and 
MEG for several different sensor configurations. Graphical error contours are presented for 127 sensors coveting the upper hemisphere, for both 
37 sensors and 127 sensors covering a smaller region, and for the standard 10-20 EEG sensor arrangement. Both 1- and 2-dipole cases were 
examined for all possible dipole orientations and locations within a head quadrant. The results show a strong dependence on absolute dipole 
location and orientation. The results also show that fusion of the EEG and MEG measurements into a combined model reduces the lower 
bound. A Monte Carlo simulation was performed to check the tightness of the bounds for a selected case. The simple head model, the low power 
noise and the few strong dipoles were all selected in this study as optimistic conditions to establish possibly fundamental resolution limits for any 
localization effort. Results, under these favorable assumptions, show comparable resolutions between the EEG and the MEG models, but 
accuracy for a single dipole, in either case, appears limited to several millimeters for a single time slice. The lower bounds increase markedly with 
just 2 dipoles. Observations are given to support the need for full spatiotemporal modeling to improve these lower bounds. All of the simulation 
results presented can easily be scaled to other instances of noise power and dipole intensity. 
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Electroencephalograms (EEGs) and magnetoen- 
cephalograms (MEGs) are non-invasive methods of 
studying the functional activity of the human brain with 
millisecond temporal resolution. Much of the work in 
EEG and MEG in the last few decades has been 
focused on estimating the properties of the internal 
sources of the fields from the external measurements 
(e.g., Snyder 1991). The most straightforward model 
for describing the surface evoked potential or the ex- 
ternal evoked magnetic field is the single equivalent 
current dipole. In Mosher et al. (1992), we reviewed 
the many variations of this dipole model and its exten- 
sions to multiple dipoles and time epochs. Each of the 
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models, both in EEG and MEG, contains a transfer 
function or lead field model to relate each dipole's 
intensity, orientation, and location to the externally 
measured fields. The general inverse problem is to find 
the 3 location parameters and the 3 moment parame- 
ters that comprise the unknown parameters for each 
dipole. 

The simplest head model in use is a set of homoge- 
neous spherical shells, for which the MEG model is 
straightforward and the EEG model is still tractable, 
but with more parametric assumptions. Although a 
dipole comprises 6 parameters, the focus of most re- 
search has been on the accuracy of determining the 3 
location parameters. Early studies compared the rela- 
tive localizing ability of EEG and MEG (Cuffin and 
Cohen 1979; Cohen and Cuffin 1983). In Stok (1987), 
several of the model parameters were varied to deter- 
mine which had the greatest impact on accuracy. In 
Cuffin (1990, 1991), the head shape and sphere models 
were examined for their accuracy impacts. In Cuffin 
(1986), variations of noise and measurement errors 
were explored for several array, configurations. In 
Kaufman et al. (1991), the dipole source is expanded to 
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a larger spatial extent to test the dipole assumption in 
cortical folds for both E E G  and MEG models. In 
Achim et al. (1991) and Baumgartner  et al. (1991), the 
spatiotemporal model was examined to determine its 
effectiveness in improving location accuracies. 

The accuracies found and the conclusions drawn by 
these studies vary. Direct analysis of the localization 
error is complicated by the non-linearity of the location 
parameters,  the sensitivity to the moment  orientation, 
the moment intensity, the background noise power, the 
orientation and spatial extent of the sensors, and the 
absolute position of the dipole. Consequently. most of 
these studies and comparisons were restricted to spe- 
cialized dipole locations or sensor positions. The error 
results were generally established by experimental data 
or by Monte Carlo analysis. More recently, dipoles 
implanted in patients have been used in an at tempt to 
determine localization errors in M E G  (Balish et al. 
1991) and to compare localization errors between EEG 
and M E G  (Cohen et al. 1990). The results of Cohen et 
al. (1990) have particularly led to recent controversy, 
with the study criticized on methodological grounds in 
Hari  et al. (1991) and Williamson (1991). In Therapeu-  
tics and Technology Assessment (1992) and Ano- 
gianakis et al. (1992), the call is for careful considera- 
tion of the absolute accuracies of either modality under 
conditions that are fair to both modalities. As noted in 
Cohen and Cuffin (1983) and repeated in Anogianakis 
et al. (1992). EEG and M E G  provide complementary 
data, and the use of both modalities can contribute to 
overall improved accuracy. 

Our analysis of dipole localization error for MEG 
and E E G  is based on the well-known Cramer-Rao 
Lower Bound (CRLB). The CRLB provides a lower 
bound on the variance of any unbiased estimator of 
the location and other model parameters.  By deriving a 
closed-form expression for the bound, we can analyze 
for a much wider range of conditions than can studies 
based on Monte Carlo simulations or experimental 
data. The bounds are useful only if they are relatively 
tight (i.e., if they are not overly optimistic compared 
with the true localization error variances) and if the 
estimators employed have relatively small biases. To 
demonstrate  the usefulness of the bounds, we present 
a Monte Carlo simulation which indicates that the 
CRLBs, in most cases, give reasonably accurate predic- 
tions of actual localization error variances. Preliminary 
results of  this analysis were presented in Mosher et al. 
(1990). 

We note that there are important  limitations to this 
analysis, primarily due to the fact that the CRLB holds 
only under the assumption that the model is correct. 
The bounds give no insight into the effect of modeling 
error on localization accuracy. Nevertheless, in many 
of the cases shown, the CRLB gives surprisingly large 
lower bounds, even under fairly optimistic assump- 

tions. Since modeling errors tend to degrade, rather 
than improve, performance,  these results indicate that 
the accuracy of dipole localization based on single time 
epochs is often limited by the inherent ill-posed nature 
of the problem. The models analyzed here are some of 
the simplest in use. tn general, more complicated mod- 
els would be more prone to errors and could have 
more parameters  to estimate. Consequently, the bounds 
presented here may pose fundamental limits on EEG 
and M E G  localization performance.  

In this paper, we present the Cramer-Rao lower 
bound for the general spatiotemporal model tk~r an 
arbitrary number  of sensors, an arbitrary number  of 
time instances, and an arbitrary number  of dipoles with 
arbitrary moments.  We then present the specific for- 
mulas for the dipoles in a 4-shell sphere model for 
both the EEG and M E G  case. These formulas are 
used in the subsequent sections to examine the lower 
bound on errors for several different array and dipole 
configurations. The localization error bounds are com- 
puted for one and two dipoles located in a plane in the 
upper  hemisphere of the head. For each location, a 
search is performed over all possible dipole orienta- 
tions to determine the best and worst results and the 
average localization error bounds. Graphical error con- 
tours are displayed for a quadrant  in the upper-head 
hemisphere, providing rapid assessment and compari- 
son of the two modalities. 

Our  emphasis is to present optimistic operating con- 
ditions with perfect models, many sensors, and low 
noise power, so that we may establish if the corre- 
sponding lower bounds indicate the potential for good 
dipole resolution. The use of identical sensor patterns 
allows, in each case, a cautious, but direct comparison 
of the differences in M E G  and E E G  source localiza- 
tion ability. 

Forward models 

We first discuss the general spatiotemporal model 
c o m m o n  to both E E G  and MEG,  then present E E G  
and M E G  versions of the "dipole in a sphere" model, 
where sources are represented by current dipoles and 
the head is modeled as a concentric 4-shell sphere. 
This model illustrates how we adapt  a specific E E G  or 
M E G  model to the general electromagnetic model, 
which in turn is used to determine the Cramer-Rao 
lower bounds. 

The general model 
By the superposi t ion of electromagnetic sources, we 

can always separate the  intensity of  the sources as a 
linear term, whether we are considering these simple 
E E G  and M E G  spherical models or any other combi- 
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nation of head and source model. The vector of mea- 
sured samples at time j can be modeled as 

. P  

A(j) = 2~ G 6 i ) q i  = [ G 6 1 ) G 6 2 ) - ' -  G 6 p )  ] q2 = G(l)q(j) 
i = l  

(1) 

where A(j) is the column vector of surface potential or 
magnetic field measurements, or a combination of both. 
Column vectors ! and q are both concatenations of the 
parameters for p dipole ss, 1 = ~  1 . . . . .  lp] and q =  
I-q1 . . . . .  ~p]T. The vector ! i represents the 3-dimen- 
sional location of the ith current dipole, and qi  r ep r e -  
sents  the corresponding 3-dimensional dipole moment. 
The matrix G(! i) represents the "gain transfer" matrix 
for the ith dipole, which relates the dipoles' moments 
to the vectors of measurements and has a non-linear 
dependence on the dipole locations. 

For n time slices, we can extend this model b y  
assuming that the dipole locations are fixed, yet allow- 
ing the dipole moments to vary with time: 
A = [A(1) . . . . .  A(n)] = G(I)[q(1) . . . . .  q(n)] = G(I)Q. (2) 

We could also fix the dipole orientation over the time 
interval and factor out just the magnitude as a function 
of time, but for simplicity in this work we do not apply 
this restriction. In Mosher et al. (1992), details are 
presented that expand this representation for the "un- 
constrained," "rotating" and "fixed" orientation dipole 
models. 

Concentric 4-sphere model for EEG 
The EEG dipole model is the more complex of the 

two models, and assumptions must be made for the 
conductivities and shell thicknesses. The earliest mod- 
els were for the dipole in a single homogeneous sphere 
(Wilson and Bayley 1950), which led to a closed form 
solution (Brody et al. 1973); however, this single sphere 
model is too simplistic because it does not model the 
relatively high resistivity of the skull layer. A concentric 
3-sphere model that includes the scalp and skull layers 
was derived by Arthur and Geselowitz (1970). The 
4-sphere model, which also accounts for the cere- 
brospinal fluid layer, was derived by Cuffin and Cohen 
(1979). Other models recently published include the 
eccentric 3-sphere model (Cuffin 1991) and the 4- 
sphere anisotropic model (Zhou and Van Oosterom 
1992). 

In this paper we use the concentric 4-sphere model. 
For a single dipole located at point 1, each element in 
(1) of the column vector of surface potential measure- 
ments represents the voltage at a single surface point 
and is expressed as the inner product of the (3 × 1) 
gain vector gv and the (3 × 1) dipole moment vector ~: 

v ~ )  = ~ ~,(T,~)~, (3) 

where for clarity we show the dependence of the gain 
vector on both the dipole location and sensor position. 
The gain matrix G(I ) for a single dipole is the concate- 
nation of the gain vectors for all sensor positions ~.  

Fig. 1 shows the coordinate system used for the 
basic EEG formulas. For a dipole on the z-axis, the 
potential on the surface of the 4-sphere model refer- 
enced to infinity is given by Cuffin and Cohen (1979). 
Other dipole locations are found by applying rotation 
transformations to the basic formulas. We can express 
the gain vectorfor  the 4-sphere model for arbitrary 
dipole position 1 as 

gv(l,P) = E w(n)[-~-J [~x,,P~(cos O')cos ~b' 
n = l  

+-~y,P2(cos 0 ' )  sin $ '  +~z,nPn(COS 0 ' ) ]  (4) 

where Pn(') = Legendre polynomial of order n; p2(. ) = 
associated Legendre polynomial; R = outside radius of 
head sphere (in m); ax,, ay,, az,=basis for rotated 
coordinate axes that place the dipole on the z'-axis, 
i.e., 0 = ~  xT,-(, 0 = ~  yTl,  a n d  II111 = ~  z'r,l ; 0', 4; = polar 
coordinates of ~ in the rotated system (Fig. 1). 

The weighting function w(n) in (4) is given by 

w(n) = ( 4 w ~ ) ( 2 n  + 1'4(cd'Zn+lnF(n) (5) 

where 

F(n)  = d2n+ l{b2n+ ln(kl  - 1)(k 2 - 1)(n+ 1) 

+ c / n + l ( k l n + n + l ) ( k 2 n + n + l ) }  

• { ( k 3 n + n + l ) + ( n + l ) ( k 3 - 1 ) d  2n+1} 

+ (n + 1)c 2n + l{b2n+ l(k 1 - 1)(k2n + k 2 + n) 

+c  2 n + t ( k l n + n +  1)(k 2 - 1 ) }  

• {n(k 3 - 1) + (k3n + k 3 + n)d 2n + 1} (6) 

Y3 k l =  Y l , k 2 =  7 2 , k 3 = _ _ ,  (7) 
Y2 Y3 74 

and Y~, Y2, 73, 74 are the conductivities of brain, 
cerebrospinal fluid, skull, and scalp, respectively, and 
b, c, d are the inner sphere radii normalized to the 
outer head sphere radius. Fig. 2 shows the 4 spheres 
with their respective radii and conductivities. Overlaid 
on the spheres are the sensor locations for the 37- 
channel pattern (one of the sensor arrays analyzed in 
this paper). 

The formula for this EEG model explicitly shows 
that the voltage has a non-linear dependence on the 
dipole and electrode locations and a linear dependence 
on the dipole moment. The conductivities and radii 
shown were taken from Cuffin and Cohen (1979). We 
note that the relatively thin skull thickness, 4 mm in 
this case, gives favorable values for dipole localization; 
thicker skulls will produce higher error bounds. For 
example, Stok (1987) uses a skull thickness of 6 mm. 
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Fig. 1. EEG coordinate system for dipole on z-axis in a spherical 
head model. The EEG model generalizes to an arbitrary dipole 

location using standard coordinate transformations. 

Biot-Savart law for MEG 
C o m p a r e d  with its E E G  coun te rpa r t ,  the  M E G  

mode l  for  the  d ipo le  in a sphere  with rad ia l ly  o r i en t ed  
sensors  is qui te  s imple,  Rad ia l ly  o r i e n t e d  d ipo les  pro-  
duce  no magne t i c  f ie ld ou t s ide  the  concent r ic  conduct -  
ing spheres ,  r egard less  of  the  n u m b e r  of  spheres  we 
consider ,  and  r e tu rn  vo lume cur ren t s  p roduce  no exter-  
nal  magne t i c  f ields in the  radia l  d i rec t ion .  Sarvas (1987) 

provides  a t ho rough  der iva t ion  of  the  gene ra l  M E G  
formulas,  then  p resen t s  the  s impl i f ica t ions  that  result  
for the  spher ica l ly  symmetr ic  head  mode l  with radia l ly  
o r i en ted  sensors.  

F o r  radia l ly  o r i e n t e d  sensors,  the m e a s u r e d  f ield is a 
relat ively s imple  funct ion of  only the  tangent ia l  compo-  
nents  of  the  d ipo le  moments .  As  no ted  by I lmon iemi  et 
al. (1985) and Sarvas  (1987), the  non- rad ia l  sensor  
o r i en ta t ions  record  magne t i c  f ields tha t  a re  also func- 
t ions of  only the  tangent ia l  d ipo le  momen t s ,  but  the  
par t i a l s  with r e spec t  to all  o f  the  p a r a m e t e r s  a re  not  as 
s imple  as for the  rad ia l  sensors.  The  res t r ic t ion  to the  
radial  d i rec t ion  for sensor  o r i en ta t ion  is a common 
one;  however ,  our  a p p r o a c h  makes  it poss ible  to study,  
direct ly,  the  ques t ion  posed  by I lmoniemi  et  al. (1985) 
regard ing  the  improvemen t  ga ined  for o t h e r  sensor  
or ien ta t ions .  

We res t r ic t  ourselves  to the  radia l ly  o r i e n t e d  sen- 
sors. p r imar i ly  for  s implici ty in p resen ta t ion .  This  model  
has  been  publ i shed  and extensively reviewed in the  
recent  l i t e ra ture ,  and  we p re sen t  only  a b r ie f  summary  
to clarify the  te rminology  in re la t ion  to  our  model .  The  
radial ly o r i en t ed  M E G  sensor  coil  is a ssumed  to make  
a po in t  m e a s u r e m e n t  of  the  rad ia l  magne t i c  field.  F o r  
a d ipo le  loca ted  at ! ,  the  scalar  rad ia l  magne t i c  f ield 
B(~)  can be  expressed  as the  inner  p roduc t  of  gain 
vec tor  g'B and  the  d ipo le  m o m e n t  ~ ,  

B(-li ) =  i T ( i ' , ~ ) ~  (S) 

for sensor  coil loca t ion  ~ .  Fo r  the case of  the  spher ica l  
head  mode l  and  the  radia l  sensor  measuremen t s ,  this 

y-axis (left) 

E F . G ~  
positioes for 37 
se l sor  

r ~ 8.8cm 

I y "~4xis (front) 

z-mus ~) 
o o Analysis MEG coih o o 

in u-ptane ~xl Quaint 

//::It SmEV. W /l!// 
• , ° • . . < I f . l l c o . ~ :  

.~ 0 0 0 0 / ~  y! - .33 mhos/m "~-t~t~ (froat) 

\ \  • • • / I~/~-  y2-1.o mho~ 
\ \  • . . - , °  

" ' - " / 4  - 33 mhos/m 

TOP VIEW 

Fig. 2. Concentric 4-sphere model of head (Cuffin and Cohen 1979). The radii and conductivities are shown for the inner brain sphere, the 
cerebrospinal fluid layerl the skull layer (shaded), and the scalp layer. The EEG electrodes are located on the surface of the scalp at a radius of 
8.8 cm; MEG coils are radially oriented 10.5 cm from the head center. For the 37-sensor case, the sensors are positioned in rings of 1, 6, 12, and 
18 sensors each, separated by I2 ° as measured from the z-axis. The left figure shows the sensors as viewed from above. The right figure isthe side 
view and shows the EEG electrodes and the MEG coils that :lie in the x-z plane (y = 0) for the 3%sensor arrangements. The analysis quadrant 

shows where the CRLB bounds are computed relative to the head spheres and sensors. 
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gain vector is a special case of the Biot-Savart law and 
can be expressed as 

(~x~') 
~B6 ,~ )  = (~-°) i1~ _~l 3 (9) 

where the coordinate system is assumed to be head 
centered and i = unit radial orientation of the sensor 
coil, ~/11~11; /~0 = permeability of free space = 47r × 
10 -7 (Ws//(mm)), and " × "  denotes the vector cross- 
product. The MEG gain matrix G(! ) for a single dipole 
is the concatenation of all gain vectors for all sensor 
locations. 

C r a m e r - R a o  l o w e r  e r r o r  b o u n d  

The Cramer-Rao lower bound (CRLB) (e.g., Soren- 
son 1985) is an important result in estimation theory 
that establishes a lower bound on the variance of any 
unbiased estimator of a set of unknown parameters. 
Determining the bound requires a joint probability 
density function for the data. The existence of an 
unbiased estimator that attains the bound is not guar- 
anteed. To demonstrate that these bounds are mean- 
ingful in this application, we need to show that (a) the 
estimators we use are effectively unbiased, and (b) the 
bounds are relatively tight, i.e., that the lower bound 
on the variance is close to the true attainable variance 
with a given estimator. To investigate the utility of the 
CRLB, we performed Monte Carlo studies using non- 
linear least-squares for localization. The results of this 
study are reported in "Monte  Carlo Simulation." 

Fisher information matrix 
Consider a set of data F, which we model as F = 

G(l)Q + N, where N is the unknown noise and G(I)Q is 
the noiseless deterministic data. We assume that the 
locations ! and the orientations and magnitudes Q of 
the dipole moments are unknown. We also assume that 
the noise N is zero-mean, spatially and temporally 
white, and normally distributed, and that it has an 
unknown variance v. For convenience, we group these 
parameters into one vector ~b, 

~b= [v,q(1) T ..... q(n)T,l T 7T1 r 
I ...... p ] , (10) 

where each moment vector at each time instance j is 
the concatenation of the individual moments for each 
dipole, as 

q(j)T = [~11(J) ..... ~p(J)]. (11) 

Cramer-Rao inequality theorem. Let ~ be any unbi- 
ased estimate of the deterministic parameters in F = 
G(l)Q + N. Then the covariance matrix C of the errors 
between the actual and estimated parameters is 
bounded from below by the inverse of J, as 

C = E{ ( * -  ~ ) ( * -  ~)T} > j - I  (12) 

where J is the Fisher Information Matrix 

O 3 T 
J = E ( [ ~-~log p(F J ~b)] [ ~-~log p(F J~)] }. (13) 

E{ } denotes the expected value or mean of the en- 
closed term, and p(F I ~b) denotes the probability den- 
sity function for the data given parameters ~b. 

See Sorenson (1985) for a proof of this result. The 
inequality in (12) states that the difference matrix 
( C -  j - l )  is positive semi-definite, and as a conse- 
quence, the variance of each parameter  {//i is individu- 
ally bounded by the corresponding diagonal element in 
j - 1 .  Under  the assumption that the noise is spatially 
and temporally white and normally distributed, a closed 
form expression for (12) is possible. In the Appendix, 
we derive this result for the case of m sensors, n time 
instances, and p dipoles, in a general form that is 
applicable to both E E G  and MEG  data. 

The Fisher Information Matrix and its inverse in the 
Appendix provide insight into how each parameter  
affects the estimate of  the other parameters. Repeating 
(23) from the Appendix, for m sensors, n time slices, 
and variance v, and with G, A and F defined in the 
Appendix, the Fisher Information Matrix is 

o o 
1 

J = ~ 0 [In ®GTG " (14) 
0 L aT 

The upper left diagonal term in J, (mn)/(2v) ,  repre- 
sents the information for the estimate of the noise 
power. The other entries in the first column and first 
row represent the cross-information between the noise 
power and the other parameters of our model, namely 
the moments and locations of the dipoles; these off-di- 
agonal elements are zero. The CRLB requires that this 
matrix be inverted, and these zeros allow us to parti- 
tion the matrix into two separate submatrices and 
invert them separately. Thus, the noise variance sub- 
matrix cannot affect the parameters in the other sub- 
matrix. Of course, the other lower bounds depend on 
the noise variance (there is a scalar noise variance term 
leading the matrix), but whether or not we assume that 
we know the noise variance is irrelevant, because the 
submatrix inversion to calculate the moment and loca- 
tion lower bounds is the same whether we estimate the 
noise variance or assume it. 

In contrast, the lower bounds on either the set of 
moment parameters or the set of location parameters 
depend on whether we estimate both sets of parame- 
ters or assume one set known. We represent the infor- 
mation for the moments and the locations in the lower 
right submatrix in (14). The cross-information between 
the moments and the locations is represented by the 
off-diagonal term A. If we assume perfect knowledge 
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of the moments, then the CRLB of the locations would 
reduce to the first bracketed term in (25). Similarly, if 
the locations are perfectly known, the CRLB for the 
moments would reduce to the first bracketed term in 
(30). In the general dipole localization problem, we 
know neither the moment nor the location, and the 
second term in each of these CRLB equations shows 
that we cannot simply ignore the cross-information 
term A. This cross-coupling will generally increase the 
error lower bounds. Thus, consideration of the estima- 
tion of both the moment and the location is critical for 
lower bound accuracy. 

Location error lower bounds 
Equations (24), (29) and (30) in the Appendix are 

for the general multiple dipole spatiotemporal model: 
They express the lower bound for the variance, the 
dipole location, and the  dipole moment. Our approach 
in this paper is to focus on the variance of the dipole 
location error, since much MEG and EEG work em- 
phasizes the ability or inability of the different modali- 
ties to locate the source of neural activity. To gain 
insight into the utility of the formulas and establish 
some basic lower bounds, in the Appendix we simplify 
the formulas for the case of a single time slice and 
multiple dipole sources of equal scalar intensity Q. In 
this case, the scalar Q factors out and can be grouped 
with the variance of the noise. Repeating (32) from the 
Appendix, 

t.) t J 

where CRLB()  denotes the Cramer-Rao lower bound 
on the error covariance matrix of the enclosed vector, 
and v is the variance of the additive gaussian noise. 
The matrices D, X, and P~  are explicitly defined in the 
Appendix, bu t  broadly speaking, D represents the ma- 
trix of partial derivatives of the gain transformation 
with respect to the locations, X represents the moment 
orientations scaled to unity, and P~  is a projection 
operator onto the orthogonal complement of the col- 
umn space of the gain matrix G. Eq. (15) illustrates 
how the dipole intensity and the noise variance can be 
lumped into a single scalar ratio of the two values, 
v / Q  2, and that the moment  orientation can be isolated 
into a single term X. We can therefore easily scale our 
results for any desired noise power and moment inten- 
sity levels. 

Best, average, and worst dipole orientation 
For one dipole, the lower bound error analysis for 

EEG generates a 7 × 7 covariance matrix: 1 dimension 
for the noise variance, 3 dimensions for the moment, 
and 3 dimensions for the location; In the case of MEG, 
we only have 2 dimensions of the moment we can 
estimate, but in either case we always have 3 dimen- 

sions assigned to the location. If we use cartesian 
coordinates for our location parameters, then the dif- 
ference vector between our estimate of the location 
and the true location can be written as 

Locat ion Er ror  Vec tor  = [ ( x -  i ) ,  ( y -  ~), ( z -  ~)]. (16) 

The corresponding 3 × 3 submatrix bounding the error  
covariance for these parameters would be 

C R L B 0  ~ ) = Iyy2y ~r~ (17) 

Independent of our choice of coordinate systems, 
this bounding matrix can be represented by an error 
ellipsoid. The major axes of the ellipsoid are found as 
the eigenvectors of the bounding matrix. The lengths of 
the axes are determined from the corresponding eigen- 
values. The eccentricity of the ellipsoid indicates the 
directional bias that the error vectors will exhibit. In- 
deed, the minor axes of t h e  ellipsoid represent the 
"preferred directions" discussed in Cohen and Cuffin 
(1983). If we consider the errors in any direction to be 
equally important, then we can ignore this directional 
bias and, instead, focus on the scalar length of this 
error vector. The lower bound on the expressed squared 
value of this length is the sum of the eigenvalues, or 
equivalently, the trace (sum of the diagonal elements~ 
of the bounding matrix. Hence, at a given location ! 
and for a given moment ~ ,  we can define our scalar 
localization error bound in cartesian coordinates as 

R M S  Locat ion Error :  ~r f (1". i~ ) = (~rx~x + ~r~ + or2) 1/2 ( t 8 )  

which, physically interpreted, is the lower bound on the 
root mean square (RMS) length of the 3-dimensional 
error vector given by (16). 

We emphasize in (18) the dependency of this calcu, 
lation on the moment of the dipole; different moment 
directions at the same location will generate, in gen- 
eral, different error ellipsoids. Since radial sources 
represent "silent sources" for MEG data, we have 
largely restricted our examination to sources lying in 
the tangential plane for both MEG and E E G  data: 
This restriction also simplifies our analysis of the RMS 
location error, because the moment orientation can 
now be parameterized by the  single parameter 0 de- 
scribing the angle the moment makes in the tangential 
plane. 

For a given point I~, we can "scan" over all possible 
0, observing the RMS location error. Fig, 3 presents 
such a scan for two different sensor configurations. We 
see a strong dependency on the dipole orientation for 
one situation and relatively little dependency for the 
other. We retain 3 values from these curves: the best 
(lowest) RMS error, the worst, and the average over all 
angles. We illustrate in the examples to follow the 
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Fig. 3. RMS location error as a function of moment orientation 
angle. The moment direction was restricted to the tangential plane, 
because radial moments represent blind sources for MEG sensors. 
For each 0, the RMS location error is calculated using (18). This 
figure shows a comparison between two different sensor arrays for 
the same dipole location. The upper curve is for the dense 127-sensor 
pattern (see Fig. 7 for description), which is relatively more sensitive 
to the moment orientation, versus the lower curve for the 127 
upper-hemisphere pattern (Fig. 5), which is insensitive to moment 
orientation. We retain 3 values from the curves: the best (lowest) 

error, the worst, and the average over all 0. 

sensitivity of  some sensor patterns to dipole orienta- 
tion. 

For 2 dipoles, we extend the above approach. Since 
2 dipoles represent  6 location parameters ,  we have a 
6-dimensional bounding matrix that represents all of 
the correlations between the parameters .  If  we focus 
on the error vectors that extend from the true locations 
to the estimated locations, we can still interpret  the 
sum of the first 3 diagonal terms as the lower bound on 
the mean square error  for the localization of the first 
dipole. The complexity is that each RMS error length 
depends on both dipole moments  and both locations. 
We can express these RMS values using the 6 diagonal 
terms of the bounding matrix, expressed here in carte- 
sian coordinates as 

= (O'xlx l  + O'y,y, + O'zlzl ) 

0"1"2(/1' q l '  1~2' q 2 )  = (0"22x2 + ~ry~y2 + O'z~z2) 1/2" (19)  

If  we again restrict the moments  of both dipoles so 
that they lie only in the tangential plane, we can 
parameter ize these scalars as functions of angles for 
each  moment .  For a given pair of  dipole locations, 
(ll, 12), we scan over all possible combinations of 01 
and 0 2 and again find the best, worst, and average 
RMS lengths for each dipole. In general, the best 
orientation occurs when the two moments  are arranged 
orthogonally, so that the peak intensities of the dipoles 
are well separated in the field array. The worst ar- 
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rangement  is for both dipoles to be aligned in the same 
direction, so that their intensity peaks coincide. 

Monte Carlo simulation 

All of the results presented in this paper  represent  
the lower bound on the variance of the estimated 
location parameters  for any unbiased estimator. In this 
section, we present  the results of a Monte Carlo simu- 
lation based on a standard least-squares estimator for a 
37-sensor M E G  instrument. The full CRLB analysis 
assumptions are presented in the section on E E G  and 
M E G  Analysis Examples, and the specific details of 
the 37 sensor arrangement  are presented in Thirty- 
seven-Sensor Pattern Results. We present the Monte 
Carlo results both to confirm the formulas and to 
demonstrate  the closeness of  the CRLBs to the actual 
RMS error results from our Monte  Carlo study. 

For each point on a 5 mm grid in a selected region 
of the upper  positive quadrant  of the x-z plane, we 
positioned a dipole in the best moment  orientation as 
found by our CRLB analysis. We synthesized the single 
dipole forward model across the array using the same 
dipole intensity as in the analysis. For each grid point, 
we ran 5000 realizations of  zero mean white gaussian 
noise at the sensors, using a random number  generator  
with the same standard deviation as that used in the 
analysis. For each noise realization, we estimated the 
dipole location parameters  using the Nelder-Meade 
nonlinear least-squares approach described in Mosher 
et al. (1992). We initiated the search within a 10 mm 
region around the true location to enhance the possi- 
bility of finding the global minimum and to avoid 
converging, instead, into a local minimum. 

From these trials, we calculated the mean and RMS 
location error at each grid point. The mean location 
error for 95% of these grid points was less than 0.07 
ram. This indicates that the non-linear least-squares 
est imator is effectively unbiased for this single dipole 
case. The RMS location errors were observed to be 
greater  than or equal to the CRLBs, within normal 
experimental variation. We then continued the Monte 
Carlo analysis for a larger region in the upper  head 
quadrant,  restricting our repetitions to 100 trials per 
grid point. Fig. 4 presents the RMS location errors and 
the corresponding CRLB results. In all regions where 
the anticipated standard deviation is less than a few 
centimeters, we see excellent agreement  between the 
Monte Carlo and CRLB results. The overall result is a 
confirmation of both the M E G  CRLB formulas and 
evidence that the least-squares estimator comes very 
close to meeting the CRLB. 

At  a 5 mm spacing, the M E G  Monte Carlo simula- 
tions here required many days of  computation on a 
Sun SPARCstat ion 2 computer,  because each of the 
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Fig. 4. Monte Carlo simulation and comparison. The left figure shows the computed CRLBs for a single dipole in a 37-channel MEG system. The 
right figure is the result of a 100-trial Monte Carlo simulation at each point in a 5 mm grid, using the same dipole intensity and noise variance as 
was used in the CRLB analysis. The dipole was oriented in the "best" direction, as found from the CRLB analysis. In deep regions, the signal 
received at the array is much weaker than the additive noise, and the Monte Carlo runs experienced difficulty converging. In the shallow head 

regions, the signal at the array is improved, and we see excellent agreement between the analysis and simulation. 

error trials could require many hundreds of calls to the 
generating function, and because at each point in the 
grid, we perform 100 or 5000 trials. The equivalent 
E E G  model would require an order of magnitude 
greater  processing time, because of the greater com- 
plexity of its gain transfer function. This computational 
burden for a single Monte Carlo study, with a single 
dipole orientation, underscores the utility of the CRLB 
calculations in more rapidly assessing many sensor 
arrangements and all dipole orientations. 

EEG and MEG analysis examples 

The formulas presented above for the dipole in a 
concentric 4-sphere model are the general formulas for 
arbitrary sphere radii, tissue and skull conductivities, 
sensor and dipole locations, and dipole intensities and 
orientations. The CRLB formulas presented in the 
Appendix also apply for the general spatiotemporal  
model. Here,  we restrict our numerical analysis to a 
few relatively simple cases of symmetric array patterns 
and one or two dipoles. The CRLB formulas require 
that the partial derivatives of the gain matrix with 
respect to the unknown location parameters  also be 
calculated. The tedious calculations for the E E G  model 
were carried out by hand, and verified using Maple V. 
a symbolic algebra computer  program. The M E G  par- 
tials were straightforward. 

Analysis region 
Fig. 2 displays one of the array patterns used here 

with relation to the spherical, model. The other pat- 
terns were similarly symmetric about the z-axis, which 
runs through the center of the array. Because of this 
high degree of symmetry, we restrict our analysis re- 
gion to the positive x-z plane. The error results in this 

plane can then be inferred by symmetry for the entire 
upper  hemisphere. As this analysis plane is rotated 
about the z-axis, differences will arise because of the 
finite spacing of the sensors; however, these differ- 
ences are not anticipated to be great. 

Dipole orientation 
One of our goals in this study was to allow careful 

and cautious comparisons between E E G  and M E G  
data. For the simple dipole in a sphere model used 
here. the radially oriented dipole generates no external 
magnetic field, so E E G  holds an obvious advantage. 
We therefore restricted the orientation of the dipole to 
lie in the tangential plane for both the E E G  and M E G  
data for most of the following error analyses. This 
restriction also simplified the parameterizat ion of the 
dipole orientation to the single parameter  0, the angle 
the moment  makes in the tangential plane. We note 
that this is not unduly restrictive, since all of  the results 
presented here scale with dipole intensity Q. In the 
case of M E G  data, a dipole with a radial component  
and an intensity Q would simply project into the tan- 
gential plane as a dipole with intensity Q cos ~b, where 
d~ is the angle made by the dipole with respect to the 
tangential plane. All of  the standard deviations for the 
MEG data presented here could then be appropriately 
scaled to include any desired radial component. For 
comparison we also present  some E E G  results in which 
we place no restriction on the dipole moment  orienta- 
tion; the results are similar to those from the tangential 
dipole study. 

Dipole intensity 
The bounds presented in (15) could be normalized 

to the ratio v /Q 2, but these units of sensor noise 
variance v to dipole intensity Q are non-intuitive and 
give the user no relative feel for the absolute localiza- 
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tion error. We therefore attempt to establish some 
realistic values for the dipole intensity, and in the next 
section, the noise variance. We note that this ratio can 
be viewed as a signal-to-noise ratio, defined here as 
SNR(dipole) = Q / t r ,  where tr is the standard devia- 
tion. By fixing the dipole intensity at Q, then moving 
this dipole about the upper hemisphere, the actual 
signal intensity received by the sensor array will vary, 
roughly, as the inverse function of the squared distance 
to the array. Hence, if we consider a second definition, 
SNR(array), to be a function of the signal at the array 
(either an average across all sensors or at the peak 
field among all sensors), then we observe that 
SNR(array) will drop as the dipole is moved deeper. 
Maintaining the SNR(array) as a constant over all 
dipole locations requires deeper  dipoles to have corre- 
spondingly stronger intensities. 

Variations of SNR(array) are common definitions in 
other studies (Cuffin and Cohen 1979; Cuffin 1986; 
Mosher et al. 1990; Oshiro et al. 1992), in which it is 
therefore not necessary to assign explicit units of amps 
to the dipole current. In such studies, all of  the calcula- 
tions are carried out in "relative units," where the 
signal at the array is set to one unit and the noise 
standard deviation is set to some ratio of this unit, for 
instance, 10%. We argue that the alternative SNR(di- 
pole) is the preferred definition when the intent is to 
study the location error for a dipole or sets of dipoles 
arbitrarily located in the head. For SNR(array), adjust- 
ing the dipole intensity as a function of location will 
lead to distorted comparisons between different array 
configurations, because dipole intensity implicitly be- 
comes a function of sensor location, and, in this study, 
a function of sensor type (EEG or MEG). Deeper  
dipoles may also be assigned unrealistically high cur- 
rents simply to keep the SNR(array) constant. A fixed 
dipole intensity at a physically plausible current leads 
to a more informative accuracy analysis and to more 
direct comparisons between configurations. 

In Cohen and Cuffin (1983), a relatively strong dipole 
was estimated to have a dipole intensity of 2 .1/zA-cm 
(21 nA-m). In Cohen et al. (1990), an implanted dipole 
of 16 mm length was stimulated with 4 /~A current, for 
an equivalent 64 nA-m current dipole. We wished to 
establish a baseline dipole intensity of the proper  order 
of magnitude that was readily scaled to other intensi- 
ties, and that appeared physically plausible. We se- 
lected 10 nA-m as our dipole intensity. With this 
selection, we can present accuracy bounds in units of 
meters, but we emphasize, however, that all of  the 
examples presented can easily be rescaled to any other 
choice of dipole intensity. 

Noise variance 
The selection of a standard deviation for the noise is 

not immediately obvious, in part because of the 

widespread practice of averaging experimental data. In 
theory, we could average the trials until the noise is 
reduced to any arbitrary low value. In this E E G / M E G  
comparison, the noise standard deviation is in units of 
either volts or teslas, respectively; thus, we cannot 
easily set a standard deviation general to both sensor 
types as we did with the dipole intensity. 

A dipole of intensity 10 nA-m near the cerebral 
spinal fluid layer can generate a field that peaks roughly 
at 350 fT in M E G  sensors, or at 4/~V in nearby E E G  
sensors, for the sensor patterns and model examined in 
this paper. In research such as that of Cuffin (1986), 
the standard deviation is expressed as a percentage of 
the peak, approximately 10%. This definition roughly 
translates into similar SNRs examined in Westerkamp 
and Aunon (1987), Stok (1987) and Achim et al. (1991). 
We therefore, somewhat arbitrarily, set the MEG noise 
standard deviation to 35 fl" and the E E G  noise stan- 
dard deviation to 0.4/zV, to reflect this 10 : 1 ratio. We 
compare with Balish et al. (1991), who had a stated 
noise level of 50 fl" after averaging 200 trials. We note 
the difficulty in extracting absolute noise levels from 
other reports for comparison because of the widespread 
practice of normalizing the noise standard deviation 
into the field levels. As with the dipole intensity, we 
emphasize that all of the examples presented can easily 
be rescaled to any other choice of noise variance. 

Sensor assumptions 
In all cases, the E E G  sensors are assumed to be 

affixed directly to the 88 mm scalp sphere, and they 
acquire an absolute voltage potential referenced to 
"infinity." In reality, E E G  measurements are acquired 
as differential measurements with reference to a com- 
mon local sensor or adjacent sensors. Here,  however, 
we ignore this common use of a "switching" matrix. 
We also ignore the physical diameters of the sensors 
and assume that they make a point voltage measure- 
ment. 

The MEG  coils are placed 105 mm from the head 
center, representing a 17 mm offset from the scalp 
surface. This distance was chosen to represent the 
Dewar wall thickness of the larger sensor arrays and 
the air gap, both of which prevent the placement of the 
coils closer to the subject's scalp. Although these coils 
are often 20 mm in diameter, we also assume that they 
make a point magnetic field measurement and that 
they are oriented in the radial direction. Jeffs et al. 
(1987) showed that this practice is a reasonable approx- 
imation by comparing point models with integrations 
across the coil diameters. Since most MEG  sensors are 
arranged in a first or second order  gradiometer config- 
uration to control external field noise, we ran a CRLB 
comparison between a perfect point measurement and 
a perfect first order gradiometer, with a coil baseline 
separation of 50 ram. Our CRLB results for a 37-chan- 
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nel comparison showed that the only differences were 
minor, in the deep regions of the upper  hemisphere. 
Thus, to simplify the comparisons, we ignored any 
considerations of gradiometers for the M E G  examples 
presented here. 

Array patterns 
The sensor array patterns presented here are identi- 

cally arranged in angular separation for both the E E G  
and the M E G  cases, and they were designed to mimic 
possible M E G  sensor patterns because M E G  sensors 
are much larger than E E G  probes. Although EEG 
probes are much smaller, they, too, have practical 
limitations in placement,  because gels may form salt 
bridges for electrodes spaced too closely. In the follow- 
ing examples, we present the error lower bounds for 
127 sensors spread first over the entire upper  hemi- 
sphere and then densely in one region. We then pre- 
sent, for comparison, the results for just 37 sensors 
arranged in an array pat tern similar to that of commer-  
cially available 37 sensor M E G  instruments. The 127 
sensor dense pat tern was chosen to cover the same 
spatial area as a 37-channel system. We also present, 
for comparison, the bounds of the standard E E G  10-20 
array pattern,  which provides a wide spatial coverage, 
similar to the 127 upper  hemisphere pat tern presented, 
but at a much more sparse spatial sampling. 

The overall emphasis is to show which accuraoes  
are possible for the wide spatial coverage or the dense 
local coverage, or the accuracy achievable with an 
array pat tern similar to that  of existing technologies or 
practices. Direct comparisons among different E E G  
and different M E G  patterns are warranted, since dipole 
intensity and noise were held constant: however, com- 
parisons between E E G  and M E G  results must con- 
sider the differences in noise assumptions and the 
uncertainties in model parameters.  While our MEG 
model is relatively simple, the equivalent simple E E G  
model depends on many more assumptions of conduc- 
tivities and sphere radii. 

Upper hemisphere 127-sensor pattern results 
We designed a simple pattern to cover the entire 

upper  hemisphere without placing the sensors too close 
together. The first sensor is placed on the z-axis, then 6 
sensors are placed evenly around a circle 15 ° down 
from the z-axis. The next ring is 30 ° from the z-axis. 
along which are 12 sensors evenly arranged. The pat- 
tern is repeated at 15 ° intervals for a total of 6 rings, 
with the rings containing 6. 12, 18, 24, 30 and 36 
sensors, respectively, for a total of 127 sensors. The last 
ring lies completely in the x-y plane, such that the 
entire array provides full upper  hemisphere spatial 
coverage. The MEG sensors are oriented radially. 
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Fig. 5. Upper hemisphere 127-sensor cases for a single tangential dipole, EEG ( lef t )and MEG (right) Cramer-Rao lower bounds. The 
127-electrode pattern consists of an electrode on the z-axis and 6 concentric rings separated by 15 °, consisting of 6, 12, 18, 24, 30 and 36 
electrodes per ring, respectively. The 127 MEG sensors are arranged in the same angular pattern, but they are located 10.5 cm from the head 
origin. The contour lines are labeled with the standard deviation of the error (in cm). Linear scaling factors of ( ~ v / Q )  = 40 V/(Am) and 
(o" B /Q)  = 3.5 × 10 -6 T / A m  for the EEG and MEG cases respectively are assumed. These factors correspond to a noise standard deviation of 
0.4 ~tV (EEG) or 35 femtoteslaS (MEG) and a dipole strength (both cases) of 10 nA-m. The plots show the average of the error bound 
calculations for the dipole orientation stepped in 1 ° increments around a full cirele~ Both the EEG and MEG results show little sensitivity to 

moment orientation for this pattern and a single dipole. We emphasize that the curves can be linearly scaled for arbitrary ~r/Q. 



This pat tern was chosen as a natural  extension of 
commercially available 7- and 37-channel M E G  sensor 
arrays. The sensors are spaced roughly 2 cm apart,  
which is about the diameter  of a single M E G  coil. 
E E G  and M E G  instruments are now in the design 
phases with roughly 100 sensors. The analysis here for 
127 sensors should represent  the potential  accuracy of 
these new instruments when they are used for whole 
head coverage. 

(1) One tangential dipole. In the first study, we 

Best std.dev.(cm),tang dipole 4 sphere, 127 EEG electrodes 

calculated the lower bound for a single dipole located 
anywhere in the positive x-z plane (y = 0). The dipole 
was stepped along at 1 mm intervals within the brain 
sphere. At each location, the moment  angle was 
stepped in 1 ° increments from 0 ° to 179 °, and at each 
angle the RMS lower bound was calculated using (18). 
The average RMS lower bound was calculated over all 
180 ° , and the best and worst angles were located. At 
these extrema, either a minimization or a maximization 
algorithm was initiated to refine the estimate of  the 
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Fig. 6. Upper  hemisphere 127-sensor case for two tangential dipoles, EEG (top) and MEG (bottom) Cramer-Rao lower bounds. The sensor 
pattern is identical to that of Fig. 5. The first dipole is at any given point in the positive x-z plane and the second is located on the z-axis at 7.5 
cm. The contour level (in cm) is the RMS error bound of  the first dipole because of the presence of the second dipole. Dipole intensity and noise 
levels are the same as in Fig. 5. The left-side figures show the CRLBs for the best possible orientation combination, and the right-side show the 

CRLBs for the worst. 
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best and the worst RMS errors, respectively, Three 
different bounds were retained for each location point 
in the grid, representing the best, average, and worst 
RMS errors. 

In this case, the best, average, and worst bounds 
were similar. Fig. 5 shows the average RMS results for 
the E E G  and M E G  cases as contours representing 
lines of equal RMS error. For much of the upper  head 
region, the error curves are approximately concentric. 
For this upper  hemisphere sensor pattern,  the RMS 
lower bounds are primarily a function of radial depth 
and are largely independent of orientation. Since dipole 
sources oriented radially produce no external magnetic 
field, we see an increasing M E G  error as the dipole's 
location approaches the center. In contrast, the E E G  
error near  the center flattens out, because this inner 
region is approximately equally located from all sen- 
sors. Near  the surface of the sphere, both modalities 
exhibit similar changes in error as a function of radial 
depth. 

(2) Two tangential dipoles. We now examine the 
rapid degradation in performance that occurs by intro- 
ducing a second dipole. For simplicity in examining the 
effect of an additional dipole on the localization accu- 
racy of the original dipole, we fixed the location of the 
second dipole on the z-axis at z = 7.5 cm, directly 
under the center of the array. Both dipoles had equal 
intensity Q, so all results are directly scalable to any 
other arbitrary intensity. By the symmetry of the loca- 
tion of the additional dipole on the z-axis, we can 

restrict our analysis region to the positive x-z plane and 
infer the results for the remainder  of the upper  hemi- 
sphere. 

As in the single dipole studies, the first dipole was 
stepped along on a 1 mm grid within the positive x-z 
plane. At each location point, the angles of both of the 
dipoles were s tepped in 10 ° increments from 0 ° to 170 °, 
resulting in a grid of 18 x 18 different angle combina- 
tions. For each angle pair, the RMS error bounds for 
the first dipole were calculated using (19). The average 
errors were then calculated from this 2-dimensional 
grid of  error bounds, and the best and worst angle 
pairs were found. At these grid point extrema, a 
Nelder-Meade simplex minimization or maximization 
algorithm was initiated to refine the estimate of the 
best or worst RMS error bounds. 

Fig. 6 presents the best and worst orientation results 
for the E E G  and M E G  cases. These cases, unlike that 
of the single dipole, have a strong dependency on 
dipole orientation. A wide range of error is possible 
between the best and wors t  orientation pairs. In com- 
parison with the one dipole case above, we note that 
the results do not differ much along the x-axis, because 
the additional dipole on the z-axis is far enough away 
that it has little effect. As we follow along the inner 
radial cerebrospinal fluid layer, we see that the second 
dipole can affect the accuracy of the first dipole as far 
as 4 cm away, rapidly doubling the standard deviation 
error. In general, in the best moment  orientation pairs, 
the two dipoles were pointed in orthogonal directions, 
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Fig. 7. Dense 127-sensor case for a single tangential dipole, EEG (left) and MEG (right) Cramer-Rao lower bounds. The  array pattern is 
constructed as in Fig: 5 for the case of the 127-sensor upper hemisphere pattern, but is now separated by 6°i instead of 15 °. Dipole intensity and 
noise levels are the same as in Fig. 5. The plots show the average RMS lower bound for all orientations. Increased sensitivity to moment  
orientation was noted near the edges of the array pattern. The increased sampling density gives bet ter  lower bounds than in Fig. 5, but only in a 

greatly reduced region of the head. 



ERROR BOUNDS FOR SOURCE LOCALIZATION 315 

so their corresponding field intensities across the array 
were separated better than at any of the other angle 
combinations. The worst orientations occurred when 
both dipoles pointed in the same parallel direction, so 
that their fields had the greatest overlap. 

This study has presented only a few of the endless 
possible combinations for two dipole intensities and 
positions. However, this one study shows the rapid 
degradation in accuracy that occurs when trying to 
localize two equal intensity dipoles that are relatively 
well situated within the array. We also see that local- 

ization error is not simply a function of the relative 
distance between the two dipoles, but rather a complex 
function of absolute dipole position and orientation. 
We contrast this with the results in Oshiro et al. (1992). 
Through a limited Monte Carlo analysis Oshiro et al. 
(1992) erroneously claimed to show that the error is 
only a function of the distance between dipoles and 
does not depend on the orientation. While this may be 
true in specific instances, it is clearly not true in 
general. By comparing the best and worst standard 
deviation curves presented here, we see that their 
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Fig. 8. Dense 127-sensor case for two tangential dipoles, EEG (top) and MEG (bottom) Cramer-Rao lower bounds. The analysis procedure was 
identical to that in Fig. 6, but with the sensor pattern of Fig. 7. Compared with Fig. 6, the increased sampling density does allow the two dipoles 

to be placed more closely together, but only in a greatly reduced region of the head. 
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conclusion applies only to limited regions of the sphere. 
In general, the relative orientation between the two 
dipoles is very important. 

Dense 127-sensor pattern results 
The upper  hemisphere pattern examined above ex- 

hibits some variations near  the inner surface of the 
cerebrospinal fluid, primarily because of the somewhat 
coarse 2 cm spacing of the sensors. Here  we examine 
the same 127 probes, concentrated in a much smaller 
region, to observe m o r e  directly the effects of spatial 

sampling. The array was constructed as described in 
the previous section, with 6 rings of sensors; however, 
the spacing be tween each of the circles and the z-axis 
was in 6 ° increments rather than 15 ° . The M E G  sen- 
sors were oriented radially. The result was an array 
that subtends a 72 ° angle, which is of approximately 
the same spatial coverage as that of commercially avail- 
able 37-channel M E G  instruments, but with a much 
denser spatial sampling. Here,  the spacing is, in gen- 
eral, less than 1 cm between sensors, which would 
prove to be impossible for the larger M E G  coils and 
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Fig. 9. The 37-sensor case with a single tangential dipole (top) or with two tangential dipoles (bottom). EEG (left) and MEG (right) CRLBs are 
shown for any given point in the positive x-z plane. All plots show the average RMS lower bound. The analysis, procedures and scaling factors 
were identical to those in Figs. 5 and 6. Compared with the 127-sensor studies, the combination here of relative coarse spatial sampling and 

limited spatial coverage result in overall markedly poorer lower bounds. 
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daunting for the placement of surface E E G  electrodes. 
Hence, this case might represent one of the densest 
patterns presently possible for either modality. 

(1) One tangential dipole. The analysis procedure 
here was identical to that of the 127-sensor upper 
hemisphere pattern. Fig. 7 displays the average RMS 
results for the E E G  and MEG cases. Here  we note the 
immediate impact of the limited spatial coverage on 
overall dipole accuracy, particularly on the increased 
sensitivity to moment orientation caused by the array 
edges. Directly under the array, where array edge 
effects are minimized, we see an overall factor of about 
two improvement in the variance, relative to the upper 
hemisphere array, because of the increased number of 
sensors in the proximity of the dipole. The error bound 
rises rapidly in the lower regions of the sphere because 
of the combined effects of the squared distance to the 
sensor array and the poor spatial coverage of the field 
peaks. This latter effect is most notable on the deeper  
dipoles located directly on the z-axis. By offsetting the 
deeper  dipoles from the center of the array, we are 
able to position the peak of the field intensity such that 
it falls across the array, and achieve a slightly improved 
lower bound. 

Comparing E E G  and MEG results, we see that 
M EG suffers more rapidly in the lower regions as a 
function of the three effects of depth, proximity to the 
sphere center, and poor spatial coverage. By compari- 
son, E E G  has a more gradually increasing error as a 
function of just the two effects of depth and coverage. 

(2) Two tangential dipoles. The analysis procedure 
here was identical to that of the 2-dipole study for the 
127 upper  hemisphere pattern. Fig. 8 presents the 
results of the 2-dipole study for the EEG and MEG  
cases. The lower bounds in the deep regions and 
regions outside of the array have risen sharply, com- 
pared with their 1-dipole counterparts. Compared with 
the 2-dipole 127 upper  hemisphere pattern in Fig. 6, 
the increased sensor density in Fig. 8 allows the two 
dipoles to be placed somewhat closer together, but the 
edge of the array confines the region with low error 
bounds to a relatively small area. 

Thirty-seven-sensor pattern results 
In this study, we arranged 3 rings of sensors, with 

each spaced in increments of 12 ° from the z-axis and 
each containing 6, 12, and 18 sensors, respectively, for 
a total of 37 sensors, as displayed in Fig. 2. The MEG  
sensors were oriented radially. This pattern approxi- 
mates that of commercially available 37-channel MEG 
instruments. We note that the upper hemisphere pat- 
tern for 127 sensors has a slightly coarser spatial sam- 
pling than this 37-channel pattern (15 ° spacing versus 
12°), but the upper hemisphere pattern covers a much 
wider spatial area. The dense pattern with 127 sensors 
has the same spatial coverage as this 37-channel instru- 

ment at roughly twice the spatial sampling density (6 ° 
spacing versus 12°). Thus the 37-channel suffers in 
comparison with both poorer  spatial coverage and spa- 
tial sampling. 

(1) One tangential dipole. The analysis procedure 
for the single tangential dipole was identical to that of 
the 127-sensor upper hemisphere study. Fig. 9 (top) 
shows the average RMS E E G  and MEG  case for the 
single dipole restricted to the tangential plane. The 
accuracy directly under the array is comparable to that 
of the upper hemisphere array, but the accuracy de- 
clines much more rapidly as a function of depth. Also 
noticeable was a stronger dependency on dipole orien- 
tation, similar to that of the dense array above. The 
overall effect is a greatly reduced area directly under 
the array that has an accuracy comparable to that of 
the larger arrays. 

(2) Two tangential dipoles. The 2-dipole analysis 
procedure was identical to that of the 127-sensor upper 
hemisphere study. Fig. 9 (bottom) shows the average 
RMS E E G  and MEG  error bounds of a dipole when 
an additional dipole of equal intensity was placed on 
the z-axis at z = 7.5 cm. We can see that, in almost all 
regions, the dipole's error bound is at least double that 
in the single dipole study. In the worst case, we also 
found that it is impossible to place two dipoles on the 
z-axis in the same orientation and still resolve them. 
This perfect array ambiguity is a consequence of the 3 
perfectly symmetric rings of sensors. The general over- 
all accuracy region is greatly reduced from that of 
either of the previous sensor patterns. 

(3) EEG one unconstrained dipole. The dipole was 
restricted to the tangential plane in our other studies, 
so that comparisons could be made more readily be- 
tween E E G  and MEG results. In this study, we allow 
the EEG  dipole to be unconstrained in orientation to 
study whether there was any significant improvement 
for the single dipole case. We used the same 37-sensor 
arrangement, and at each location point, we calculated 
all possible combinations of radial and tangential mo- 
ment orientations in 10 ° increments over the range 
0-170 ° . The minimization/maximization analysis was 
carried out in a manner identical to the 2-dipole stud- 
ies above, except in this study the two angles were for 
the one dipole. 

Fig. 10 displays the average E E G  RMS error bounds 
for the single unconstrained dipole. In the near region 
of the array there was only a slight improvement of the 
best error bounds and a slight degradation of the worst 
error bounds, but on average, the results remained 
fairly consistent with those presented in Fig. 9. In the 
deeper  regions, the relaxation of the tangential restric- 
tion allowed the dipole to swing into a radial direction 
and direct more of its surface potential across the 
array, thereby smoothing the error curves in these 
deeper  regions; nonetheless, the error values are quite 
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comparable to the tangentially restricted dipoles. Over- 
all, the tangential restriction allowed for simpler stud- 
ies, because the moment  was a function of only one 
angle parameter ,  and this restriction does not appear  
to have degraded the localization accuracy for the 
single dipole case. 

EEG 10-20 sensor pattern results 
Since E E G  data have historically been collected in 

the 10-20 array pattern using 21 electrodes, we per- 
formed a study with this sensor pattern, which features 
wide spatial coverage and poor spatial sampling, Fig. 
11 shows the average RMS results, again using the 
same analysis procedure as was used for the  other 
studies. We note that a source directly underneath the 
sensor at approximately x = 6 cm and z = 6 cm shows 
no significant improvement in accuracy over radially 
deeper  sources. Although a shallow source generates a 
significantly stronger signal at the surface, the spatial 
undersampling is such that only one nearby sensor 
receives a significant signal. One sensor cannot ade- 
quately locate the source, regardless of the source 
intensity. The deeper  sources generate a signal across 
enough surface sensors to compensate for their rela- 
tively weaker surface signal. The overall effect of this 
sparse array of sensors is a relatively flat and larger 
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Fig. 10. EEG CRLBs  for the 37-electrode case and a single freely 
oriented dipole (the dipole can have tangential and radial compo- 
nents) at any given point in the positive x-z plane. The plot shows the 
average RMS lower bound for all possible dipole orientations, The 
dipole intensity and E E G  noise level are the same as in Fig. 9. The 
tangential restriction used in Fig. 9 (top left) has little effect on the 
lower bounds in the regions near the sensors; the deeper regions 

show relatively inconsequential shifts. 
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Fig. 11. EEG CRLBs for the 21 electrode arrangement for the 
standard 10-20 arrangement  and a single tangential dipole at any 
given point in the positive x-z plane. The dipole intensity and EEG 
noise level are the same as in Fig. 5. The plot shows the average 

RMS lower bound for all possible dipole orientations. 

lower bound error surface compared with that of the 
other studies. 

EEG and M E G  fusion 
The field pattern genera ted by a dipole across an 

array of E E G  sensors peaks roughly along the axis of 
the dipole moment.  In contrast, the M E G  pattern 
peaks to the sides of the dipole moment,  roughly 
perpendicular to the E E G  pattern. In this study, we 
assume that both the E E G  and M E G  data are ac- 
quired, and we observe the improvement  generated 
f r o m  this diversity in the information content. The 
sensor pattern was the same as that in the 37-sensor 
system, except that here we have a total of 74 measure- 
ments for the two combined sensor systems. The analy- 
sis procedure was identical to that in the other studies. 
Unlike the other studies, the results do not scale with 
arbitrary dipole intensity and noise variance, because 
both the E E G  and M E G  noise must be considered 
simultaneously. T o  bring the two modatities into rela- 
tive scaled units, we multiplied one of the arrays by the 
ratio of the two noise variances, which introduces a 
more complex relationship between standard deviation, 
dipole intensity, and noise variances. 

Fig. 12 shows the bound for a dipole restricted to 
the tangential plane. In contrast with Fig. 9 for the 
same array pattern and  respective noise variances, we 
note almost no difference among the best and worst 
moment  orientations; Since the E E G  and M E G  arrays 
complement  each other ~ well in their field patterns, 
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Fig. 12. Combined EEG/MEG CRLBs for the 37-electrode and 37-magnetic sensor array and a single tangential dipole at any given point in the 
positive x-z plane. As in the other studies, ( try/Q) = 40 V/(Am), (~r B/Q) =3.5 x 10 -6 T/Am; however, unlike all other results presented in this 
paper, these results do not  scale linearly with other values of noise variance and dipole intensity. The best and worst moment orientations are 
presented in the left and right plots, respectively. Compared with Fig. 9 (top), notable here are the greatly improved lower bounds and the lack of 

any appreciable sensitivity to dipole orientation. 

the dipole always points in a direction that is captured 
well by one of the two arrays. In the regions directly 
below the center of the array, an improvement occurs 
simply because there are twice as many measurement 
points. In the deeper regions, the EEG sensors have 
obviously improved the response near the center, and 
both sensor modalities have greatly improved the other 
deep regions. 

This analysis confirms the hypotheses of Cohen and 
Cuffin (1983), Anogianakis et al. (1992) and Therapeu- 
tics and Technology Assessment Subcommittee (1992) 
concerning the potential for directly combining EEG 
and MEG measurements into an overall superior reso- 
lution ability, unachievable by either modality alone. 
One extension of this study would be to augment fixed 
MEG sensor arrays with a smaller array of EEG sen- 
sors to determine whether similar improvements could 
be obtained. 

Discussion 

The results presented in these exemplar studies 
focus on the single time slice problem, but the formu- 
las presented for the CRLB are for the more general 
temporal problem. The CRLB formulas show the im- 
provement achievable by considering multiple time 
slices, in which the sample spacing is large enough to 
decorrelate the noise. In the simplest case of the fixed 

dipole moment, the standard deviations are, at a mini- 
mum, improved by the square root of the number of 
time slices. This effect is analogous to signal averaging 
over time. If the time series of the dipole moments 
have any algebraic independence, the results are im- 
proved further. An addition to the formulas would be 
the inclusion of the fixed moment dipole model, which 
would improve the lower bounds by incorporating the 
knowledge that the dipole does not "rotate"; however, 
the "rotating" formulas presented here are more gen- 
eral. The work of Baumgartner et al. (1991) and Achim 
et al. (1991) may have benefited from using these 
spatiotemporal CRLBs as a rapid analysis tool in inter- 
preting their specific case studies of dipole locations 
and time series. 

The RMS errors presented in this study do not 
consider the directional bias that could occur. In the 
case of EEG and MEG, with data measured from 
external sensors (i.e., no invasive probes), the greatest 
localization error will, in general, be in the radial 
direction, because the tangential directions are more 
accurately measured by the surface arrays (the "pre- 
ferred directions," as noted by Cohen and Cuffin 
(1983)). If we were to model the cortex as a simple thin 
shell beneath the skull, we might be able to ignore this 
radial error; the tangential errors were in general much 
smaller. In reality, the cortical folds (analyzed in some 
detail in Kaufman et al. (1991)) also force considera- 
tion of the radial location of the dipole. In the absence 
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of any prior information regarding the importance of 
one direction over another, we argue here that error in 
all directions is equally important. 

The approaches presented here will also assist in 
the analysis of novel sensor locations, orientations, and 
parameter sensitivities by providing a preliminary 
CRLB baseline. We emphasize that while small CRLB 
bounds will not guarantee that such standard devia- 
tions will ever be achievable, large CRLB bounds will 
steer us clear of situations where the desired accuracy 
would be impossible. 

We thank Chris C. Wood and the Biophysics Group at the los 
Alamos National Laboratory for their early reviews and comments 
on the preliminary results of this study. 

Appendix: Cramer-Rao derivation 

In this appendix, we derive the Fisher Information 
Matrix and the corresponding Cramer-Rao lower bound 
for the general spatiotemporal model. 

We define some notation and develop the bound to 
parallel the work of Stoica and Nehorai (1989). We 
define D as the partials of the gain matrix G: 

I~k -= [lxk, lyk, lzk] 

0 
d(l~k) ~- O--~k~k G(i~k ) 

,,=- [rid,) ..... dd ) ..... "do)] (2o) 

where Ixk refers to the x-axis component of the k TM 

dipole location, and, similarly for the other subscripts. 
Arrange the p moments at the jth time slice, q(j), into a 
block diagonal matrix, 

[I3®~l(j) 0 ] 
X(j)-~ ... , (21) 

l) 13@qp(j ) 

where 13 is a 3 × 3 identity matrix and " ® "  denotes 
the Kronecker product. (The Kronecker product of a 
(p × q) matrix A = {aij} and an (m × n) matrix B = {bij} 
is the (pm × qn) matrix, {aijB}, denoted by A ® B.) 

With our parameters and their partials thus rede- 
fined into the matrices G, D, and X, we group these 
together into two more matrices before deriving the 
Fisher Information Matrix. This notation also simpli- 
fies the expressions for inverting the FIM to obtain the 
lower bounds: 

F-= £ [(DX(j))T(DX(j))] 
j-1 

/t(j) _~ GTDX(j) (22) 

a ~ [a(1) v . . . . .  a(n)r] v 

Thus. for m sensors, n time slices, additive zero-mean 
white noise with a variance v. and the dipole moments 
and locations grouped as defined above, the Fisher 
Information Matrix is (Stoica and Nehorai 1989) 

mn 
o o 

I 2 .  
J = (23) 

l 0 I . ® G T G  A 

{; _1 ~ 1' 

The 3 diagonal elements represent the information 
content of the scalar noise variance, the set of moment 
parameters, and the set of location parameters, respec- 
tively. The off-diagonal terms represent the cross-infor- 
mation between the various parameters. With this par- 
titioning and with the use of the standard matrix inver- 
sion formulas (Sorenson 19857. we can readily invert 
this matrix analytically. We are particularly interested 
in the diagonal elements, since the Cramer-Rao lower 
bound for the ith parameter ~0i is simply the ith 
diagonal element of J - t  (Sorenson 19857. 

The off-diagonal zero elements in J make the lower 
bound for the scalar noise variance particularly easy to 
calculate: 

2~ 2 
CRLB(.) = - . (24) 

mn 

The lower bound covariance matrix for all p locations 
in ! is found in the lower 3p x 3p portion of matrix J -  1, 

,] 
Simplifying using (22), 

= " E (DX(j))T(DX(j)) 
j=l 

- [(DX(1))TG... (DX(n))TG] [I n® (GTG) '] 

(25) 

T . ,  -*I 
° °x"]l 

LGT,,X<n) J/ 
(26) 

[j-~l (DX0))T|(DX(j))- t£ (DX(j))TG(GTG) IGTDX(j)] 
i = l 

[" ] =,  ~ (DXd))+[I-G(CTG) 'Gr](DX(i)) 
j= ! 

. (DX(J)) T = (D (29) 
J 

where P~  = (I - GG+) = (I - Pc)  is the orthogonal 
complement of the projection matrix for G, and Gt is 
the full rank pseudoinverse of G, G+ = (GTG) - ~G T. 

The lower bounds for  the moment series at each 
time slice j can be readily expressed in terms of the 
lower bound for the location. If we define 3'= 

(27) 

1 
(28) 
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CRLB(I)/~,, then the lower bound covariance matrix 
for each moment time slice j, j = 1 . . . . .  n is 

CRLB(q(j)) = u[(GTG) - 1 + G, DX(j)y(G~,DX(j))T]. (30) 

We can simplify these formulas for the single time 
slice localization case. Eq. 29 reduces to 

CRLB(I) = v[fDX(1))TP~ (DX(1))] - 1. (31) 

If we assume all dipoles to be of equal intensity Q, 
then X(1) can be factored as QIK, where X comprises 
just the orientations of all the dipoles, and we have 
dropped the single time index for convenience. Thus 
(31) can be factored as 

b' ^ T ± - - 1  

CRLB(I)= ~-:[(DX) P~ (DX)] (32) 

These formulas depend on inverting GTG, and 
therefore a brief discussion about its rank is important. 
In the EEG and MEG cases studied in this paper, we 
assumed that the dipole lay in the tangential plane, i.e., 
that the radial component was assumed known and 
equal to zero. Since G comprises submatrices G I for 
each dipole, then each G~ must be appropriately ex- 
pressed as a 2 x 2 matrix, before attempting the in- 
verse of GTG. If GTG becomes singular for a particular 
selection of dipoles, then the inverse is undefined, and 
we cannot calculate the variance. The reduced rank 
Moore-Penrose pseudoinverse is inappropriate here 
and we restrict ourselves to full-rank inverses of GTG. 
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