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Abstract
The Fisher Information Matrix (FIM) plays a key role

in the analysis and application of statistical list-mode image
reconstruction methods based on inhomogeneous Poisson
process data models. The dynamic PET FIM is derived by
viewing list-mode data as the limiting case of bin-mode data as
the bin-widths approach zero. The Generalized Error Lookup
Table (GELT) method developed for the estimation of the FIM
from static PET data is extended to estimate the dynamic PET
FIM from list-mode data. GELT is a data plug-in technique
for estimating reciprocals of mean counts at detector pairs
and trades off variance to provide low bias reciprocal mean
estimates that are in turn used to compute the FIM. GELT
provides accurate FIM estimates even for low count datasets
and is therefore particularly suitable for FIM estimation from
list-mode data since most spatiotemporal data bins contain
only a few counts. As an application, we present simulation
results in which the diagonal entries of the dynamic FIM
are used to modulate the spatiotemporal smoothing to achieve
approximately uniform spatial resolution that remains constant
over time.

I. INTRODUCTION

Although mean, variance and resolution properties of static
PET image reconstruction methods have been well investigated
(cf. [3], [11]), there has been relatively little previous work on
the properties of list-mode dynamic PET image reconstruction
techniques. In recent work, we developed computationally
efficient approximations to the mean and covariance of list-
mode dynamic PET reconstructions and also investigated their
resolution properties [5, 6]. The application of these techniques
to experimental data requres that we estimate the FIM from
the observed list-mode data. Here we build on our previous
work on the accurate estimation of the static PET FIM and
present a technique for estimating the dynamic FIM directly
from list-mode data. We then apply this plug-in estimator to
the problem of achieving approximately uniform spatial and
temporal resolution in dynamic PET.

When dynamic PET images are reconstructed as a series
of static PET images, using quadratically penalized maximum
likelihood, their resolution properties can vary both from frame
to frame and also within a single frame. Spatial variations in
resolution for each frame can be significantly reduced using the
smoothing methods proposed in [3, 12]. By applying the same
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procedure to each frame we can also maintain approximately
constant resolution over time. Similarly, when dynamic PET
images are reconstructed directly from list-mode data with
spatially and temporally invariant smoothing parameters, they
may have resolution properties that vary among different
regions of interest and over time at a given region of interest.
This situation is often undesirable and can potentially lead
to large errors in quantitative analyses and make qualitative
analysis more difficult. Such variations in resolution can be
largely overcome by using a uniform set of temporal basis
functions and applying spatiotemporally varying smoothing
based on accurate estimates of the diagonal entries of the
dynamic PET FIM.

II. METHODS AND RESULTS

A. Image Reconstruction
We model the positron emissions in each voxel in the volume

as an inhomogeneous Poisson process [1] whose rate function
at voxel j is parameterized by a cubic B-spline basis:

ηj(t) =
nb∑

�=1

wj�B�(t) (1)

This model leads to the following list-mode log-likelihood
for the set of independent events recorded in the list-mode data
[1]:

L(w) =
nd∑
i=1

xi∑
k=1

log


 nb∑

�=1

nv∑
j=1

pijwj�B�(aik)




−
nd∑
i=1


 nb∑

�=1

nv∑
j=1

pijwj�

∫ T

0

B�(t)dt


 (2)

where pij denotes the probability that an event generated at
voxel j is detected at detector pair i, B�(t) is the �th temporal
basis function, xi denotes the number of events detected at
detector pair i, and aik denotes the arrival time of the kth event
at detector pair i. We then maximize the following penalized
likelihood objective function to estimate w:

Φ(w) = arg min
w∈{w|ηj(t)≥0}

{−L(w) + σ(w) + ρ(w) + ν(w)}
(3)

where σ(w) and ρ(w) are quadratic spatial and temporal
penalties respectively and ν(w) encourages non-negativity.
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Sixth control vertex image
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Figure 1: The sixth control vertex image showing the hot and warm
cylinders (top) and the associated central profile.

B. Dynamic FIM Estimation
The FIM is not only important in that it provides a bound

on the covariance matrix of an unbiased estimator but it also
appears in many nuclear medicine applications such as uniform
resolution reconstructions [3], error propagation analysis [10],
and observer statistic calculations [4]. The ijth element of the
FIM matrix F is given by the following equivalent expressions:

[F]ij = −E

[
∂lnp(y;x)

∂xi

∂lnp(y;x)
∂xj

]

= −E

[
∂2lnp(y;x)

∂2xixj

]
(4)

Applying these definitions using the list-mode log-
likelihood to compute the dynamic PET FIM leads to an
intractable form because expectations over event arrival times
have to be calculated. Since the number of event arrival times
at each detector pair is a Poisson random variable under the
inhomogeneous Poisson process model, an infinite number of
multidimensional integrals have to be evaluated to compute the
expectations in (4). Instead, our approach is based on deriving
the dynamic FIM by viewing list-mode data as the limiting
case of bin-mode data [2] and using accurate reciprocal mean
estimation techniques developed for static PET [8] to compute
accurate dynamic PET FIM estimates. In this paper, we focus
on estimating the diagonal entries of the dynamic PET FIM
since they will be used in uniform resolution reconstructions.
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Figure 2: The simulated time activity curve (TAC). The TAC at each
voxel was simulated as a scaled version of this curve.

Square roots of the diagonal dynamic FIM entries, κj�, can
be derived using the bin-mode log-likelihood as [2]:

κj� = limN→∞(P ⊗ B)T diag{ 1

y
(n)
i

}(P ⊗ B) (5)

=

√√√√ nd∑
i=1

p2
ij

(∫ T

0

B2
� (t)dt

ri(t)

)
(6)

where P denotes the system matrix, B is the temporal
sensitivity matrix whose n�th element is given by∫ tn

tn−1
B�(t)dt, B�(t) is the �th temporal basis function, ⊗

denotes the left Kronecker product, N is the number of time
bins that the scan duration is divided into, T is the scan
duration and ri(t) denotes the rate function at detector pair i.
Note that while static PET FIM estimates require knowledge of
reciprocal means (i.e. 1/ȳi) at all detector pairs, dynamic PET
FIM estimates require knowledge of reciprocal rate functions
(i.e. 1/ri(t)) at all detector pairs.

In order to use accurate FIM estimation methods developed
for static PET [8], we discretize the integral in (6) by
partitioning the scan duration in K bins:

κj� ≈
√√√√ nd∑

i=1

p2
ij

(
K∑

k=0

B2
� (tk)∆k2

ri(tk)∆k

)
(7)

where K∆k = T and tk denotes the midpoint of bin k. Note
that the basis functions B�(t) and the bin-width ∆k are known
exactly. Therefore, we need to estimate the reciprocal mean
activity at each bin given by:

1
ri(tk)∆k

≈ 1∫ τk+1

τk
ri(t)dt

=
1
ȳk

i

(8)

Equations (7) and (8) convert the estimation of each
reciprocal rate function to the problem of estimating K
reciprocal means: {1/ȳk

i }K
k=1. In medium or high count
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Figure 3: True central κ profile for the sixth control vertex (i.e.
temporal basis function). The profile indicates that the smoothing in
the hot cylinder should be approximately 3 times less than that in the
warm cylinder for resolution uniformity.

situations (i.e. average counts/bin > 5) one can use the “direct
plug-in” (DPI) or “modified plug-in” (MPI) methods [8] to
estimate reciprocal means:

[̂
1
ȳk

i

]
DPI

=
1
yk

i

[̂
1
ȳk

i

]
MPI

=
1

yk
i + 1

(9)

However, in list-mode reconstructions, an accurate
discretization of the integral in (6) requires many time bins with
only a few counts per bin and therefore an accurate method
to estimate the reciprocal means in low-count situations is
necessary. Note that diagonal FIM entries are sensitive to
bias in reciprocal mean estimates but are relatively robust
to variance because of the weighted averaging with p2

ij’s.
Based on this observation, in [8] we presented such a method
(Generalized Error Lookup Table, GELT) that trades off
variance for low bias in reciprocal mean estimates to provide
more accurate FIM estimates.

The GELT reciprocal mean estimates are given by:

[̂
1
ȳk

i

]
GELT

=
Dyk

i

yk
i + 1

(10)

where Dy = Cy for y ≤ N and Dy = 1 for y > N and
the Cy terms are estimated as the coefficients that minimize
the generalized error G ≡ B + wV . Here B denotes bias, V
denotes variance and w << 1 determines their relative weights.
The details of GELT estimation are presented in [8] and are not
repeated here. Our final estimate for the dynamic PET FIM
becomes:

κ̂j� ≈
√√√√ nd∑

i=1

p2
ij

(
K∑

k=0

B2
� (tk)∆k2

[̂
1
ȳk

i

]
GELT

)
(11)

In the next section, we compare diagonal dynamic PET FIM
entries obtained via DPI, MPI and GELT in a uniform resolution
reconstruction application.
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Figure 4: GELT and MPI κ profile estimates shown together with the
true profile for control vertices 6 (top) and 7.

C. Uniform Resolution over Space and Time

We approach the resolution problem through the linearized
local impulse response (LIR) as in [3] and try to make the
linearized LIR to a perturbation of a control vertex spatially
uniform and constant over time. Again, we use the bin-mode
log-likelihood to compute the linearized LIR and allow the bin-
widths to approach zero. The resulting linearized LIR is given
by:

Lj�(w) = [(PT P ⊗ BT B) + βD−1
κ RSD−1

κ +
γD−1

κ RT D−1
κ ]−1(PT P ⊗ BT B)ej� (12)

where β and γ are the spatial and temporal smoothing
parameters respectively, RS and RT are the second derivative
matrices for the quadratic spatial and temporal penalties
respectively, Dκ is the diagonal matrix whose (j�, j�)th

element is κj�, and ej� is the unit vector in the j�th.

Uniform spatial resolution that remains constant over time
can be approximately achieved by making the linearized LIR
expression shift invariant in j and � and using uniform temporal
basis functions. If non-uniform basis functions form a better
temporal model, the reconstruction can be performed in a
transformed time domain (by warping event arrival times)
where uniform basis functions form an accurate model and the
rate function estimates can then be warped back to the original
time domain [7]. The use of the following spatial and temporal
penalties make the linearized LIR shift invariant in j and � up
to the approximations in [3] and [6]:
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Figure 5: Hot and warm cylinder profiles at t = 50 secs for GELT and
MPI. Recovered peak ratios between hot and warm cylinders were
0.9950 for GELT compared to 0.9340 for MPI (True ratio = 1).

σ(w) = β

nb∑
�=1

nv∑
j=1

∑
j′∈Nj ,j′>j

ζjj′ κ̂j�κ̂j′�(wj� − wj�′)2 (13)

ρ(w) = γ

nv∑
j=1

nb∑
�1=1

nb∑
�2=1

κ̂j�1 κ̂j′�2wj�1Q�1�2wj�2 (14)

Note that both penalties vary spatiotemporally according to
the estimates of the diagonal elements of the dynamic PET
FIM, κ̂j�. Therefore accurate estimation of the diagonal FIM
entries from real data play a critical role in achieving uniform
resolution.

D. Simulations
We estimated the dynamic FIM entries using DPI, MPI and

GELT on 150 simulated datasets with 1M counts each over 120
seconds. The datasets were generated from a single-ring ECAT
HR+ scanner that contained a hot and a warm cylinder in a very
low activity background. Each cylinder had a hot line source
at its center (Figure 1). The rate function at each voxel was
simulated as the scaled version of a single time activity curve
shown in Figure 2 and the HCL:HCB:WCL:WCB:B activity
ratios were 20:11:10:1:0.02 making the activity ratio between
between the hot and warm cylinder backgrounds 11:1 and the
additional activity contribution due to the line source constant
for both cylinders (HCL: hot cylinder line source, HCB: hot
cylinder background, WCL: warm cylinder line source, WCB:
warm cylinder background, B:background). This resulted in
κ profiles such as the one shown in Figure 3 for the sixth
temporal basis function. Images were reconstructed using
30 preconditioned conjugate gradient iterations [9], and 11
uniformly spaced cubic B-splines. The smoothing parameters
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Figure 6: Hot and warm cylinder profiles at t = 65 secs for GELT and
MPI. Recovered peak ratios between hot and warm cylinders were
1.0099 for GELT compared to 0.9479 for MPI (True ratio = 1)
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Figure 7: Ratio of the recovered peaks for MPI and GELT.
The recovered peak ratio for GELT is close to that of the ideal
reconstruction (i.e. 1) whereas MPI recovers approximately 20% less
contrast compared to GELT.

were β = 0.005 and γ = 500.

Figure 4 shows the estimated diagonal FIM entries for MPI
and GELT (N=5) together with the true profile for control
vertices 6 and 7. FIM estimation results for DPI are not shown
here because its performance was significantly reduced due
to the large number of empty spatiotemporal bins. We used
K = 40 uniformly spaced 3-second spatiotemporal bins.

Figures 5 and 6 show the reconstructed central profiles at
t = 50s and t = 65s respectively with spatiotemporally
varying smoothing using diagonal FIM estimates obtained via
MPI and GELT. Note that both reconstructions are designed
to achieve uniform resolution and differ only in the manner
in which they estimate the FIM to achieve this. When the
smoothing parameters are modulated according to the dynamic
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FIM estimates obtained with our GELT method, resolution in
both cylinders remains approximately uniform as demonstrated
by the approximately equal peak to background ratios in both
cylinders. Inspection of Figures 5 and 6 indicates only small
differences between the results using MPI and GELT, but as
shown in Figure 7, when taking the ratio of the recovered peaks
between hot and warm cylinders we obtain a value closer to
the correct value of unity using GELT than with MPI which
exhibits approximately 20% loss in contrast recovery. Here we
defined the recovered peak as additional activity at the center
of the cylinder due to the line source (i.e. activity at center
minus mean background activity) divided by mean background
activity.

E. Conclusions
We presented a computationally efficient method for

achieving approximately uniform spatial resolution in list-
mode dynamic PET reconstructions by using an accurate plug-
in estimator for the dynamic PET FIM and compared the
performances of our GELT method and MPI. We expect GELT
FIM estimation to be useful in many statistical analysis and
reconstruction applications that operate directly on list-mode
data and require the estimation of the FIM from real data.
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