
The past 15 years have
seen tremendous ad-
vances in our ability to
produce images of hu-

man brain function. Applications
of functional brain imaging extend
from improving our understand-
ing of the basic mechanisms of
cognitive processes to better char-
acterization of pathologies that
impair normal function. Mag-
netoencephalography (MEG) and
electroencephalography (EEG)
(MEG/EEG) localize neural elec-
trical activity using noninvasive
measurements of external electro-
magnetic signals. Among the
available functional imaging tech-
niques, MEG and EEG uniquely
have temporal resolutions below
100 ms. This temporal precision
allows us to explore the timing of
basic neural processes at the level
of cell assemblies. MEG/EEG
source localization draws on a
wide range of signal processing
techniques including digital filter-
ing, three-dimensional image
analysis, array signal processing,
image modeling and reconstruc-
tion, and, more recently, blind
source separation and phase syn-
chrony estimation. In this article we describe the under-
lying models currently used in MEG/EEG source
estimation and describe the various signal processing
steps required to compute these sources. In particular
we describe methods for computing the forward fields
for known source distributions and parametric and im-
aging-based approaches to the inverse problem.

Introduction
Functional brain imaging is a relatively new and
multidisciplinary research field that encompasses tech-
niques devoted to a better understanding of the human
brain through noninvasive imaging of the electrophysio-
logical, hemodynamic, metabolic, and neurochemical
processes that underlie normal and pathological brain
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function. These imaging techniques are powerful tools
for studying neural processes in the normal working
brain. Clinical applications include improved under-
standing and treatment of serious neurological and
neuropsychological disorders such as intractable epilepsy,
schizophrenia, depression, and Parkinson’s and Alzhei-
mer’s diseases.

Brain metabolism and neurochemistry can be studied
using radioactively labeled organic molecules, or probes,
that are involved in processes of interest such as glucose
metabolism or dopamine synthesis [1]. Images of dy-
namic changes in the spatial distribution of these probes,
as they are transported and chemically modified within
the brain, can be formed using positron emission tomog-
raphy (PET). These images have spatial resolutions as
high as 2 mm; however, temporal resolution is limited by
the dynamics of the processes being studied, and by pho-
ton-counting noise, to several minutes. For more direct
studies of neural activity, one can investigate local
hemodynamic changes. As neurons become active, they
induce very localized changes in blood flow and oxygena-
tion levels that can be imaged as a correlate of neural activ-
ity. Hemodynamic changes can be detected using PET
[1], functional magnetic resonance imaging (fMRI) [2],
and transcranial optical imaging [3] methods. Of these,
fMRI is currently the most widely used and can be readily
performed using a standard 1.5T clinical MRI magnet, al-
though an increasing fraction of studies are now per-
formed on higher field (3-4.5T) machines for improved
SNR and resolution. fMRI studies are capable of produc-
ing spatial resolutions as high as 1-3 mm; however, tem-
poral resolution is limited by the relatively slow
hemodynamic response, when compared to electrical
neural activity, to approximately 1 s. In addition to lim-
ited temporal resolution, interpretation of fMRI data is
hampered by the rather complex relationship between the
blood oxygenation level dependent (BOLD) changes
that are detected by fMRI and the underlying neural ac-
tivity. Regions of BOLD changes in fMRI images do not
necessarily correspond one-to-one with regions of electri-
cal neural activity.

MEG and EEG are two complementary techniques
that measure, respectively, the magnetic induction out-
side the head and the scalp electric potentials produced by
electrical activity in neural cell assemblies. They directly
measure electrical brain activity and offer the potential for
superior temporal resolution when compared to PET or
fMRI, allowing studies of the dynamics of neural net-
works or cell assemblies that occur at typical time scales
on the order of tens of milliseconds [4]. Sampling of elec-
tromagnetic brain signals at millisecond intervals is
readily achieved and is limited only by the multichannel
analog-to-digital conversion rate of the measurements.
Unfortunately, the spatial resolving power of MEG and
EEG does not, in general, match that of PET and fMRI.
Resolution is limited both by the relatively small number
of spatial measurements—a few hundred in MEG or EEG
versus tens of thousands or more in PET or fMRI—and

the inherent ambiguity of the underlying static electro-
magnetic inverse problem. Only by placing restrictive
models on the sources of MEG and EEG signals can we
achieve resolutions similar to those of fMRI and PET.

Reviews of the application of MEG and EEG to neurol-
ogy and neuropsychology can be found elsewhere [5]-[9].
We recommend [10] for a thorough review of MEG the-
ory and instrumentation. This article provides a brief intro-
duction to the topic with an overview of the associated
inverse problem from a signal processing perspective. In
the next two sections we describe the sources of MEG and
EEG signals and how they are measured. Neural sources
and head models are then described, followed by the vari-
ous approaches to the inverse problem in which the prop-
erties of the neural current generators are estimated from
the data. We conclude with a discussion of recent develop-
ments and our perspective on emerging signal processing
issues for EEG and MEG data analysis.

Sources of EEG and MEG:
Electrophysiological Basis

MEG and EEG are two techniques that exploit what
Galvani, at the end of the 18th century, called “animal
electricity,” today better known as electrophysiology
[11]. Despite the apparent simplicity in the structure of
the neural cell, the biophysics of neural current flow relies
on complex models of ionic current generation and con-
duction [12]. Roughly, when a neuron is excited by
other—and possibly remotely located—neurons via an af-
ferent volley of action potentials, excitatory postsynaptic
potentials (EPSPs) are generated at its apical dendritic
tree. The apical dendritic membrane becomes transiently
depolarized and consequently extracellularly electro-
negative with respect to the cell soma and the basal den-
drites. This potential difference causes a current to flow
through the volume conductor from the nonexcited
membrane of the soma and basal dendrites to the apical
dendritic tree sustaining the EPSPs [13].

Some of the current takes the shortest route between
the source and the sink by traveling within the dendritic
trunk (see Fig. 1). Conservation of electric charges im-
poses that the current loop be closed with extracellular
currents flowing even through the most distant part of
the volume conductor. Intracellular currents are com-
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monly called primary currents, while extracellular cur-
rents are known as secondary, return, or volume currents.

Both primary and secondary currents contribute to
magnetic fields outside the head and to electric scalp po-
tentials, but spatially structured arrangements of cells are
of crucial importance to the superposition of neural cur-
rents such that they produce measurable fields.
Macrocolumns of tens of thousands of synchronously ac-
tivated large pyramidal cortical neurons are thus believed
to be the main MEG and EEG generators because of the
coherent distribution of their large dendritic trunks lo-
cally oriented in parallel, and pointing perpendicularly to
the cortical surface [14]. The currents associated with the
EPSPs generated among their dendrites are believed to be
at the source of most of the signals detected in MEG and
EEG because they typically last longer than the rapidly
firing action potentials traveling along the axons of ex-
cited neurons [4]. Indeed, calculations such as those
shown in [10] suggest each synapse along a dendrite may
contribute as little as a 20 fA-m current source, probably
too small to measure in MEG/EEG. Empirical observa-
tions instead suggest we are seeing sources on the order of
10 nA-m, and hence the cumulative summation of mil-
lions of synaptic junctions in a relatively small region.
Nominal calculations of neuronal density and cortical
thickness suggest that the cortex has a macrocellular cur-
rent density on the order of 100 nA/mm2 [10]. If we as-

sume the cortex is about 4 mm thick, then a small patch 5
mm × 5 mm would yield a net current of 10 nA-m, consis-
tent with empirical observations and invasive studies.

At a larger scale, distributed networks of collaborating
and synchronously activated cortical areas are major con-
tributors to MEG and EEG signals. These cortical areas are
compatible with neuroscientific theories that model basic
cognitive processes in terms of dynamically interacting cell
assemblies [15]. Although cortical macrocolumns are as-
sumed to be the main contributors to MEG and EEG sig-
nals [4], some authors have reported scalp recordings of
deeper cortical structures including the hippocampus [16],
cerebellum [17], and thalamus [18], [19].

Measuring EEG and MEG signals
Electroencephalography
EEG was born in 1924 when the German physician Hans
Berger first measured traces of brain electrical activity in
humans. Although today’s electronics and software for
EEG analysis benefit from the most recent technological
developments, the basic principle remains unchanged
from Berger’s time. EEG consists of measurements of a
set of electric potential differences between pairs of scalp
electrodes. The sensors may be either directly glued to the
skin ( for prolonged clinical observation) at selected loca-
tions directly above cortical regions of interest or fitted in
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� 1. Networks of cortical neural cell assemblies are the main generators of MEG/EEG signals. Left: Excitatory postsynaptic potentials
(EPSPs) are generated at the apical dendritic tree of a cortical pyramidal cell and trigger the generation of a current that flows
through the volume conductor from the non-excited membrane of the soma and basal dendrites to the apical dendritic tree sustain-
ing the EPSPs. Some of the current takes the shortest route between the source and the sink by travelling within the dendritic trunk
(primary current in blue), while conservation of electric charges imposes that the current loop be closed with extracellular currents
flowing even through the most distant part of the volume conductor (secondary currents in red). Center: Large cortical pyramidal
nerve cells are organized in macro-assemblies with their dendrites normally oriented to the local cortical surface. This spatial ar-
rangement and the simultaneous activation of a large population of these cells contribute to the spatio-temporal superposition of the
elemental activity of every cell, resulting in a current flow that generates detectable EEG and MEG signals. Right: Functional networks
made of these cortical cell assemblies and distributed at possibly mutliple brain locations are thus the putative main generators of
MEG and EEG signals.



an elastic cap for rapid attachment with near uniform cov-
erage of the entire scalp. Research protocols can use up to
256 electrodes.

EEG has had tremendous success as a clinical tool, es-
pecially in studying epilepsy, where seizures are charac-
terized by highly abnormal electrical behavior in neurons
in epileptogenic regions. In many clinical and research ap-
plications, EEG data are analyzed using pattern analysis
methods to associate characteristic differences in the data
with differences in patient populations or experimental
paradigm. The methods described here for estimating the
location, extent and dynamic behavior of the actual cur-
rent sources in the brain are currently less widely used in
clinical EEG.

Though dramatic changes in the EEG, such as interictal
spikes occurring between epileptic seizures, may be readily
visible in raw measurements, event-related signals associ-
ated with, for example, presentation of a specific sensory
stimulus or cognitive challenge, are often lost in back-
ground brain activity. Dawson demonstrated in 1937 that
by adding stimulus-locked EEG traces recorded during
several instances of the same stimulus, one could reveal
spatio-temporal components of the EEG signal related
with that stimulus, and background noise would be mini-
mized. This method of “stimulus-locked” averaging of
event-related EEG is now a standard technique for noise
reduction in event-related studies.

Averaging, however, relies on the strong hypoth-
esis that the brain is in a stationary state during the
experiment with insignificant adaptation or habitu-
ation to experimental conditions during repeated
exposure to a stimulus or task. In general, this
stationarity does not hold true, especially as the
number of trials increases, which has motivated new
research approaches that study the inter-trial varia-
tions by greatly reducing the number of trials in
each average, or by analyzing the raw unaveraged
EEG data [20], [21].

Magnetoencephalography
Typical EEG scalp voltages are on the order of tens of
microvolts and thus readily measured using relatively
low-cost scalp electrodes and high-impedance
high-gain amplifiers. In contrast, characteristic mag-
netic induction produced by neural currents is ex-
traordinarily weak, on the order of several tens of
femtoTeslas, thus necessitating sophisticated sensing
technology. In contrast to EEG, MEG was devel-
oped in physics laboratories and especially in
low-temperature and superconductivity research
groups. In the late 1960s, J.E. Zimmerman co-in-
vented the SQUID (Superconducting QUantum In-
terference Device)—a supremely sensitive amplifier
that has since found applications ranging from air-
borne submarine sensing to the detection of gravita-
tional waves—and conducted the first human
magnetocardiogram experiment using a SQUID

sensor at MIT. SQUIDs can be used to detect and quantify
minute changes in the magnetic flux through magnetome-
ter coils in a superconducting environment. D.S. Cohen,
also at MIT, made the first MEG recording a few years
later [22].

Recent developments include whole-head sensor arrays
for the monitoring of brain magnetic fields at typically 100
to 300 locations. Noise is a major concern for MEG. Instru-
mental noise is minimized by the use of superconducting
materials and immersing the sensing setup in a Dewar
cooled with liquid helium. High-frequency perturbations
such as radiofrequency waves are easily attenuated in
shielded rooms made of successive layers of mu-metal, cop-
per, and aluminum (Fig. 2). Low frequency artifacts created
by cars, elevators, and other moving objects near the MEG
system are attenuated by the use of gradiometers as sensing
units. A gradiometer is the hardware combination of multi-
ple magnetometers to physically mimic the computation of
the spatial gradient of the magnetic induction in the vicinity
of the head. Noise sources distant from the gradiometer
produce magnetic fields with small spatial gradients and
hence are effectively attenuated using this mechanism.

As with EEG, MEG has potentially important applica-
tions in clinical studies where disease or treatments affect
spontaneous or event-related neural activity. Again, stim-
ulus-locked averaging is usually required to reduce back-
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� 2. MEG instrumentation and typical signals. Typical scalp magnetic
fields are on the order of a 10 billionth of the earth’s magnetic field.
MEG fields are measured inside a magnetically shielded room for pro-
tection against higher-frequency electromagnetic perturbations (left).
MEG sensors use low-temperature electronics cooled by liquid helium
(upper right) stored in a Dewar (left and upper right). Scalp magnetic
fields are then recorded typically every millisecond. The resulting data
can be visualized as time-evolving scalp magnetic field topographies
(lower right). These plots display the time series of the recorded mag-
netic fields interpolated between sensor locations on the subject’s scalp
surface. This MEG recording was acquired as the subject moved his fin-
ger at time 0 (time relative to movement (t=0) is indicated in ms above
every topography). Data indicate early motor preparation prior to the
movement onset before peaking at about 20 ms after movement onset.



ground noise to a point where event-related signals can be
seen in the data. The major attraction of MEG, as com-
pared to EEG, is that while EEG is extremely sensitive to
the effects of the secondary or volume currents, MEG is
more sensitive to the primary current sources in which we
are typically more interested—this will become clearer in
our review of the forward model below. Contributors to
the initial developments of MEG put great emphasis over
the past two decades on the use of inverse methods to
characterize the true sources of MEG signals within the
brain. More recently, EEG and MEG have come to be
viewed as complementary rather than competing modali-
ties and most MEG facilities are equipped for simulta-
neous acquisition of both EEG and MEG data. As we
shall see, inverse methods for the two are very closely re-
lated and can even be combined and optimized for joint
source localization [23].

The Physics of MEG and EEG:
Source and Head Models
Given a set of MEG or EEG signals from an array of exter-
nal sensors, the inverse problem involves estimation of
the properties of the current sources within the brain that
produced these signals. Before we can make such an esti-
mate, we must first understand and solve the forward
problem, in which we compute the scalp potentials and
external fields for a specific set of neural current sources.

Quasi-Static Approximation
of Maxwell Equations
The useful frequency spectrum for electrophysiological
signals in MEG and EEG is typically below 1 kHz, and
most studies deal with frequencies between 0.1 and 100
Hz. Consequently, the physics of MEG and EEG can be
described by the quasi-static approximation of Maxwell’s
equations. The quasi-static current flow J r( )′ at location
r′ is therefore divergence free and can be related rather
simply to the magnetic field B r( )at location r through the
well-known Biot-Savart law

B r J r r r
r r

( ) ( )= ′ × − ′
− ′

′∫
µ

π
0

34
dv

(1)

whereµ 0 is the permitivity of free space. We can partition
the total current density in the head volume into two cur-
rent flows of distinct physiological significance: a primary
(or driving) current flow J rP ( )′ related to the original

neural activity and a volume (or passive) current flow
J rV ( )′ that results from the effect of the electric field in
the volume on extracellular charge carriers:
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where σ( )′r is the conductivity profile of the head tissues,
which we will assume, for simplicity, to be isotropic, and,
from the quasi-static assumption, the electric field E r( )′ is
the negative gradient of the electric potential, V( )r′ .

If we assume that the head consists of a set of contiguous
regions each of constant isotropic conductivityσ i i, ,...,=1 3,
representing the brain, skull and scalp for instance, we can
rewrite the Biot-Savart law above as a sum of contributions
from the primary and volume currents [10]:

B r B r r r r
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where B r0 ( )is the magnetic field due to the primary current
only. The second term is the volume current contribution to
the magnetic field formed as a sum of surface integrals over
the brain-skull, skull-scalp, and scalp-air boundaries.

This general equation states that the magnetic field can
be calculated if we know the primary current distribution
and the potential V( )r′ on all surfaces. We can create a
similar equation for the potential itself, although the deri-
vation is somewhat tedious [10], [24], yielding
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( ) ( )

σ σ σ

π
σ σ

i j

ij
i j S

V V

V
ij

+ =

− − ′ − ′
−

∑ ∫

r r

r r r
r r

2

1
2

0 0

′
⋅ ′

3
dS ij

(3)

for the potential on surfaceS ij whereV0 ( )r is the potential
at r due to the primary current distribution.

These two equations therefore represent the integral
solutions to the forward problem. If we specify a primary
current distribution J rP ( )′ , we can calculate a primary
potential and a primary magnetic field,
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the primary potential V0 ( )r is then used to solve (3) for
the potentials on all surfaces, and therefore solves the for-
ward problem for EEG. These surface potentialsV( )r and
the primary magnetic field B r0 ( ) are then used to solve
(2) for the external magnetic fields. Unfortunately, the
solution of (3) has analytic solutions only for special
shapes and must otherwise be solved numerically. We re-
turn to specific solutions of the forward problem below
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but first we discuss the types of models used to describe
the primary current distributions.

Source Models: Dipoles and Multipoles
Let us assume a small patch of activated cortex is centered
at location rq and that the observation point r is some dis-
tance away from this patch. The primary current distribu-
tion in this case can be well approximated by an
equivalent current dipole represented as a point source
J r q r rP

q( ) ( )′ = ′−δ , where δ( )r is the Dirac delta function,
with moment q J r r≡ ′ ′∫ P d( ) . The current dipole is a
straightforward extension of the better-known model of
the paired-charges dipole in electrostatics. It is important
to note that brain activity does not actually consist of dis-
crete sets of physical current dipoles, but rather that the
dipole is a convenient representation for coherent activa-
tion of a large number of pyramidal cells, possibly extend-
ing over a few square centimeters of gray matter.

The current dipole model is the workhorse of
MEG/EEG processing since a primary current source of
arbitrary extent can always be broken down into small re-
gions, each region represented by an equivalent current
dipole. This is the basis of the imaging methods described
later on. However, an identifiability problem can arise
when too many small regions and their dipoles are re-
quired to represent a single large region of coherent acti-
vation. These sources may be more simply represented by
a multipolar model. The multipolar models can be gener-
ated by performing a Taylor series expansion of the
Green’s function G r r r r r r( , ) /′ = − ′ − ′ 3 about the cen-
troid of the source. Successive terms in the expansion give
rise to the multipolar components: dipole, quadrupole,
octupole, and so on. The first multipolar definitions for
electrophysiological signals were established in
magnetocardiography [25]. In MEG, the contributions
to the magnetic field from octupolar and higher order
terms drop off rapidly with distance, so that restricting
sources to dipolar and quadrupolar fields is probably suf-
ficient to represent most plausible cortical sources [26].
An alternative approach to multipolar models of brain
sources can be found in [27].

Head Models
Spherical Head Models

Computation of the scalp potentials and induced mag-
netic fields requires solution of the forward equations (3)
and (2), respectively, for a particular source model. When
the surface integrals are computed over realistic head
shapes, these equations must be solved numerically. Ana-
lytic solutions exist, however, for simplified geometries,
such as when the head is assumed to consist of a set of
nested concentric homogeneous spherical shells repre-
senting brain, skull, and scalp [28]-[30]. These models
are routinely used in most clinical and research applica-
tions to MEG/EEG source localization.

Consider the special case of a current dipole of mo-
ment q located at rq in a multishell spherical head, and an
MEG system in which we measure only the radial compo-
nent of the magnetic field, i.e., the coil surface of the mag-
netometer is oriented orthogonally to a radial line from
the center of the sphere through the center of the coil. It is
relatively straightforward to show that the contributions
of the volume currents vanish in this case, and we are left
with only the primary term B r0 ( ). Taking the radial com-
ponent of this field for the current dipole reduces to the
remarkably simple form:

B
r r r

r
q

q

( ) ( ) ( )r r B r r B r
r r

r r
q≡ ⋅ = ⋅ =

×

−
⋅0

0
34

µ
π

.

(5)

Note that this magnetic field measurement is linear in
the dipole moment q but highly nonlinear with respect to
its location rq . Although we do not reproduce the results
here, the magnetic fields for arbitrary sensor orientation
and the scalp potentials for the spherical head models can
both be written in a form similar to (5) as the inner product
of a linear dipole moment with a term that is nonlinear in
location [28]. While it may not be immediately obvious,
this property also applies to numerical solution of (2) and
(3), i.e., to arbitrary geometries of the volume conductor,
and the measured fields remain linear in the dipole mo-
ment and nonlinear in the dipole location [10], [28].

From (5) we can also see that due to the triple scalar
product, Br ( )r is zero everywhere outside the head if q
points towards the radial direction rq . A more general re-
sult is that radially oriented dipoles do not produce any
external magnetic field outside a spherically symmetric
volume conductor, regardless of the sensor orientation
[31]. Importantly, this is not the case for EEG, which is
sensitive to radial sources, constituting one of the major
differences between MEG and EEG data.

Realistic Head Models

We have described how the forward models have
closed-form solution for heads with conductivity profiles
that can be modeled as a set of nested concentric homoge-
neous and isotropic spheres. In reality, of course, we do
not have heads like this—our heads are anisotropic,
inhomogeneous, and not spherical. Rather surprisingly,
the spherical models work reasonably well, particularly
for MEG measurements, which are less sensitive than
EEG to the effects of volume currents, which, in turn, are
affected more than primary currents by deviations from
the idealized model [32].

More accurate solutions to the forward problem use
anatomical information obtained from high-resolution
volumetric brain images obtained with MR or X-ray
computed tomography (CT) imaging. Since MR scans
are now routinely performed as part of most MEG proto-
cols, this data is readily available. To solve (2) and (3) we
must extract surface boundaries for brain, skull, and scalp
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from these images. Many automated and semiautomated
methods exist for surface extraction from MR images,
e.g., [33], [34]. The surfaces can then be included in a
boundary element method (BEM) calculation of the for-
ward fields.

While this is an improvement on the spherical model,
the BEM methods still assume homogeneity and isotropy
within each region of the head. This ignores, for example,
anisotropy in white matter tracts in the brain in which
conduction is preferentially along the axonal fibers com-
pared to the transverse direction. Similarly, the sinuses
and diploic spaces in the skull make it very inhomo-
geneous, a factor that is typically ignored in BEM calcula-
tions. The finite element method (FEM) can deal with all
of these factors and therefore represents a very powerful
approach to solving the forward problem. Typically BEM
and FEM calculations are very time consuming and use of
these methods may appear impractical when incorpo-
rated as part of an iterative inverse solution. In fact,
through use of fast numerical methods, precalculation,
and look-up tables and interpolation of precalculated
fields, both FEM and BEM can be made quite practical
for applications in MEG and EEG [35].

One problem remains: these methods need to know
the conductivity of the head. Most of the head models
used in the bioelectromagnetism community consider
typical values for the conductivity of the brain, skull, and
skin. The skull is typically assumed to be 40 to 90 times
more resistive than the brain and scalp, which are as-
sumed to have similar conductive properties. These val-
ues are measured in vitro from postmortem tissue, where
conductivity can be significantly altered compared to in
vivo values [36]. Consequently, recent research efforts
have focused on in vivo measures.

Electrical impedance tomography (EIT) proceeds by
injecting a small current (1-10 microA) between pairs of
EEG electrodes and measuring the resulting potentials at
all electrodes. Given a model for the head geometry, EIT
solves an inverse problem by minimizing the error be-
tween the measured potentials of the rest of the EEG
leads and the model-based computed potentials, with re-
spect to the parameters of the conductivity profile. Re-
cent simulation results with three or four-shell spherical
head models have demonstrated the feasibility of this ap-
proach though the associated inverse problem is also fun-
damentally ill-posed [37], [38]. These methods are
readily extendible to realistic surface models as used in
BEM calculations in which each region is assumed homo-

geneous, but it is unlikely that the EIT approach will be
able to produce high-resolution images of spatially vary-
ing anisotropic conductivity.

A second approach to imaging conductivity is to use
magnetic resonance. One technique uses the shielding ef-
fects of induced eddy currents on spin precession and
could in principle help determine the conductivity profile
at any frequency [39]. The second technique uses diffu-
sion-tensor imaging with MRI (DT-MRI), which probes
the microscopic diffusion properties of water molecules
within the tissues of the brain [40]. The diffusion values
can then be tentatively related to the conductivity of these
tissues [41]. Both of these MR-based techniques are still
under investigation, but given the poor signal-to-noise
ratio (SNR) of the MR in bone regions, which is of criti-
cal importance for the forward EEG problem, the poten-
tial for fully three-dimensional impedance tomography
with MR remains speculative.

Algebraic Formulation
With the introduction of the source and head models for
solution of the forward problem, we can now provide a
few key definitions and linear algebraic models that will
clarify the different approaches taken in the inverse meth-
ods described in the next section. As we saw above, the
magnetic field and scalp potential measurements are linear
with respect to the dipole moment q and nonlinear with re-
spect to the location rq . For reasons of exposition it is con-
venient to separate the dipole magnitude q ≡ q from its
orientationΘ = q / q which we represent in spherical coor-
dinates by Θ = ϕ{ , }θ . Let m( )r denote either the scalp elec-
tric potential or magnetic field generated by a dipole:

m a qq( ) ( , , )r r r= Θ , (6)

where a q( , , )r r Θ is formed as the solution to either the
magnetic or electric forward problem for a dipole with
unit amplitude and orientation Θ.

For the simultaneous activation of multiple dipoles
located at rqi , and by linear superposition, we can sim-
ply sum the individual contributions to obtain
m a q

i qi i i( ) ( , , )r r r= ∑ Θ . For the simultaneous EEG or
MEG measurements made at N sensors we obtain
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= A r S({ , }) ,qi i
TΘ (7)

where A r( , )qi Θ i is the gain matrix relating the set of p di-
poles to the set of N discrete locations (now implicitly a
function of the set of N sensor locations), m is a generic
set of N MEG or EEG measurements, and the matrix S is
a generalized matrix of source amplitudes, defined below.
Each column of A relates a dipole to the array of sensor
measurements and is called the forward field, gain vector,
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or scalp topography, of the current dipole source sampled
by the N discrete locations of the sensors. This model can
be readily extended to include a time component t, when
considering time evolving activities at every dipole loca-
tion. For p sources and T discrete time samples, the
spatio-temporal model can therefore be represented as
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The corresponding time series for each dipole are the col-
umns of the time series matrix S, where S T indicates the
matrix is transposed. Because the orientation of the dipole
is not a function of time, this type of model is often referred
to as a “fixed” dipole model. Alternative models that allow
these dipoles to “rotate” as a function of time were intro-
duced in [42] and are extensively reviewed in [43].

Imaging Electrical Activity in the Brain:
The Inverse Problem
Parametric and imaging methods are the two general ap-
proaches to estimation of EEG and MEG sources. The
parametric methods typically assume that the sources can
be represented by a few equivalent current dipoles of un-
known location and moment to be estimated with a non-
linear numerical method. The imaging methods are based
on the assumption that primary sources are intracellular
currents in the dendritic trunks of the cortical pyramidal
neurons, which are aligned normally to the cortical sur-
face. Thus a current dipole is assigned to each of many
tens of thousands of tessellation elements on the cortical
surface with the dipole orientation constrained to equal
the local surface normal. The inverse problem in this case
is linear, since the only unknowns are the amplitudes of
the dipoles in each tessellation element. Given that the
number of sensors is on the order of 100 and the number
of unknowns is on the order of 10,000, the problem is se-
verely underdetermined, and regularization methods are
required to restrict the range of allowable solutions. In
this section we will describe parametric and imaging ap-
proaches, contrasting the underlying assumptions and
the limitations inherent in each.

Parametric Modeling
Least-Squares Source Estimation

In the presence of measurement errors, the forward
model may be represented as M A r S= +({ , })qi i

TΘ ε,
where ε is a spatio-temporal noise matrix. Our goal is to
determine the set { , }rqi iΘ and the time series S that best
describe our data. The earliest and most straightforward
strategy is to fix the number of sources p and use a nonlin-
ear estimation algorithm to minimize the squared error

between the data and the fields computed from the
estimated sources using a forward model. Each dipole
represented in the matrix A r({ , })qi iΘ comprises three
nonlinear location parameters rqi , a set of two nonlinear
orientation parameters Θ i i i= ( , )θ φ , and the T linear di-
pole amplitude time series parameters in the vector s i .

For p dipoles, we define the measure of fit in the
least-square (LS) sense as the square of the Frobenius norm

J LS qi i qi i
T

F
({ , }, ) ({ , })r S M A r SΘ Θ= −

2
. (9)

A brute force approach is to use a nonlinear search pro-
gram to minimize J LS over all of parameters ({ , }, )r Sqi iΘ
simultaneously; however, the following simple optimal
modification greatly reduces the computational burden.
For any selection of { , }rqi iΘ , the matrix S that will mini-
mize J LS is

S A MT = + , (10)

where A + is the pseudoinverse of A A r= ({ , })qi iΘ . If A
is of full column rank, then the pseudoinverse may be ex-
plicitly written as A A A A+ −= ( )T T1 [44], [45]. We can
then solve (9) in { , }rqi iΘ by minimizing the adjusted
cost function:

{ }( )J

M

LS qi i F

F A F

r M A A M

I AA M P

, ( )

( ) ,

Θ = −

= − =

+

+ ⊥

2

2 2

(11)

where PA
⊥ is the orthogonal projection matrix onto the

left null space of A. Thus, the LS problem can be opti-
mally solved in the limited set of nonlinear parameters
{ , }rqi iΘ with an iterative minimization procedure. The
linear parameters in S are then optimally estimated from
(10) [43], [45]. Minimization methods range from
Levenberg-Marquardt and Nelder-Meade downhill
simplex searches to global optimization schemes using
multistart methods, genetic algorithms and simulated
annealing [46].

This least-squares model can either be applied to a sin-
gle snapshot or a block of time samples. When applied se-
quentially to a set of individual time slices, the result is
called a “moving dipole” model, since the location is not
constrained [47]. Alternatively, by using the entire block
of data in the least-squares fit, the dipole locations can be
fixed over the entire interval [42]. The fixed and moving
dipole models have each proven useful in both EEG and
MEG and remain the most widely used approach to pro-
cessing experimental and clinical data.

A key problem with the LS method is that the number
of sources to be used must be decided a priori. Estimates
can be obtained by looking at the effective rank of the data
using SVD or through information-theoretic criteria, but
in practice expert data analysts often run several model or-
ders and select results based on physiological plausibility.
Caution is obviously required since a sufficiently large
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number of sources can be made to fit any data set, regard-
less of its quality. Furthermore, as the number of sources
increases, the nonconvexity of the cost function results in
increased chances of trapping in undesirable local min-
ima. This latter problem can be approached using sto-
chastic or multistart search strategies [46], [48].

The alternatives described below avoid the noncon-
vexity issue by scanning a region of interest that can range
from a single location to the whole brain volume for pos-
sible sources. An estimator of the contribution of each
putative source location to the data can be derived either
via spatial filtering techniques or signal classification indi-
ces. An attractive feature of these methods is that they do
not require any prior estimate of the number of underly-
ing sources.

Beamforming Approaches
A beamformer performs spatial filtering on data from a
sensor array to discriminate between signals arriving
from a location of interest and those originating else-
where. Beamforming originated in radar and sonar signal
processing but has since found applications in diverse
fields ranging from astronomy to biomedical signal pro-
cessing [49], [50].

Let us consider a beamformer that monitors signals
from a dipole at location rq , while blocking contributions
from all other brain locations. If we do not know the ori-
entation of the dipole, we need a vector beamformer con-
sisting of three spatial filters, one for each of the Cartesian
axes, which we denote as the set { , , }Θ Θ Θ1 2 3 . The out-
put of the beamformer is computed as the three element
vector y( )t formed as the product of a 3× N spatial filter-
ing matrix W T with m( )t , the signal at the array at time t,
i.e., y W m( ) ( )t tT= .

The spatial filter would ideally be defined to pass signals
within a small distance δ of the location of interest rq with a
gain of unity while nulling signals from elsewhere [51].
Thus the spatial filter should obey the following constraints:

W A r
I r r
0 r r

T q

q

( )
:
:

=
− ≤
− >

δ
δ

passband constraint
stopband constraint,





 (12)

where A r a r a r a r( ) [ ( , ), ( , ), ( , )]= Θ Θ Θ1 2 3 is the N ×3 for-
ward matrix for three orthogonal dipoles at location r.
There are insufficient degrees of freedom to enforce a strong
stop-band constraint over the entire brain volume, so that a
fixed spatial filter is impractical for this application.

Linearly constrained minimum variance (LCMV)
beamforming provides an adaptive alternative in which
the limited degrees of freedom are used to place nulls in
the response at positions corresponding to interfering
sources, i.e., neural sources at locations other than rq .
This nulling is achieved by simply minimizing the output
power of the beamformer subject to a unity gain con-
straint at the desired location rq . The LCMV problem can
be written as

{ }min ( )
W

y
T

qT
Ctr subject to W A r I= , (13)

where C yy W C Wy
T T

mE= =[ ] and C mmm = E T[ ].
Solving (13) using the method of Lagrange multipliers
yields the solution [49]:

[ ]W A r C A r A r C= − − −( ) ( ) ( )q
T

m q q
T

m
1 1 1 .

(14)

Applying this filter to each of the snapshot vectors
m( ), ,...,t t T=1 , in the data matrix M produces an esti-
mate of the dipole moment of the source at rq [51]-[53].
By simply changing the location rq in (13), we can pro-
duce an estimate of the neural activity at any location.

Unfortunately, the transient and often correlated na-
ture of neural activation in different parts of the brain will
often limit performance of the LCMV as correlations be-
tween different sources will result in partial signal cancel-
lation. However, simulation results [51], [54] and recent
evaluations on real data [55] seem to indicate LCMV-
based beamforming methods are robust to moderate lev-
els of source/interference correlation. Similarly, model-
ing errors in the constraint matrix A r( )q or imprecise
dipole locations can result in signal attenuation or even
cancellation. More elaborate constraints may be designed
by using eigenvectors that span a desired region to be ei-
ther monitored (gain=1) or nulled (gain=0) [49], but as
the number of constraints increases, the degrees of free-
dom are reduced and the beamformer becomes less adap-
tive to other unknown sources.

In the absence of signal, the LCMV beamformer will
produce output simply due to noise. Because of the vari-
able sensitivity of EEG and MEG as a function of source
location, the noise gain of the filter will vary as a function
of location rq in the constraint A r( )q . A strategy to ac-
count for this effect when using the LCMV beamformer
in a scanning mode is to compute the ratio of the output
variance of the beamformer to that which would have
been obtained in the presence of noise only. It is straight-
forward to show that this ratio is given by

[ ]{ }
[ ]{ }

var
tr

tr
( )

( ) ( )
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r

A r C A r

A r C A r
q

q
T

m q

q
T

q

=

− −

− −

1 1

1 1

ε
(15)

where Cε is an estimate of the noise-only covariance [53].
This neural activity index can be extended to statistical
parametric mapping (SPM) as in the synthetic aperture
magnetometry (SAM) technique [53]; the recent para-
metric mapping method in [56] uses a similar idea to this,
except that the linear operator applied to the data is a min-
imum-norm imaging, rather than spatial filtering, matrix.
In low noise situations, the signal covariance can be
ill-conditioned, and therefore the inverse may be regular-
ized by replacing C m

−1 with [ ]C Im + −λ 1 where λ is a small
positive constant in (14) and (15) [53].
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From Classical to RAP-MUSIC

The multiple signal classification approach (MUSIC) was
developed in the array signal processing community [57]
before being adapted to MEG/EEG source localization
[43]. We will restrict our brief description of the MUSIC
approach here to dipole sources with fixed orientation, al-
though it can be extended to rotating dipoles and
multipoles. As before, let M A r S= +({ , })qi i

TΘ ε be an
N T× spatio-temporal matrix containing the data set un-
der consideration for analysis, and let the data be a mix-
ture of p sources. Let M U V= Σ T be the singular value
decomposition (SVD) of M [44]. In the absence of noise,
the set of left singular vectors is an orthonormal basis for
the subspace spanned by the data. Provided that N p> ,
the SNR is sufficiently large, and noise is i.i.d. at the sen-
sors, one can define a basis for the signal and noise
subspaces from the column vectors of U. The signal
subspace is spanned by the p first left singular vectors in
U, denoted U S , while the noise subspace is spanned by
the remaining left singular vectors. The best rank p ap-
proximation of M is given by M U U MS S S

T= ( ) and
P I U US S S

T⊥ = − ( ) is the orthogonal projector onto the
noise subspace.

We can define the MUSIC cost function as:

J
S
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P a r
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Θ
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2

2

2

2
,

(16)

which is zero when a r( , )Θ corresponds to one of the true
source locations and orientations, r r= qi and Θ Θ= i ,
i p=1,..., [43]. As in the beamforming approaches, an ad-
vantage over least-squares is that each source can be
found by scanning through the possible set of locations
and orientations, finding each source in turn, rather than
searching simultaneously for all sources. By evaluating
J r( , )Θ on a predefined set of grid points and then plot-
ting its reciprocal, a “MUSIC” map is readily obtained
with p peaks at or near the true locations of the p sources.

Although we do not show the details here, (16) can be
modified to factor the dipole orientation out of the cost
function. In this way, at each location we can test for the
presence of a source without explicitly considering orien-
tation. If a source is present, a simple generalized
eigenanalysis of a 3 × 3 matrix is sufficient to compute the
dipole orientation [43], [58]. Once all of the sources are
found, their time series can be found, as in the
least-squares approach, as S AT M= + where is the
pseudoinverse of the gain matrix corresponding to the
sources found in the MUSIC search.

Recursively appl ied and projected MUSIC
(RAP-MUSIC) is a recent improvement to the original
MUSIC scanning method, which refines the MUSIC cost
function after each source is found by projecting the sig-
nal subspace away from the gain vectors a r( , )i iΘ corre-
sponding to the sources already found [59]. Other
extensions of MUSIC for MEG and EEG applications in-

clude the use of prewhitening to account for spatial corre-
lations in background brain activity [60] and use of
time-frequency methods to better select the signal
subspace of interest [61].

One distinct advantage of MUSIC over LCMV meth-
ods is the relaxation of the requirement of orthogonality
between distinct sources. MUSIC requires the weaker as-
sumption that different sources have linearly independent
time series. In noiseless data, partially correlated sources
will still result in a cost function equal to zero at each true
dipole location. In the presence of noise, MUSIC will fail
when two sources are strongly or perfectly correlated.
This problem can be corrected by adjusting the concept of
single dipole models to specifically allow sets of synchro-
nous sources [58].

Imaging Approaches
Cortically Distributed Source Models

Imaging approaches to the MEG/EEG inverse problem
consist of methods for estimating the amplitudes of a dense
set of dipoles distributed at fixed locations within the head
volume. In this case, since the locations are fixed, only the
linear parameters need to be estimated, and the inverse
problem reduces to a linear one with strong similarities to
those encountered in image restoration and reconstruc-
tion, i.e., the imaging problem involves solution of the lin-
ear system M AS= T for the dipole amplitudes, S.

The most basic approach consists of distributing di-
poles over a predefined volumetric grid similar to the
ones used in the scanning approaches. However, since
primary sources are widely believed to be restricted to the
cortex, the image can be plausibly constrained to sources
lying on the cortical surface that has been extracted from
an anatomical MR image of the subject [62]. Following
segmentation of the MR volume, dipolar sources are
placed at each node of a triangular tessellation of the sur-
face of the cortical mantle. Since the apical dendrites that
produce the measured fields are oriented normal to the
surface, we can further constrain each of these elemental
dipolar sources to be normal to the surface. The highly
convoluted nature of the human cortex requires that a
high-resolution representation contains on the order of
ten to one hundred thousand dipole “pixels.” The inverse
problem is therefore hugely underdetermined and imag-
ing requires the use of either explicit or implicit con-
straints on the allowed current source distributions.
Typically, this has been accomplished through the use of
regularization or Bayesian image estimation methods.

Bayesian Formulation of the Inverse Problem

For purposes of exposition, we will describe imaging
methods from a Bayesian perspective. Consider the prob-
lem of estimating the matrix S of dipole amplitudes at
each tessellation element from the spatio-temporal data
matrix M, which are related in the noiseless case by
M AS= T . The ith row ofS contains the amplitude image
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across the cortex at time i. From Bayes theorem, the pos-
terior probability for the amplitude matrix S conditioned
on the data M is given by

p
p

p
( / )

( / ) ( )
( )

S M
M S p S

M
=

(17)

where p( / )M S is the conditional probability for the data
given the image and p( )S is a prior distribution reflecting
our knowledge of the statistical properties of the un-
known image. While Bayesian inference offers the poten-
tial for a full statistical characterization of the sources
through the posterior probability [63], in practice images
are typically estimated by maximization of the posterior
or log-posterior probability:

� max ( ) ( ) max ln ( | ) ln ( )S M|S S M S S= ≡ +arg arg
S S

p p p p .
(18)

The term p( )M / S is the log likelihood for the data
that depends on the forward model and the true source
distribution. Typically, MEG and EEG data are assumed
to be corrupted with additive Gaussian noise that we as-
sume here is spatially and temporally white (generaliza-
tions for colored noise are straightforward). The log
likelihood is then simply given by, within a constant,

ln ( )p | T

F
M S M AS= −1

2 2

2

σ
.

(19)

The prior is a probabilistic model that describes our ex-
pectations concerning the statistical properties of the
source for which we will assume an exponential density

p
z

f( ) exp{ ( )}S S= −1 β
(20)

where β and z are scalar constants and f ( )S is a function of
the image S. This form encompasses both multivariate
Gaussian models and the powerful class of Gibbs distri-
butions or Markov random field models [64]. Com-
bining the log likelihood and log prior gives the general
form of the negative log posterior whose minimization
yields the maximum a posteriori or MAP estimate:

U fT( ) ( )S M AS S= − +
2

λ ,
(21)

where λ βσ=2 2 . We can now give a brief overview of the
imaging methods as special cases of minimization of the
energy function in (21).

Linear Imaging Methods

In the case of a zero mean Gaussian image, the log prior
has the form:

{ }f S
T( )S SC S= −tr 1 , (22)

where CS
−1 is the inverse spatial covariance of the image;

this model assumes that the image is independent from one
time sample to the next. The corresponding energy func-
tion U( )S is quadratic in S and the minimum is given by

� ( )S WW A AWW A I M F MT T T T T= + =−λ λ
1

(23)

where we have factored C WWS
T− =1 . We note that for

this case, the posterior is Gaussian and the MAP estima-
tor is equivalent to the minimum mean squared error esti-
mator or Wiener solution.

We can also interpret (21) as a Tikhonov regularized
form of the inverse problem [65], [66], where the first
term measures the fit to the data and the last is a regulariz-
ing function that measures smoothness of the image. The
scalar λ is the regularization parameter that can be chosen
using cross-validation methods or the L-curve. Within this
regularized interpretation of (21), several forms of W have
been proposed for MEG/EEG imaging applications:
� i) the identity matrix which produces a regularized
minimum norm solution [67];
� ii) the column normalized minimum norm in which W
is a diagonal matrix with elements equal to the norm of
the corresponding column of A [68];
� iii) W computes a spatial derivative of the image of first
order [69] or Laplacian form [70];
� iv) W is diagonal with elements equal to some estimate
of the source power at that location, which may be com-
puted from the output of a beamformer or MUSIC scan
evaluated for each dipole pixel in turn [62], [71].

The underdetermined nature of the inverse problem in
MEG/EEG is such that these linear methods produce
very low-resolution solutions. Focal cortical sources tend
to spread over multiple cortical sulci and gyri. In some ap-
plications, this may be sufficient to draw useful inferences
from the resulting images. However, the images formed
do not reflect the generally sparse focal nature of event-re-
lated cortical activation that is visualized using the other
functional imaging modalities of PET and fMRI. In an at-
tempt to produce more focal sources, the FOCUSS
method [72] uses an iterative reweighting scheme in
which the diagonal weight matrix W is updated at each it-
eration to equal the magnitude of the current image esti-
mate. This approach does indeed produce sparse sources,
but can be highly unstable with noisy data.

An interesting approach to the interpretation of mini-
mum norm images formed using (23) was proposed by
Dale et al. [56] in which an image of SNR is computed by
normalizing each pixel value computed using (23) with an
estimate of the noise sensitivity of that pixel, i.e., for the
case of white Gaussian noise, each value in �S T is normal-
ized by the noise sensitivity given by the corresponding di-
agonal elements of F Fλ λ

T . This has the interesting
property of generally reducing the amount by which activ-
ity spreads across multiple sulci and gyri when compared
to the standard minimum norm image; these images can
also be used to make statistical inferences about the proba-

24 IEEE SIGNAL PROCESSING MAGAZINE NOVEMBER 2001



bility of a source being present at each location. This is an
alternative to the statistical parametric mapping described
in our discussion of beamforming methods.

Non-Gaussian Priors
In an attempt to produce more physiologically plausible
images than can be obtained using linear methods, a large
number of researchers have investigated alternative meth-
ods that can collectively be viewed as selecting alternative
(nonquadratic) energy functions f ( )S in (21). From a
regularization perspective, these have included entropy
metrics and L p norms with values of p <2, i.e., f p( )S S=
[73]. For the latter case, solutions will become increas-
ingly sparse as p is reduced. For the special case of p =1,
the problem can be modified slightly to be recast as a lin-
ear program. This is achieved by replacing the quadratic
log-likelihood term with a set of underdetermined linear
inequality constraints, where the inequalities reflect ex-
pected mismatches in the fit to the data due to noise. The
L1 cost can then be minimized over these constraints us-
ing a linear simplex algorithm. The attraction of this
approach is that the properties of linear programming
problems guarantee that there exists an optimal solution
for which the number of nonzero pixels does not exceed
the number of constraints, or equivalently the number of
measurements. Since the number of pixels far outweighs
the number of measurements, the solutions are therefore
guaranteed to be sparse. This idea can be taken even fur-
ther by using the L p quasi-norm for values of p <1. In this
case, it is possible to show that there exists a value0 1< <p
for which the resulting solution is maximally sparse [68].

An alternative to the use of simple algebraic forms for
the energy function f ( )S is to explic-
itly define a prior distribution that
captures the desired statistical prop-
erties of the images. This can be done
using the class of Markov random
field (MRF) models [64], [74].
MRFs are a powerful framework,
which have been extensively investi-
gated in image restoration and recon-
struction for statistical modeling of a
range of image properties. A key
property of MRFs is that their joint
statistical distribution can be con-
structed from a set of potential func-
t ions def ined on a local
neighborhood system. Thus, the en-
ergy function f ( )S for the prior can
be expressed as

f
j

J

j( ) ( )S S=
=
∑

1

Φ ,
(24)

where Φ j ( )S is a function of a set of
dipole pixel sites on the cortex that
are all mutual neighbors. In this way,

the MRF model can capture local interaction properties
between image pixels and their neighbors. The total num-
ber, J, of these functions depends on the number of pixels
and the number of different ways in which they are al-
lowed to interact with their neighbors. Among the sim-
plest MRF image models are those in which each of the
potential functions involves a pair of neighboring pixel
values. To model smoothness in images an appropriate
choice of potential function might be the squared differ-
ence between these neighboring pixels.

In the case of MEG/EEG, the model should reflect the
observation that cortical activation appears to exhibit a
sparse focal structure, i.e., during an event related
MEG/EEG study, most of the cortex is not involved in the
response, and those areas correspond to focal regions of ac-
tive cell assemblies. To capture these properties, a highly
nonconvex potential function defined on the difference be-
tween each pair of neighboring pixel values was used in
[75]. This prior has the effect of favoring the formation of
small discrete regions of active cortex surrounded by re-
gions of near-zero activity. An alternative model was pro-
posed in [76] where a binary random field, x, was used to
indicate whether each dipole pixel was either active ( )x =1
or inactive ( )x =0 . A MRF was defined on this binary field
to capture the two desired properties of sparseness and spa-
tial clustering of active pixels; the parameters of this prior
could then be adjusted to achieve differing degrees of
sparseness and clustering [76]. Interactions between
neighboring pixels can be described in both space and
time. In [75] for instance, temporal smoothing is included
in the prior in addition to the spatial sparseness term.
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� 3. Examples of surfaces extracted from high-resolution MR images. The following sur-
faces were all extracted using an automated method described in [34]: (a) high-resolu-
tion brain surface, (b) smoothed brain surface, (c) skull surface, (d) scalp surface. The
surfaces in (b), (c), and (d)  are used as input to a boundary element code for comput-
ing forward MEG and EEG fields. The remaining figures are high-resolution cortical sur-
faces extracted from the same MR image and corrected to have the topology of a
sphere. These can be used for cortically-constrained MEG or EEG imaging: (e) high res-
olution cortical surface, (f) smoothed representation obtained using relaxation methods
similar to that described by [62] to allow improved visualization of deep sulcal features,
(g) high resolution and (h) smoothed representations of the cortex with approximate
measures of curvature overlaid. Figure courtesy of David W. Shattuck [90].



The MRF-based image priors lead to nonconvex
[75] and integer [76] programming problems in com-
puting the MAP estimate. Computational costs can be
very high for these methods since although the priors
have computationally attractive neighborhood struc-
tures, the posteriors become fully coupled through the
likelihood term. Furthermore, to deal with noncon-
vexity and integer programming issues some form of
deterministic or stochastic annealing algorithms must
be used [77].

Limitations of Imaging Approaches and Hybrid Alternatives
The imaging approaches are fundamentally limited by the
huge imbalance between the numbers of spatial measure-
ments and dipole-pixels. As we have seen, methods to
overcome the resultant ambiguity range from mini-
mum-norm based regularization to the use of physiologi-
cally based statistical priors. Nonetheless, we should
emphasize that the class of images that provide reasonable
fits to the data is very broad, and selection of the “best”
image within the class is effectively done without regard
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� 4. MEG, from modeling to imaging. Upper frame: The head
modeling step consists in designing spherical (3-shell spherical
volume conductor model; left) or realistic head models from the
subject’s anatomy using the individual MRI volume (piecewise
homogenous BEM model, right). Right frame: Three representa-
tive imaging approaches were applied to identify the MEG gen-
erators associated to the right-finger movement data set
introduced in Fig. 2. Top: The LS-fit approach produced a sin-
gle-dipole model located inside the contralateral (left) central
sulcus. Location is adequate but this model is too limited to
make any assumption regarding the true spatial extension of
the associated neural activation. The dipole time series (not
shown here) indicated little premotor activation and much stron-
ger somatosensory activity about 20 ms after the movement on-
set. Center: Minimum-Norm imaging of the cortical current
density map has much lower spatial resolution. The estimated
neural activation is spread all over the central sulcus region. Its
extension to the more remote gyral crowns is certainly
artifactual. The source time series in the central sulcus area (not
shown here) revealed similar behavior as in the LS-fit case. Bot-
tom: RAP-MUSIC modeling followed by cortical remapping: the
RAP-MUSIC approach generated a 3-source model: one in the
somatosensory regions of each hemispheres and one close to
the post-supplementary motor area (SMA). Cortical remapping
of the contralateral source revealed activation in the
omega-shaped region of the primary sensory and motor hand
areas (contralateral sensori-motor cortex, cSM). The cortical
patch equivalent to the ipsilateral source was located in the
ispsilateral somato-sensory region (iSS). Time series of the corti-
cal activations were extracted in the [-400, 100] ms time win-
dow (bottom left). Sustained pre-motor activation occurred in all
the above-mentioned areas; but only the SMA and cSM time
series had clear peaks at about 20 ms following the movement
onset, revealing motor activation of the contralateral finger and
its associated somatosensory feedback. Premotor activation in
the iSS could be related to active control of the immobility of the
ipsilateral fingers.



to the data. In contrast, the dipolar and multipolar meth-
ods control this ambiguity through a more explicit speci-
fication of the source model. This may lead to improved
confidence in the estimated sources, but at the potential
cost of missing sources that do not conform to the chosen
model, and to the added complexity of interpreting the
resulting solutions.

Recently we have been exploring the idea of remap-
ping estimated dipolar and multipolar solutions onto cor-
tex as a hybrid combination of the parametric and
imaging approaches [78]. In this way, we can first rapidly
find a solution to the inverse problem using, for example,
the MUSIC scanning method. We then fit each source in
turn to the cortex by solving a local imaging problem to
compute an equivalent patch of activated cortex whose
magnetic fields or scalp potentials match those of the esti-
mated dipole or multipole (see Fig. 4 for an illustration
on the data presented in Fig. 2).

A second hybrid approach to source estimation draws
elements from the imaging and parametric approaches by
specifying a prior distribution consisting of a set of acti-
vated cortical regions of unknown location, size and ori-
entation. By constructing and sampling from a posterior
distribution using Markov chain Monte Carlo methods,
Schmidt et al. [79] are able to investigate the parameter
space for this model and provide estimates, together with
confidence values, of the true source distribution. As with
the other physiologically based Bayesian models, this ap-
proach has high computational costs.

Emerging Signal Processing Issues
Combining fMRI and MEG/EEG
One of the most exciting current challenges in functional
brain mapping is the question of how to best integrate
data from different modalities. Since fMRI gives excellent
spatial resolution with poor temporal resolution, while
MEG/EEG gives excellent temporal resolution with poor
spatial resolution, the data could be combined to provide
insight that could not be achieved with either modality
alone. One manner in which this has been done is to find
regions of activation in fMRI images and use these to in-
fluence the formation of activated areas on the
MEG/EEG images. This can be done by modifying the
covariance matrix CS

−1 in (22) so that activated pixels in
the fMRI images are more likely to be active in the MEG
images [56]. This approach works exceedingly well when
the areas of activation in the two studies actually corre-
spond, but can lead to erroneous results if areas actively
contributing to the MEG/EEG signal do not also pro-
duce activation in fMRI, or if hemodynamic response im-
aged with fMRI occurs at some distance from the
electrical response measured with MEG/EEG [80]-[82].
The non-Gaussian Bayesian methods could be similarly
modified to include fMRI information but would be sub-
ject to the same kind of errors. This issue remains an open
research problem [83].

Signal Denoising and Blind Source Separation
An area of intense interest at the moment is the use of
blind source separation and independent component
analysis (ICA) methods for analysis of EEG and MEG
data. Electrophysiological data is often corrupted by ad-
ditive noise that includes background brain activity, elec-
trical activity in the heart, eye-blink and other electrical
muscle activity, and environmental noise. In general,
these signals occur independently of either a stimulus, or
the resultant event-related responses. Removal of these
interfering signals is therefore an ideal candidate for ICA
methods that are based on just such an independence as-
sumption. Successful demonstrations of denoising have
been published using mutual information [84], entropy
[85], and fourth-order cumulant [86] based approaches.
These methods perform best when applied to raw
(unaveraged) data; one enticing aspect of this approach is
that after noise removal, it may be possible to see event-
related activity in the unaveraged denoised signals [87].
This is important since much of the information in
MEG/EEG data, such as signals reflecting non time-
locked synchronization between different cell assemblies
[88] may be lost during the averaging process.

In addition to denoising, ICA has also been used to de-
compose MEG/EEG data into separate components,
each representing physiologically distinct processes or
sources. In principle, localization or imaging methods
could then be applied to each of these components in
turn. This decomposition is based on the underlying as-
sumption of statistical independence between the activa-
tions of the different cell assemblies involved, which still
remains to be validated experimentally. This approach
could lead to interesting new ways of investigating data
and developing new hypotheses for methods of neural
communications. This is currently a very active and po-
tentially fruitful research area.

Conclusion and Perspectives
As we have attempted to show, MEG/EEG source imag-
ing encompasses a great variety of signal modeling and
processing methods. We hope that this article serves as an
introduction that will help to attract signal-processing re-
searchers to explore this fascinating topic in more depth.
We should emphasize that this article is not intended to
be a comprehensive review, and for the purposes of pro-
viding a coherent introduction, we have chosen to pres-
ent the field from the perspective of the work that we have
done over the last several years.

The excellent time resolution of MEG/EEG gives us a
unique window on the dynamics of human brain func-
tions. Though spatial resolution is the Achilles’ heel of
this modality, future progress in modeling and applying
modern signal processing methods may prove to make
MEG/EEG a dependable functional imaging modality.
Potential advances in forward modeling include better
characterization of the skull, scalp and brain tissues from
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MRI and in vivo estimation of the inhomogeneous and
anisotropic conductivity of the head. Progress in inverse
methods will include methods for combining MEG/EEG
with other functional modalities and exploiting signal
analysis methodologies to better localize and separate the
various components of the brain’s electrical responses. Of
particular importance are methods for understanding the
complex interactions between brain regions using sin-
gle-trial signals to investigate transient phase synchroni-
zation between sensors [88] or directly within the
MEG/EEG source map [89].
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