Imaging Neural Activity
Using MEG and EEG

?remendous progress has been made
over the last decade in the development
of techniques for producing macroscopic
images of brain activity. Positron emis-
sion tomography (PET) can produce
high-resolution images of activated areas
using radionucleides designed to image
regional cerebral blood flow [1]. Func-
tional magnetic resonance imaging
(fMRI) also uses changes in cerebral
blood flow to produce images of neural
activation[2]. While PET and fMRI are
capable of producing images with spatial
resolution on the order of a
few millimeters, their
temporal resolution is
fundamentally lim-
ited by the time con-
stants of  the
hemodynamic effects
that result from neural
activation and which
are exploited to produce
these activation images.
In contrast, magnetoen-
cephalography (MEG) and
electroencephalography
(EEG) directly measure the
magnetic field or scalp electric
potentials caused by neural activation
and have temporal resolutions on the or-
der of a few milliseconds. Thus, MEG and
EEG provide unique insights into the dy-
namic aspects of brain activity. Due to the
ambiguity of the associated quasistatic in-
verse problem, however, high spatial
resolution images of neural activity from
EEG and MEG data can not be produced
using linear inverse methods of the kind
used in processing fMRI and PET data.
In this article we describe an alterna-

tive approach to the inverse problem in,

which a Bayesian framework is used to in-
corporate anatomical constraints on the
location of the activation sites, with a
probabilistic model for the spatio-
temporal distribution of activity over
these regions. We describe EEG and
MEG instrumentation, review the for-
ward model, and discuss weighted mini-
mum norm techniques. We also provide a
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simulation example showing the Bayes-
ian method applied to'the problem of im-
aging dynamic sources confined to a
realistic human brain surface.

* Overview of MEG and EEG

MEG is a relatively new modality in
which measurements are made of the
magnetic field produced by current
sources in the brain. These extremely
small magnetic fields can be measured us-
ing a SQUID (superconducting quantum

interference device) magnetometer.
The first measurements of the
brain’s magnetic field us-

ing this device were
made by Cohen in
1972 [3]. However,
only within the past
few years have clini-
cal systems been
available that allow si-
multaneous collection
of the magnetic field at
alarge number of loca-
tions around the head
[4-51].
The EEG, first meas-
ured by Hans Berger in
1929, has been used in the study
of brain function and disease for several
decades. Again, only fairly recently have
high-quality digital acquisition systems
been developed to provide the many chan-
nels of data over the entire head that are
required to solve the inverse problem [6].
In the early days, MEG was believed to be
inherently superior to EEG for the pur-
poses of localizing brain activity, due to
the decreased dependence of the MEG
forward model on accurate knowledge of
the conductivity properties of the head.
Currently however, EEG and MEG are
more commonly viewed as complemen-
tary modalities and are often collected si-
multaneously[7-8].

The major sources of both the EEG and
MEG are widely accepted to be localized
current sources in the cerebral cortex.
Much of the literature uses a set of equiva-
lent current dipoles to represent these lo-
calized sources and solves the inverse
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problem by finding the location and mo-
ments of these dipoles using nonlinear nu-
merical optimization methods. Attempts
at estimating equivalent current sources
based on EEG measurements date back to
Shaw in 1955 [9], whereas the earliest
source localization from MEG data was
reported by Brenner in 1978 [10]. Exten-
sions of the dipole fitting method to con-
sider the temporal components of the data
were developed by Scherg and Von Cra-
mon [11], and methods that reduced the
dimensionality of the search space using
signal subspace methods were developed
by Mosher, et al. [12].

The major limitation of fitting a few
current dipoles to the data is that the re-
sulting fits may not well represent more
distributed cortical sources. Constraining
solutions to the cortex is also difficult
when using multiple dipole models. To
overcome these limitations, a number of
researchers have addressed the
MEG/EEG inverse problem as one of im-
age reconstruction. Most imaging meth-
ods that have been studied to date are
based on weighted minimum norm tech-
niques [13]. The imaging problem is
highly ill-posed due both to the inherent
non-uniqueness of the quasistatic inverse
problem and to the limited number of sen-
sor measurements available. The Bayes-
ian method we present in this article
attempts to overcome the ill-posedness of
the inverse problem by introducing a
probabilistic model for the source image.
This model is based on the observation
that activation in the cortex tends to be
sparse and focal. ‘

Instrumentation
The signals generated by EEG and
MEG are very weak, with MEG exception-
ally so. EEG data are typically measured in

microvolts (LLv), as the potential difference
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between two points on the scalp. MEG
signals are typically measured in fem-
toTeslas (fT), a magnetic field about nine
orders of magnitude weaker than the
Earth’s magnetic field. Acquisition of
these magnetic fields generally requires
magnetic shielding of the subject and su-
perconducting magnetic sensors in spe-
cial configurations. We briefly review
here the sensor systems used for EEG and
MEG.

The first and most critical clinical ele-
ment in EEG recording is the electrode,
which is usually attached to the scalp with
aconductive gel intermediary. Ideally, the
impedance of all electrode-scalp inter-
faces is identical and as low as possible,
but this is difficult to achieve due to vary-
ing electrode composition and a changing
interface resulting from electrode move-
ment. A large number of electrodes are
generally placed about the scalp at known
locations, with one acting as a reference
electrode. Hence, each “channel” in an
EEG system represents the potential dif-
ference between two electrodes, with
most of the channels sharing a common
reference electrode. '

The EEG signal must be amplified,
nominally 10,000 times, before digital ac-
quisition and recording. Atthe frontendis
ahigh gain pre-amplifier with a high input
impedance so as not to draw current from
the scalp and distort the measurements.
The pre-amplifier output is then further
conditioned and amplified to meet the
specific requirements of the analog-to-
digital converter. The user selects the
bandwidths of interést, typically a sub-
kilohertz range of frequencies, and the
system sets the necessary filters and sam-
pling rates for digital acquisition.

The “noise” in'an EEG system is gen-
erally dominated by biological signals,
i.e., well-designed EEG systems are gen-
erally insensitive to environmental con-
tamination. Strong radio stations and
power-line frequencies can couple into
the EEG leads, but careful system design
and properly attached electrodes mitigate
these effects. In contrast, the extremely
sensitive MEG sensors must operate in
environmental noise conditions many or-
ders of magnitude stronger than the bio-
logical signals of interest. The key
components to successful neuromagnetic
recordings include careful magnetic
shielding of the sensors and special differ-
ential sensor configurations. The technol-
ogy that makes recordings of these fT
fields possible is the SQUID.
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A SQUID is a superconducting device
comprising one or more Josephson junc-
tions. For our purposes, we may think of
the SQUID magnetometer as a device for
converting the magnetic. flux passing
through a coil into a voltage that varies si-
nusoidally with increasing flux. SQUID
electronics modulate this sinusoidal out-
put to lock into a single period of the sine
function (a flux “quantum”) and thereby
linearize the flux-to-voltage relationship.
In MEG, the SQUID is typically operated
in a feedback loop that effectively nulls
the flux passing through pickup coil. The
electronics monitor the amount of feed-
back energy required to null the flux,
yielding a “null detector” sensor system
of extreme sensitivity. Wikswo [5] pres-
ents a review of the SQUID development
and its use in biomagnetism.

The SQUID magnetometer has a sin-
gle pickup coil of nominally one to two
cm diameter. The extreme sensitivity of
this device restricts its use to magnetically
shielded rooms. As an alternative or addi-
tion to magnetic shielding, SQUID gradi-
ometers have two or more pickup coils
arranged to effectively form differential
inputs. The Earth’s static magnetic field is
canceled in these gradiometers, allowing
the possibility of operating them in un-
shielded environments. However, even

Axial

Gradiometers

these devices remain sensitive to varia-
tions of the local field, usually caused by
the movements of nearby vehicles and
other, large ferromagnetic objects. Thus,
clinical settings will typically still require
magnetically shielded rooms. These
rooms can cost hundreds of thousands of
dollars, motivating the continual develop-
ment of novel sensor designs to reduce the
level of required shielding; see Wikswo
[5] for a more detailed review of some of
these more recent designs.

Cryogenic dewars contain the liquid
helium used to achieve superconductivity
and usually contain both pickup coils and
SQUIDs. The cost and complexity of such
systems led to the initial development of
SQUID systems containing only a few
channels. These sensors, such as the BTi
seven-channel system, were suspended
from a mechanical gantry that allowed the
dewar to be moved about a subject’s head,
but any one placement had limited spatial
coverage. More recently, large arrays com-
prising hundreds of magnetometers or gra-
diometers have been developed. Figure 1 is
a diagram of a SQUID array inside a
multi-channel MEG gradiometer system.

The need for cryogenics, however, has
restricted the design of whole-head
multi-channel systems to rigid helmet
shapes, which by necessity must be de-

1. Schematic representation of an axial gradiometer system with whole-head cover-
age. The pickup and gradiometer coils are oppositely wound, such that the Earth’s
static magnetic field is canceled. The weak neural current is effectively.detected only

by the nearby pickup coil.
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signed to accommodate the largest head
expected. The coils are thus effectively
further away from the scalp of subjects
with smaller heads, reducing some of the
sensor sensitivity. Nonetheless, several
whole-head MEG systems have been re-
cently introduced that allow the simulta-
neous acquisition of neural signals over
the entire head (cf. [4-5]).

Regardless of the methods used to con-
trol environmental noise, both EEG and
MEG are heavily influenced by what may
be called “brain noise.” In brain mapping,
a researcher may be interested, for in-
stance, in the cortical response to a spe-
cific auditory, visual, or somatosensory
stimulus. In the milliseconds following
such a stimulus, however, these “event-
related” responses are dominated by
much stronger on-going neural activity.
Many experimental paradigms, such as
auditory tones, can be easily repeated, and
averaging the data generally suppresses
the on-going activity to reveal the event-
related responses. Averaging 100 or more
trials is typical in order to adequately re-
veal these weak responses.

Neural Sources and

the Forward Model

The major sources of both EEG and
MEG are believed to be current flow
along the apical dendrites of the pyrami-
dal cells in the cerebral cortex [14].
These dendrites are arranged in a colum-
nar fashion to be locally normal to the
cortical surface. This columnar arrange-
ment results in a coherent summation of
the current fields for near-synchronous
activation of a large number of neurons
within a small area of cortex. This focal
activity can be represented by an equiva-
lent current dipole located approxi-
mately at the center of this area, with its
moment normal to the cortical surface.
Thus, a single focal source in the cortex
can be modeled using a single equivalent
current dipole. More complex distribu-
tions can be modeled using several cur-
rent dipoles. In the imaging approach to
the MEG/EEG inverse problem, sources
are constrained to a tessellated represen-
tation of the cerebral cortex, with a cur-
rent dipole located at the centroid of each
surface element. We now briefly de-
scribe the relationship between these cur-
rent sources and the observed signals.

For the biological signals of interest in
EEG and MEG, the time-derivatives of
the associated electric and magnetic fields
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are sufficiently small that the fields may
be considered quasistatic. We represent
this neural activity as a current density,
J(r), in a closed volume of finite conduc-
tivity. Outside this volume, the conductiv-
ity and current density are zero. The
integral equation relating the magnetic
field b(r) and the current density j(r) is the
well known integral form of the Biot-
Savart law:

by = Mo [ie)xardar
i ’. (0

where d = r—r' is the distance between the
observation point, r, and the source point,
r'. The integration is carried out over a
closed volume, G. The constant g is the
permittivity of free space, which is the
generally applied assumption for biologi-
cal tissues.

We divide the current into two compo-
nents, passive and primary. We define as
passive those currents that are a result of
the macroscopic electric field in the con-
ducting medium of the volume, j*(r) =
o(r)E(r). All other currents are consid-
ered primary, j*(r). The division of the
current as j/(r) and j”(r) is to emphasize
that neural activity gives rise to macro-
scopic primary currents that then flow
passively throughout the rest of the con-
ducting medium. The forward problem is
to determine the potentials and magnetic
fields that result from these primary cur-
rents. The inverse problem is to locate
these primary currents and hence the
sources of brain activity. Under the as-
sumption described above that the EEG
and MEG are primarily due to dendritic
currents in the pyramidal cells, we would
expect the solution to the inverse problem
to have the primary current confined to the
cerebral cortex.

Substituting our interpretation of j(r)
into Eq. (1) yields:

b = Lo [ @) - W) xd/dar

4n p (2)
where, because of the quasistatic assump-
tions, the electric field can be modeled as
the gradient of a scalar potential, E(r) =
~Vw(r). The typical head model assumes
the conductivity, o(r), is piece-wise con-
stant and isotropic. The gradient of the
conductivity is therefore zero, except at
the surfaces between regions, which al-
lows the volume integrals to be reworked
into surface integrals. We assume our vol-
ume can be divided into M + 1 regions
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2. A subject wearing a whole-head 64-
channel EEG electrode cap next to the
Neuromag-122 MEG planar gradiome-
ter system [4] in preparation for a com-
bined EEG/MEG study.

with conductivities o;, { = 1,....M + 1,
which includes the nonconducting region
outside of the head. These regions are
separated from adjacent regions by a total
of m 2 M surfaces, S;. Through simple
vector identities, we can rewrite the vol-
ume integral in Eq. (2) as [15]:

b(r):bm(r)_:‘—;i(c;—cf)

[Jv(r’)ni(/)x d/d3]dd

N

3

where n;(r) is the “outward” directed unit
vector normal to the ith surface, and the
“4” (“~) superscript indicates the con-
ductivity outside (inside) the ith surface.
The primary field, b (r), is:

i

b.(r="0 [ Fayxdl dar

4m e, 4)
which is the magnetic field observed at r
due to the primary current only. If no
boundaries were present, then be(r)
would represent the magnetic field gener-
ated by a primary source in an infinite ho-
mogeneous medium.,

To compute the magnetic field using
Eq. (3), we must first know the potential
v(r) on all boundaries. Using Green’s
theorem, we can obtain a surface integral
equation for v(r) for r on the jth surface
(see [16] for details):
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(o7 + G;)
=

L&, -
v(r)+H;(0i -0})

jv(f)n,. (¥)-d/ddd res,
5 (5)

where we have assumed all surfaces -are
smooth, and v.(r) is the primary potential,
i.e., the solution for the infinite homoge-
neous medium due to the primary current

F(r):

v_(r)= ij.j"(/)‘d/cfd/
4n 6)
Equation (3) and Eq. (5) therefore
form our general set of equations for solv-
ing the forward problem for scalp poten-
tials (EEG) and external magnetic fields
(MEG). The primary currents enter the
equations as volume integrals in Eq. (4)
and Eq. (6). If we assume that the primary
current exists only at a discrete point, i.e.,
the primary current source is a current di-
pole g located at ry, then beo(r) and veo(r)
can be simplified as:

b=,/ 4m)gx r=r) & (D)

v.(r)=(/4n)g-(r=r)/ & (8)

By superposition, any solution we find for
the point dipole can be used in a summa-
tion over an arbitrary number of dipoles.
We will therefore focus our presentation
on the solution of the forward problem for
asingle dipole with moment ¢ located at ry.

It is generally impossible to find an
analytic solution for the magnetic field
and surface potentials for arbitrarily
shaped conductive regions. In general, the
potentials must first be solved numeri-
cally using Eq. (5) and Eq. (6), solving the
EEG forward problem. The potentials are
then used with Eq. (3) and Eq. (4) to solve
the MEG forward problem. If, however,
we assume that the head is a spherically

3. The human head modeled as a set of
concentric spheres, each with uniform
isotropic conductivity, G;.
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symmetric conductor, we can then find
closed-form solutions for these current di-
pole sources [15-17]. The use of this
model in EEG and MEG applications has
been prevalent in the biomagnetism com-
munity, due to the simplicity of the for-
ward model equations. Figure 3 shows
how this spherically symmetric model can
be applied to the human head.

The MEG sensors are often oriented
normal to the local scalp curvature, and
can thereby be assumed to be sensitive
only to the radial component of the mag-
netic field. In this case, the MEG solution
for the spherical model becomes quite
simple, i.e., the radial component of Eq.
(7) [17].

This formula may be extended to ac-
count for the nonradial magnetic field as
well. A key modeling advantage of the
spherical assumption is that the magnetic
field can be computed without knowing
the conductivity profile, 6. One conse-
quence of the spherical assumption is that
if a dipole is radially oriented (has no tan-
gential components), then the magnetic
field measured outside the head will be
zero. The MEG measurement, in this case,
is sensitive only to the two tangential
components of any dipole moment. (See
Sarvas [17] for a more complete develop-
ment of the solution for the spherical
model).

The forward model calculation for
EEG using a spherical head model is more
complex than that of MEG. The conduc-
tivities must be specified, and thus the
model must include specific assumptions
about the sphere radii. Although a single
sphere model has a closed form represen-
tation, the analytic solution of the multi-
sphere model has an infinite summation
representation. (See Cuffin and Cohen [7]
for a presentation in a four-sphere case).

Although we have discussed simple
solutions for a spherically symmetric
head, the forward model can be calculated
for arbitrary head geometries using
boundary element methods. The review
by Himildinen, et al. [4], provides an
overview of the groundwork and related
references for setting up the system of
equations to be solved. The explicit deter-
mination of the vertices required to define
the scalp, skull, and brain surfaces must be
extracted from anatomical MR or CT im-
ages. The computational requirements for
generating and solving these boundary
element problems have in the past been
difficult to justify in clinical situations.
The recent move toward the integration of
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whole-head sensor systems with other
functional and anatomical modalities, as
well as dramatic increases in CPU speeds,
should result in a trend toward the use of
more complex and realistic head models
in routine analyses.

Regardless of which assumptions are
used to compute the forward model for
MEG or EEG, the data generated by the
Jth single dipole with moment g; may al-
ways be expressed as the inner product of
a vector kernel and the dipole moment, b;
=k;j-gj, where b; is the ith sensor measure-
ment, and k;; is the final forward model re-
sult relating the jth current dipole with the
ith sensor. In the work that follows, we
will assume that the possible locations of
the dipoles have been restricted to the cor-
tex, and that at each cortical location the
orientation of the dipole has been re-
stricted to lie in the direction normal to the
local cortical surface. If we denote this
known orientation as ¢, and the corre-
sponding unknown amplitude as y;, then
our data model may be represented as:

b= (ky : éj)yj =8,V )]
where g;; is the “gain” of the constrained
source at position j to the magnetic field
(MEG) or potential (EEG) at sensor i.
When we consider a set of N dipoles and
M sensors (both EEG and MEG) over L
time samples, the equation becomes B =
GY, where B is the M X L spatio-temporal
data matrix, G is the M XN “gain matrix”
found from the appropriate EEG and
MEG forward model calculations, and Y
is the NXL matrix of unknown cortical
source amplitudes.

The Inverse Problem

The inverse problem is to find the neu-
ral current source distribution given a se-
ries of magnetic field and/or scalp
potential measurements. The solation is
ambiguous, since an infinite number of
current fields within the brain can produce
identical scalp potential and external
magnetic field distributions. The problem
is exacerbated by the limited number of
sensor measurements available. To find a
physiologically meaningful solution, we
can constrain the primary sources to the
cerebral cortex by tessellating the brain
surface extracted from an MR scan of the
subject. A point dipole, with orientation
normal to the surface, as described above,
can then be used to approximate the cur-
rent distribution over each of the surface
patches. Thus, the MEG/EEG imaging
problem can be reduced to that of finding
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the primary current sources distributed
over the cortical surface.

Using the linear model described
above, we can modify the forward prob-
lem to account for noise:

B=GY+N (10)

where G is a kernel matrix determined
from the forward model. The M X L matrix
N represents noise inherent in the syster,
as was discussed in the section on instru-
mentation. Below, we use y(#) to denote
the dipole amplitudes attime £, i.e., the £'th
column of Y.

In order to adequately represent sulci
in the image, the number of triangles used
in our tessellation must be very large, gen-
erally far more than the number of sensors
(¥»M). The inverse problem is therefore
highly under-determined. Minimum
norm methods [13-17] overcome this
problem by finding a solution that
matches the data at time sample ¢ while
minimizing a weighted /-norm of the so-
lution vector: '

Y (O = myinyTC;ly

subject to [[b() —Gy”2 =0 (11)

which results in the closed-form solution:
Yo () =C,G (GC,GM)'b(H) (12)

where Cy is a positive definite weighting
matrix. These weighted minimum norm
approaches can result in very blurred re-
constructions, which tend to be superfi-
cial, and the problem can be unstable due
to poor conditioning of the system matrix.
The superficiality can be compensated
for, to some extent, by selecting different
weighting matrices. The problem may be
stabilized through Tikhonov regulariza-
tion [18], but the solutions remain blurred
[19]. These minimum norm methods also
do not take into account temporal infor-
mation, treating each time sample indi-
vidually. In the following section, we
adopt a Bayesian approach to imaging,
which introduces temporal correlation
into the solations while avoiding the blur-

ring exhibited by the minimum methods.

Bayesian Imaging

We may reformulate the problem by
treating the source image, Y, as a random
field. We may then represent the prior
knowledge we have regarding the nature
of neural sources in the form of a prior
probability, p(Y). We combine this with a
probabilistic description of the data
p(BIY), conditioned on the image Y, and
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use Bayes theorem to find the posterior
distribution:

vigy = 2BY)pY)
PYIB) p(B) (13)

The image Y that maximizes this pos-
terior probability, called the maximum a
posteriori (MAP) estimate, can be used as
our estimate of the neural sources.

Studies using fMRI and PET reveal
the highly sparse and localized nature of
activation in the cerebral cortex. We
wish to develop a prior density on Y that
reflects this behavior. In a prior publica-
tion [19], we developed this posterior
density for a single time slice, and we
present it here for a time series of data.
To better represent the sparse focal na-
ture of neural activity into our prior, we
use a binary indicator process, X, to

model whether each source dipole is on’

(xi = 1) or off (x; =0). Those sites that
are active are assumed to have a tempo-
rally white Gaussian amplitude, zit),
where tis the time sample (t = 1...L). We
can write the (VXL source image ma-
trix Y as:

Y=XZ (14)

where X = diag(x) is a diagonal matrix.
Assuming independence of the indicator
and amplitude processes, we can write the
posterior probability for x and Z, given
the MEG data matrix B as:

px.7(B) = PBXDPEOPE)
° oB )

The joint probability p(x) is chosen
to reflect the expectation that sources
are sparse and focal. To achieve this
goal, we use a Markov random field
(MRF) model, for which sparse focal
sources have a higher probability of oc-
curring than more distributed sources.
We define the prior to be a Gibbs distri-

4. Sample triangular neighborhood. The pixel of interest (black) is surrounded by its

bution, p(x)= 1exp{~¥ (x)}, with energy
function:
Vix)=

14
LZ Ofvzfi +Bi[2(xi“xj)2:|

Sparseness je g,
Term
Clustering Term

16)

where L is the number of time samples,
and o; > 0 and B; > 0 determine the rela-
tive weights of the sparseness and cluster-
ing terms, Q determines the severity of the
clustering, and the neighborhood &; is de-
fined as the pixel’s nine nearest neigh-
bors. Note that if Q # 1, the terms raised
to the Qth power become coupled, and the
neighborhood effectively dilates pixel i’s
neighborhood to include the 30 nearest
peighbors. Figure 4 shows the pixel
neighborhood.

The o; and B; terms allow us to incor-
porate into our density knowledge we
may have from other functional imaging
modalities, such as fMRI or PET. This al-
lows us to change the clustering proper-
ties or favor sources in certain areas of the
cortex. For our purposes here, however,
we assume 1o specific prior information
regarding source locations, and set o; = ot
and B; = B for all i = 1...N. Three images
obtained by sampling from p(x) for vari-
ous values of avand f3 are showninFig. 5.

We assume that if a pixel is on, then its
amplitude is temporally independent
Gaussian with spatial covariance matrix
Cz

1 1 Tt
)= ra eXp{—E Tr{Z C, Z}}

z

a7

where K is a normalization constant and
Tr{} is the trace of the matrix. We assume
that the noise is also temporally independ-

9 nearest pixels (white). The overall neighborhood is a dilation of these 9 nearest
pixels, comprised of the 30 nearest neighbors (white and shaded).
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5. Three images obtained by sampling
from p(x). White triangles signify an on
pixel. For each, o. = 0.20. (a) B = 0.17,0 =
1()B=0.050=2(c)p =0.012,0 = 3.

ent Gaussian with spatial covariance ma-
trix Cp. We may express the likelihood
function as:

pBIx,Z)=
R exp{—%Tr{[B -6xz| ¢;'[B- ze]}}

K

(18)

The posterior density is defined by the
likelihood function given in Eq. (18) and
the priors on x and on Z given in Eq. (16)
and Eq. (17). The posterior density is a
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Gibbs distribution with posterior energy
function:

U(x,Z|B)=
1 - T
ETr{[B—GXZ] C;'[B-GXZ]+Z CZ'Z}
+V(x)

19)

This posterior gives a complete prob-
abilistic description of x and Z, from
which we can, in principle, compute mo-
ments such as the posterior mean and vari-
ance. In this article we consider only
computation of the posterior mode or
MAP (maximum a posteriori) solution.

The MAP Solution Using
Mean Field Annealing

We have described a mean field an-
nealing approach (MFA) for maximizing
this posterior density in a prior publica-
tion [19], and present a brief summary
here. Minimizing an energy function of
discrete and continuous variables is a dif-
ficult task. Since the function is quadratic
in Z, however, we can derive a closed-
form expression for the optimal Z*(x)
given any particular indicator process.
Setting the derivative of Eq. (19), with re-
spect to Z, to zero and solving yields:

Z (x)=C,XG"(GXC,XG"+C,)'B
(20)

Substituting Z"(x) into U(x,ZIB) re-
sults in:
Ux|B)= U(x,Z|B
xB)=UCZBY,
which is a Gibbs energy function for the
density p(x/B), a function of x only. We

have now transformed the problem to a
minimization of a function of a binary ran-
dom process only. Numerous methods ex-
ist to find the minimum of this type of
function. We choose a method based on
MFA, which forms a temperature-
dependent posterior density and approxi-
mates the mean field of this density atever
decreasing temperatures, until the algo-
rithm converges to a local minimum as T
- 0.

Coordinate-wise descent using iter-
ated conditional modes (ICMs) moves
quickly to a poor local minimum. MFA
[20], on the other hand, uses a computa-
tion of the mean, and forces this mean to
become binary as we lower a temperature
parameter, T, to zero. This allows us to
move within the {0,1 }N hypercube to ar-
rive perhaps at a better local minimum.
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We effectively create a new temperature
dependent posterior density:

£y (x|B) =~ exp{-U (x/B) / T}
KT

If the mean field can be found at any
temperature, 7, then this mean will ap-
proach the energy function minimum as 7
— 0, i.e., the MAP solution [19].

We compute the mean field using
mean field approximation [21] with the
following update strategy:

X"V = E e lx” =i} (23)
where n is the iteration number. In this, we
cycle through all the pixels in the image,
finding the expected value of each pixel
given that all other pixels in the image are
equal to their mean values. Since we do
not know these other mean values, we be-
gin with an arbitrary initialization and cy-
cle through the image many times, until
the algorithm converges to an approxima-
tion of the true mean field.

Simulations

We have conducted simulations based
on a 3-D source model. We used the array
configuration of the Neuromag-122 sys-
tem (Neuromed Ltd., Helsinki, Finland
[4]) for MEG and simulated 133 EEG sen-
sors equally spaced about the upper hemi-
sphere of a spherically symmetric head at
aradius of 9.5 cm. An image of the brain
surface beneath the representation of the
Neuromag sensors and the associated
EEG sensors is shown in Fig. 6.

To form the reconstruction region we
first extracted the brain surface from the
MR image of a subject using morphologi-
cal techniques [22]. We then used an im-
plicit surface polygonizer to tessellate the
surface [23]. To adequately represent

6. Computer rendering of the brain sur-
face extracted from an MR image shown
under the 61 Neuromag-122 dual-planar
gradiometers (green squares) and the
133 EEG sensor locations (black
spheres).
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7. Volume rendering of the brain used in
the simulations. The brain is shown with
only the upper half of the skull removed.
The brain is shown in bronze, the patch
is white in color, and all areas of activity
are shown in red. Three clusters of ac-
tivity are located inside the white patch.

sulci in the image, we had to use a very
fine tessellation density. Tessellation of

the entire brain using this algorithm, -

therefore, resulted in a surface composed
of over 23,000 triangles. To make the
problem more manageable, we extracted a
patch composed of a subset of 2,000 of
these triangles for our simulations. Figure
7 shows a volume rendering of the brain
surface and the patch we extracted from it.
We constrained all sources to be normal to
the local cortical surface.

The two characteristics of primary sig-
nificance in choosing the parameters of
the prior p(x) for our simulation are the
average number of active regions (clus-
ters) and their average size. By qualitative
inspection of images on our reconstruc-
tion region sampled from this prior, we
determined that Q = 2.5 gives acceptable
control over the average number of clus-
ters and cluster size by adjusting only the
parameters o and . We then used Markov
chain Monte Carlo methods [24] to com-
pute the average number of clusters and
cluster size as a function of the parameters
o and 3. We assumed 2-3 clusters on aver-
age, with an area of 0.3 cm? for each clus-
ter. We found that appropriate parameter
values for the surface patch used in our
simulation were o = 0.210 and [3 = 0.070.
We assumed Z was temporally and spa-
tially white Gaussian noise with variance
67=100 nAm i = 1..N. This value was
chosen to reflect typical activity seen in an
evoked response study. We set Cy to v-1,
where v is the added noise variance that
we assume known.
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8. A sample source image used in the MEG/EEG simulations. Three clusters are
present, shown in red. The 10-point time-series for each cluster is plotted next to

each cluster.

MAP Solutions:

MEG Only, SNG 20dB: %R.E.=0.895

MEG Only, SNR 8 dB: %R.E.=14.412

EEG Only, SNR 20 dB: %R.E.=0.945 MEG/EEG, SNR 20dB: %R.E.=0.977

EEG Only, SNR 8 dB: %R.E.=14.219

True Solution:

MEG Only, SNR 20 dB: %R.E.=0.916
EEG Only, SNR 20 dB: %R.E.=0.932
MEG/EEG, SNR 20 dB: %R.E.=1.000
MEG Only, SNR 8 dB: %R.E.=13.069
EEG Only, SNR 8 dB: %R.E.=13.957
MEG/EEG, SNR 8 dB: %R.E.=13.857

MEG/EEG, SNR 8 dB: %R.E.=14.363

9. Sample 3-D simulation, white Gaussian noise added: 122 MEG gradiometer meas-
urements, 133 EEG measurements, and 2,000 point reconstruction region.

For the simulation, we chose a time se-
ries for Z assuming that all sources have
the same time series across a cluster and
that they are formed by the “Hermite-
type” wave functions of Geva, et al. [25].
An image of a random sampling on x with
a 10-point time-series using the Hermite
waveforms is shown in Fig. 8.

The results of a representative simula-
tion are shown in Fig. 9. White Gaussian
noise was added to the data to achieve a
desired SNR, defined as the average sig-
nal power at each sensor divided by the
noise variance at the sensor. The percent
residual error (%R.E.) shown is defined
as:
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Tr{GY -B)' GY-B)} ],

100 -
Tr{B'B}

(24)

We have found that combining MEG
and EEG results in a superior perform-
ance when compared to using the modali-
ties individually. Note that this is a
simulation, and all noise was considered
white Gaussian. Inreality, noise variances
for MEG and EEG may be very different,
so combining the two modalities should
be performed with caution in regard to
noise issues and the formation of C,,.

In the 8dB case, all solutions clearly
misplaced one or more of the clusters.
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This shows that at lower SNRs, it is im-
possible to resolve between the true con-
figuration and the Bayesian
reconstruction, since both exhibit the
sparse clustered property of our prior.

Conclusions

We have developed a Bayesian frame-
work for image estimation from com-
bined MEG/EEG data. Our results
indicate that performance of our imaging
approach is superior to that of weighted
minimum norm when the image is sparse
and focal. Note however that if the image
is not sparse, our method would perform
poorly since our prior is specifically de-
signed to give sparse focal sources. This
observation serves to emphasize the fact
that the use of prior information is crucial
in extracting useful spatial information
from the data.

We have also found that combining
MEG and EEG gives superior results
when compared to using the modalities
individually. This improvement is due not
only to increasing the number of measure-
ments, but also because of the compli-
mentary nature of MEG/EEG [7, 8]. Even
when working with the two modalities in
combination, significant limitations to
electromagnetic imaging exist. Regard-
less of the number and placement of sen-
sors, reconstructions are generally only
reliable if relatively few source clusters
exist. If a large number of distributed
sources exist, no imaging technique can
hope to reconstruct them accurately
strictly from the MEG/EEG data given.
Such complex distributions will generally
be matched as well or better by simpler so-
lutions. Thus, if used on their own, we ex-
pect MEG/EEG data to be most useful
when the number of activated sites is
small. Alternatively, when used in combi-
nation with fMRI or PET, it may be possi-
ble to produce dynamic images of more
complex processes.
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Drug Pump on a Chip

Driven partly by managed health-
care’s desire to keep people out of hospi-
tals and by the needs of diabetics and other
patients on regular intravenous medica-
tion, biomedical engineers have built a
prototype drug pump the size of a contact
lens—a miniature closed-loop implant
that could monitor its own flow rate to en-
sure a steady stream of medicine.

The pump is still considered large as
far as microelectromechanical systems
are concerned, in which sensors, actua-
tors, and electronics are merged onto a
single silicon wafer. The next step will be
to shrink the device so it can be mass pro-
duced like a computer chip. It is hoped
that this device may be adapted as a
closed-loop system for monitoring blood
glucose levels and pumping just the right
amount of insulin into the blood stream.

The prototype consists of a rectangular
silicon chamber with one of the outer walls
made of two thin layers a titanium-nickel al-
loy sandwiched around a layer of silicon.
The alloy forcefully changes shape when
heated to around 60 degrees Celsius (140 F).

To operate the pump, rhythmic pulses
of mild electrical current are passed di-
rectly through the alloy, setting up a cycle
of heating and cooling that causes the
metal to flex. This forces the chamber to
expand and contract. The expansion pulls
the fluid into the chamber through an in-
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take valve, and the contraction expels the
fluid through an exhaust valve.

The flow sensor is made up of a heater
that raises the temperature of the fluid at
one point in the flow stream. Two heat
sensors downstream detect this hot spot as
it passes by. From this measurement the
flow rate can be calculated. The device
has been bench-tested successfully and is
being scaled down for mass production.

About 20 million miniature blood pres-
sure sensors are now being used each year,
but there are still are no closed-loop sys-
tems on the market that can regulate them-
selves without a doctor’s intervention.

Bioengineer Selected for
Entrepreneur-in-Residence Program

at WPI

Robert J. Harvey will be Worcester Poly-
technic Institute’s Entreprenecur-In-
Residence during the 1997 fall term. During
his residence this successful bioengineer will
present public seminars on new directions in
biomedical engineering, offer a course that
will feature case studies of his start-up enter-
prises, and serve as distinguished professor
in biomedical engineering.

Harvey co-founded Thoratec Labora-
tories Corp., Berkeley, Calif., in 1976
with J. Donald Hill, M.D., chief of cardio-
vascular surgery at California Pacific
Medical Center in San Francisco. Harvey
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recently retired as chair, CEO, and presi-
dent of the company, which is-a pioneer in
circulatory support for failing hearts, arte-
rial grafts for repairing diseased blood
vessels, and the licensing of blood con-
tacting biomaterials.

Harvey earned his undergraduate degree
at the United States Military Academy,
West Point; his master’s in physics at
Drexel University, Philadelphia; and his
doctorate in biomedical engineering at
WPL For several years preceding his doc-
torate he was employed at the Thermo Elec-
tron Corp., long identified with its
entrepreneurial founder, George Hatsopou-
los, where Harvey played arole in diversify-
ing the company in the biomedical field
with the first fully integrated artificial heart.

Following his doctorate and before es-
tablishing Thoratec, Harvey founded Mir-
lin Corp., in Hudson, Mass., in order to
pursue the commercial potential of a
unique protein sweetener for diabetics.
Harvey has served as chair of WPI’s bio-
medical advisory committee since its.es-
tablishment in 1986.

WPI’s Entrepreneurs Collaborative
was created in 1993 and has developed an
introductory course, a minor, the
Entrepreneur-in-Residence program, and
many projects involving WPI under-
graduates with entrepreneurs in their re-
spective business settings.
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