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Recursive MUSIC: A Framework for
EEG and MEG Source Localization
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Abstract—The multiple signal classification (MUSIC) algorithm
can be used to locate multiple asynchronous dipolar sources
from electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) data. The algorithm scans a single-dipole model
through a three-dimensional (3-D) head volume and computes
projections onto an estimated signal subspace. To locate the
sources, the user must search the head volume for multiple local
peaks in the projection metric. This task is time consuming
and subjective. Here, we describe an extension of this approach
which we refer to as recursive MUSIC (R-MUSIC). This new
procedure automatically extracts the locations of the sources
through a recursive use of subspace projections. The new method
is also able to locate synchronous sources through the use of
a spatio-temporal independent topographies (IT) model. This
model defines a source as one or more nonrotating dipoles with a
single time course. Within this framework, we are able to locate
fixed, rotating, and synchronous dipoles. The recursive subspace
projection procedure that we introduce here uses the metric of
canonical or subspace correlations as a multidimensional form of
correlation analysis between the model subspace and the data
subspace. By recursively computing subspace correlations, we
build up a model for the sources which account for a given set
of data. We demonstrate here how R-MUSIC can easily extract
multiple asynchronous dipolar sources that are difficult to find
using the original MUSIC scan. We then demonstrate R-MUSIC
applied to the more general IT model and show results for
combinations of fixed, rotating, and synchronous dipoles.

Index Terms—Dipole modeling, electroencephalography, mag-
netoencephalography, signal subspace methods, source localiza-
tion.

I. INTRODUCTION

T HE PROBLEM of localizing the sources of event related
scalp potentials [the electroencephalogram (EEG)] and

magnetic fields [the magnetoencephalogram (MEG)] can be
formulated in terms of finding a least-squares fit of a set of
current dipoles to the observed data. Early attempts at source
localization were based on fitting the multiple-dipole model to
a single time sample of the measurements across the E/MEG
(EEG and/or MEG) array [5], [21], [31]. By noting that
physiological models for the current sources typically assume
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that they are spatially fixed for the duration of a particular
response, researchers were able to justify fitting the multiple-
dipole model to a complete spatio-temporal data set [2], [3],
[17], [18]. The spatio-temporal model can result in substantial
improvements in localization accuracy; however, processing
the entire data set leads to a large increase in the number
of unknown parameters, since the time series for each source
must now be estimated in addition to the dipole location and
orientation. Since these time series parameters are linear with
respect to the data, they can be optimally factored out [7], [12]
and the source locations found without explicit computation
of their associated time series.

While factoring out the linear parameters can reduce the
dimensionality of the search required to localize the sources of
the measured fields, a fundamental problem remains: the least-
squares cost function is highly nonconvex with respect to the
locations of the dipoles. Consequently, inverse methods such
as gradient-based optimization or nonlinear simplex searches
often become trapped in local minima, yielding significant
localization errors (cf. [9]). In an attempt to overcome this
problem, we have examined the use of signal subspace meth-
ods that are common in the array signal processing literature
[10]. The method that we used in [12], which was originally
referred to as the MUltiple SIgnal Classification (MUSIC)
algorithm in [19], replaces the multiple-dipole directed search
with a procedure in which a single dipole is scanned through
a grid confined to a three-dimensional (3-D) head or source
volume. At each point on this grid, the forward model for a
dipole at this location is projected against a signal subspace
that has been computed from the E/MEG data. The locations
on this grid where the source model gives the best projections
onto the signal subspace correspond to the dipole locations.
We also show in [12] that we do not need to test all possible
dipole orientations at each location; instead, we can solve a
generalized eigenvalue problem whose solution gives us the
best-fitting orientation of the dipole.

One of the major problems with the MUSIC method, and
one that is addressed by the new approach described here, is
how to choose the locations which give the best projection on
to the signal subspace. In the absence of noise and with perfect
head and sensor models, the forward model for a source at the
correct location will project entirely into the signal subspace.
In practice, of course, there are errors in the estimate of the
signal subspace due to noise, and there are errors in the forward
model due to approximations in our models of the head and
data acquisition system. An additional problem is that we often
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compute the metric only at a finite set of grid points. The effect
of these practical limitations is that the user is faced with the
problem of searching the gridded source volume for “peaks”
and deciding which of these peaks correspond to true locations.
It is important to note that a local peak in this metric does not
necessarily indicate the location of a source. Only when the
forward model projects entirely into the signal subspace—or
as close as one would expect given errors due to noise and
model mismatch—can we infer that a source is at that location.
The effect of this limitation is that some degree of subjective
interpretation of the MUSIC “scan” is required to decide on
the locations of the sources. This subjective interpretation is
clearly undesirable and can also lead to the temptation to
incorrectly view the MUSIC scan as an image whose intensity
is proportional to the probability of a source being present at
each location.

Two other problems that arise with the use of MUSIC are
based on the assumptions that the data are produced by a
set of asynchronous dipolar sources and that the data are
corrupted by additive spatially white noise. Often both of
these assumptions are incorrect in clinical or experimental
data. If two dipoles have synchronous activation, then the
two-dimensional (2-D) signal subspace that would have been
produced if they were asynchronous collapses into a one-
dimensional (1-D) subspace. Scanning of a single dipole
against this subspace using MUSIC will fail to localize either
of the sources. The new MUSIC algorithm described here
is able to localize synchronous sources through the use of a
modified source representation, which we refer to as the spatio-
temporal independent topographies(IT) model. This model
is described in detail in Section II. The second problem, the
issue of nonwhite noise, is not addressed in depth here. We
note, however, that it is straightforward to modify both the
original and R-MUSIC algorithms to cope with colored noise
through standard prewhitening procedures [23]. In practice,
the prewhitening could be achieved by using prestimulus data
to estimate the covariance of the background noise; see [20]
and [22] as recent examples of processing E/MEG data with
colored noise.

We begin the paper in Section II with a combined formu-
lation of the E/MEG forward problem in which we develop
a standard matrix notation for the relationship between the
source and data. We then describe the spatio-temporal IT
model in which, rather than treating individual current dipoles
as sources, we define a source as one or more nonrotating
dipoles with a single time course. In this way our model is
constrained to consist of a number of sources equal to the
rank of the signal subspace. In Section III, we review the
definition and properties of the signal subspace and relate these
subspaces to cost functions commonly used for estimating the
parameters of the model. We describe the use of canonical or
“subspace” correlations as a general metric for computing the
goodness of fit of putative sources to the signal subspace. We
then review the MUSIC algorithm in the light of the preceding
development. The new R-MUSIC algorithm is developed in
Section IV. We present some examples of the application of
R-MUSIC to fixed, rotating and synchronous dipolar sources
in Section V.

II. SPATIO-TEMPORAL INDEPENDENT TOPOGRAPHIES

A. Background

Quasistatic approximations of Maxwell’s equations govern
the relationship between neural current sources and the E/MEG
data that they produce. For the signal subspace methods for
source localization that are described here, these relationships
must be expressed in matrix form. In [15], we reviewed
matrix forms of the “lead field” [4], [27] for EEG and MEG
measurements, for both spherical and general head models.
In each case, the measurements can be expressed as an ex-
plicit function of primary currentactivity; thepassive volume
currentsdue to the macroscopic electric fields are implicitly
embedded in the lead field formula. The lead field should
also account for the sensor characteristics of the measurement
modality, such as gradiometer orientation and configuration
in MEG or differential pairs in EEG. The result is that our
EEG or MEG measurement at sensor location may be
expressed as

(1)

where is the volume of sources, represents theprimary
current densityat any point in the volume, and
is the lead field vector [4], [27] relating the sensor point to
the primary current point. The scalar function represents
either the voltage potential or the magnetic field component
that would be observed at sensor location.

If we assume that the primary current exists only at a
discrete point , i.e., the primary current is ,
where is the Dirac delta functional, then (1)
simplifies in E/MEG to

(2)

where is the moment of a current dipolelocated at . We
assume in this paper that our source consists ofcurrent dipole
sources. We assume simultaneous recordings atsensors for

time instances. We can express theby spatio-temporal
data matrix as

(3)

or

(4)

We refer to as the dipole “gain matrix” [12] that
maps a dipole at into a set of measurements. The three
columns of the gain matrix represent the possibleforward
fields that may be generated by the three orthogonal orienta-
tions of the th dipole at the sensor locations .
Each row of the full gain matrix repre-
sents thelead field sampled at the discrete dipole locations
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. The matrix is our spatio-temporal model
matrix of perfect measured data, i.e., the magnetic field com-
ponent or scalp potential data we would observe in the absence
of noise.

The columns of represent the time series associated with
each of the three orthogonal components of each dipole, i.e.,
with each column of the gain matrix. For the “fixed”-dipole
model, whose moment orientation is time invariant, we can
separate the orientation of each source from the moments
as [12]

(5)

such that , where is a unit norm
orientation vector. The scalar time series are thelinear
parameters of theth source of our model, for time indexes

. The corresponding dipole locations are the
nonlinear parameters, and the dipole orientations are the
quasilinear parameters.

In [12], we also considered a “rotating” dipole as one
whose time series could not be decomposed into a single
fixed orientation and time series and, therefore, comprised
multiple “elemental” dipoles. Physically, a rotating dipole may
be viewed as two nearly collocated dipoles with independent
time series, such that they are indistinguishable from a model
comprising a single dipole whose orientation is allowed to
vary with time. The “hybrid” models in [12] comprised both
fixed and rotating dipoles.

B. Independent Topographies

A common observation in MUSIC processing is that the
rank of the signal subspace should equal the number of
“sources.” As defined in [12], we allowed a source to be a
single dipole with one (“fixed”) or more (“rotating”) indepen-
dent time courses. For example, the data model defined by
(5) assumes a collection of “fixed” dipoles. The MUSIC
method applied to this model requires that all dipoles have
linearly independent time courses. Stated conversely, each
linearly independent time course is associated with a single
dipole.

Our goal in this section is build up a new source model for
the data as the sum of contributions from a fixed number of
spatio-temporalindependent topographies. Each of these IT’s
is considered to be a source comprising one or more fixed
dipoles which collectively have a single time course. Thus, in
contrast to our models in [12], each linearly independent time
course is now associated with oneor moredipoles. By building
up the model in this way, the rank of the signal subspace
is, by definition, always equal to the number of sources.
This representation then provides a convenient framework for
describing and implementing our new variant of the MUSIC
algorithm.

We cluster the dipoles into subsets and restate (4) as
where represents sets of

dipoles. The th set of dipoles comprises dipoles with the
location parameter set . The moments of
the th set are clustered such that, by design, theymustresult in
a rank-one time series matrix. A singular value decomposition
(SVD) of these moments yields

(6)

where and are, respectively, the left and right singular
vectors of unit norm, and is the only nonzero singular value
of the decomposition of . The result is that theth set of
dipoles may be represented by the rank one spatio-temporal
matrix

(7)
where the time series follows from the decomposition in (6)
as .

The sets of dipoles are then collected such that (4) is now
restated as

(8)

(9)

where the set contains the corresponding
unit norm vectors. Our final requirement in this IT framework
is that must be of rank and, therefore, by necessity,
both and are of full column rank . We refer to
each column vector of as a “ -dipolar IT,” with a
corresponding time series found as theth column of .

IT and previous spatio-temporal source models [12], [18]
differ as follows. If written as (4), we can state that the model
comprises dipolar sources and corresponding time series.
This model has led to the complexity of representing “fixed”
and “rotating” or “regional” dipoles. The rank of this spatio-
temporal dipolar model can vary from unity (all dipoles fixed
and synchronous) to 3(fully rotating dipoles in an EEG
model). The number of “sources” depended on the viewpoint
of the researcher, since some viewed the rotating dipole as a
single “regional” source or as multiple “elemental” sources.
When written as (9), we have altered the spatio-temporal
model by stating that the number of sourcesmust equal the
rank of the spatio-temporal model, where a single source may
now comprise one or more dipoles. Each source generates a
“topography” across the array of sensors that is spatially and
temporally independent of any other source or topography.

We will conclude this section with some examples that show
the relationships between IT models and common multiple-
dipole models. The case of three fixed dipoles, with asyn-
chronous time series, is represented by the rank-three spatio-
temporal matrix as

(10)
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where is the set of dipole locations
and is the set of dipole orientations as
shown in (5). Our IT model comprises three “single-dipolar
topographies.” Now consider the case where two of these
dipoles are synchronous, but the third remains asynchronous
from the others. The rank of the model is two, and our IT
model must be adjusted to account for two sources

(11)

where now is the set of source locations, and the
second source comprises two dipoles, . The set
of source orientations is , and we may continue
to view as the orientation of the dipole in the single-dipole
topography. The orientation , however, is a generalized form
of source orientation and is in this instance a six-dimensional
(6-D) vector, as discussed in the Appendix. The first three
elements of this vector relate to the orientation of dipole
and the second set of three elements relate to. The norm
of the first three elements gives the strength of dipole
relative to , with the restriction that the combined vector of
all elements in is of unit norm. This IT model comprises one
“single-dipolar” topography and one “2-dipolar” topography.

If all three dipoles are synchronous, then our IT model
comprises a single “3-dipolar” topography. Similarly, we
consider the limiting case of a single time slice and a general

-dipole model; this spatio-temporal model is always rank one,
and our IT model is, therefore, a single-dipolar topography.

“Rotating” or “regional” dipoles are a simple extension
of the IT framework. In the case of the MEG spherical
head model, a single “rotating” dipole becomes two fixed-
orientation dipoles corresponding to two “single-dipolar” to-
pographies

(12)

with . In other words, two fixed dipoles
share the same location, just different orientations and time
courses, which is the original intent of a “rotating” model.
For other head models, the dipole may possibly rotate in
three dimensions, . Note that the

(or ) IT gain matrix
(or ) properly remains of
full column rank.

III. SIGNAL SUBSPACE METHODS

A. Signal Subspaces

We will now investigate the relationship between the IT
model and the signal subspace that we estimate from the
spatio-temporal data. Assume that a random error matrix
comprising time slices is added
to the data , to produce an “noisy”
spatio-temporal data set

(13)

For convenience, we will drop the explicit dependence ofon
its parameters. The goal of the inverse problem is to estimate
the parameters, , given the data set . We will use

the common assumption that the noise is zero-mean and white,
i.e., , where denotes the expected
value of the argument, and is the identity matrix. The case
for colored noise is readily treated with standard prewhitening
methods [23], provided a reasonable estimate of the noise
covariance is available. For event related studies, the noise
covariance can probably be estimated using sufficiently long
periods of prestimulus data.

Under the zero-mean white noise assumption, we may
represent the expected value of the matrix outer product

as

(14)

(15)

Here, we have assumed that our model parameters and the
dipolar time series are deterministic. From our IT model, we
know that is rank and may be decomposed as

, where contain the eigenvectors such that
span span , and is the corresponding diagonal
matrix of nonzero eigenvalues.

We can decompose the correlation matrix as

(16)

(17)

where is the diagonal matrix combining
both the model and noise eigenvalues, and is the

diagonal matrix of noise-only eigenvalues.
The eigenvectors that are not in are contained in

. In the subspace discussions below, we refer to span
as thesignal subspaceand span as theorthogonal signal
subspace, or noise-only subspace.

In practice, we acquire samples of the data to form the
spatio-temporal data matrix and eigendecompose the outer
product of this matrix as

(18)

where we designate the first left singular vectors of the
decomposition as , i.e., our estimate of a set of vectors
which span the signal subspace; similarly we designate
from the remaining eigenvectors. The diagonal matrixcon-
tains the first eigenvalues and the remaining eigenvalues.
Alternatively, we may decompose this data matrix using an
SVD as and partition similarly, where we note
that .

B. Parameter Estimation

In least-squares fitting,we estimate the source parameters
as the arguments which minimize the cost function,

(19)

i.e., we minimize the squared Frobenius norm of the error ma-
trix. As we reviewed in [12], well-known optimal substitution
[7] of the linear terms yields the modified cost function

(20)
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where is the Moore–Penrose pseudoinverse of[8]. Once
the minimizing set of parameters has been found, the
linear parameters are simply found as .

The product of and its pseudoinverse is an orthogonal
projection operator , which may equivalently be
represented by the outer product , where
is the matrix whose columns are the left singular vectors of

that correspond to its nonzero singular values. Substituting
this definition yields

(21)

into which we substitute the SVD of the data matrix and
readily restate as a maximization

(22)

Using the Frobenius norm-preserving properties of orthogonal
matrices, we can restate (22) as

(23)

Finally, substituting in our signal and noise subspace repre-
sentations of yields

(24)

From (24), we may observe the following. Since the singular
values of are ordered in decreasing value, maximization
of this least-squares cost function favors fitting the first term
containing rather than the second term containing. Sim-
ilarly, as we acquire more data, our estimate of improves
and, consequently, so does and . By construction, the
true values project as and . These
observations lead to an alternative maximization criterion
function that focuses on just the first term

(25)

i.e., a “modified” least-squares criterion [10], [24], [28]. Effec-
tively, in (25) represents a weighted sum of the projections
of the estimated signal subspace eigenvectors.Signal subspace
fitting (SSF) [28] is (25) with the weighting matrix set to the
identity matrix

(26)

In these cost functions, we note the common inner product
. We can decompose this product with an SVD to yield

(27)

where and are each orthogonal matrices. We
designate the ordered singular values in the diagonal matrix

as . Substituting (27) into (26) yields

(28)

to yield simply an unweighted sum

(29)

The decomposition shown in (27) yields thesubspace
correlationsbetween the subspaces spanned byand [8].
In the Appendix, we summarize the steps for calculating these
subspace correlations to yield a function we designate as

subcorr (30)

which returns the ordered set of subspace correlations
, , between the two

subspaces spanned byand , where is the minimum of
the ranks of and . We use the notation subcorr
to denote the th correlation .

Summarizing, we have shown a sequence of steps which re-
late least-squares to modified least-squares to signal subspace
fitting. Each of these cost functions represents a somewhat dif-
ferent approach to estimating the unknown parameters
in our spatio-temporal model. By substituting (27) into each
cost function, each estimation technique can be viewed as
a different method of weighting and summing the subspace
correlations between the model matrix and the signal
subspace estimate. More formal derivation and analysis of
these various cost functions in relation to the general array
signal processing problem may be found in [24], [25], and
[28]–[30]. We will now use the novel framework of subspace
correlations to redevelop the MUSIC algorithm and introduce
our new variant, R-MUSIC.

C. MUSIC

The least-squares and SSF methods reviewed above require
nonlinear multidimensional searches to find the unknown
parameters . MUSIC was introduced by Schmidt [19]
as a means to reduce the complexity of this nonlinear search.
Here we review MUSIC in terms of the subspace correlations,
which in turn leads to our proposed R-MUSIC approach.

Given that the rank of is and the rank of
is at least , the smallest subspace correlation value,
subcorr , represents the minimum subspace cor-
relation (maximum principal angle) between principal vectors
in the column space of and the signal subspace .
The subspace correlation of any individual column
with the signal subspace must therefore equal or exceed this
minimum subspace correlation

subcorr (31)

As the quality of our signal subspace estimate improves
(either by improved signal to noise ratios (SNR’s) or longer
data acquisition), then will approach and the minimum
correlation approaches unity when the correct parameter set

is identified, such that the distinct sets of param-
eters have subspace correlations approaching unity.
Thus, a search strategy for identifying the parameter set

is to identify peaks of
the metric

subcorr (32)

where the squared subcorr operation is readily equated with
the right hand side, since the first argument is a vector and
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the second argument is already a matrix with orthonormal
columns. We recognize this as the MUSIC metric [19], with
the minor difference of using the signal subspace projector

rather than the more commonly used noise-only sub-
space projector . If our estimate of the signal subspace
is perfect, then we will find global maxima equal to
unity.

D. Quasilinear Solution

Before proceeding to a description of MUSIC, we first
address the problem of finding the orientation vector.
The dipole parameters in the set are chosen to
maximize subcorr , implying that we must
search over all possible combinations of location and orienta-
tion. The parameter vector , however, represents a linear
combination of the columns of the gain matrix, such that

[see (7) and preceding discussion].
As described in the Appendix, the first subspace correlation
value subcorr implicitly gives us the best way of
combining the columns of . We, therefore, first find the
dipole parameters which maximize subcorr .
As described in the Appendix, we then readily extract the
corresponding quasilinear which maximize this subspace
correlation. This avoids explicitly searching for these quasi-
linear parameters, reducing the overall complexity of the
nonlinear search.

E. Classical MUSIC

In [12], we adapted a “diversely polarized” form of
Schmidt’s original MUSIC algorithm [6], [19] to the problem
of multiple point dipoles. We briefly review and update
that presentation here to include our discussion of subspace
correlations. The steps are as follows.

1) Obtain a spatio-temporal data matrix, comprising in-
formation from sensors and time slices. Decompose

or and select the rank of the signal subspace
to obtain . Overspecifying the true rank by a couple
of dimensions usually has little effect on performance.
Underspecifying the rank can dramatically reduce the
performance.

2) Create a relatively dense grid of dipolar source locations.
At each grid point, form the gain matrix for the dipole.
At each grid point, calculate the subspace correlations
subcorr .

3) As a graphical aid, plot the inverse of , where
is the maximum subspace correlation. Correlations

close to unity will exhibit sharp peaks. Locate or
fewer peaks in the grid. At each peak, refine the search
grid to improve the location accuracy, and check the
second subspace correlation. A large second subspace
correlation is an indication of a “rotating dipole.”

IV. R-MUSIC

Problems with the use of MUSIC arise when there are
errors in the estimate of the signal subspace and the subspace
correlation is computed at only a finite set of grid points. The

largest peak is easily located by searching over the grid for the
largest correlation; however, the second and subsequent peaks
must be located by means of a 3-D “peak-picking” routine.
The R-MUSIC method overcomes this problem by recursively
building up the IT model and comparing this full model to the
signal subspace.

A. Development

In the following we assume that our IT’s each comprise
one or more dipoles. We search first for the single dipolar
topographies, then the two-dipolar topographies, and so forth.
As we discover each topography model, we add it to our
existing IT model and continue the search. We build the
source model by recursively applying the subspace correlation
measure, the key metric of MUSIC, to successive subspace
correlations.

For exemplary purposes, we first assume that theIT’s each
comprise a single dipole. Single-dipole locations are readily
found by scanning the head volume. At each point in the
volume, we calculate

subcorr (33)

where is the set of subspace correlations.
We find the dipole location , which maximizes the
subspace correlation . As described in the Appendix, the
corresponding dipole orientation is easily obtained from
subcorr , and we designate our topography model
comprising this first dipole as

(34)

To search for the second dipole, we again search the head
volume; however, at each point in the head, we first form the
model matrix . We then calculate

subcorr (35)

but now we find the dipole point that maximizes thesec-
ond subspace correlation, ; the first subspace correlation
should already account for in the model. The
corresponding dipole orientation may be readily obtained
by projecting this second topography against the subspace,
subcorr , and we append this to our model to
form

(36)

We repeat the processtimes, maximizing the th subspace
correlation at the th pass, . The final iteration is
effectively attempting to minimize the subspace “distance” [8]
between the full topographies matrix and the signal subspace
estimate.

If the topographies comprise single-dipolar topogra-
phies and 2-dipolar topographies, then R-MUSIC will first
extract the single dipolar models. At the th iteration,
we will find no single dipole location that correlates well with
the subspace. We then increase the number of dipole elements
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per topography to two. We must now search simultaneously
for two dipole locations, such that

subcorr (37)

is maximized for the subspace correlation , where
comprises two dipoles. If the combinatorics are not

impractical, we can exhaustively form all pairs on our grid
and compute maximum subspace correlations for each pair.
The alternative is to begin a two-dipole nonlinear search with
random initialization points to maximize this correlation (cf.
[9]). This low-order dipole search can be easily performed
using standard minimization methods.

We proceed in this manner to build the remaining 2-
dipolar topographies. As each pair of dipoles is found to max-
imize the appropriate subspace correlation, the corresponding
pair of dipole orientations may be readily obtained from
subcorr , as described in the Appendix. Extensions
to more dipoles per IT are straightforward, although the
complexity of the search obviously increases. In any event,
the complexity of the search will always remain less than
or equal to the least-squares search required for finding all
dipoles simultaneously.

B. Algorithm

To summarize, we assume that our forward model has been
corrupted by additive noise, and that this noise is zero mean
with a known spatial covariance matrix . We decompose
or and select the rank of the signal subspace to form

, which is our estimate of a set of vectors that span the
signal subspace. If the rank is uncertain, we should err toward
overspecifying the signal subspace rank. If we overselect the
rank, the additional subspace vectors should span an arbitrary
subspace of the noise-only subspace, and the probability that
these vectors correlate with our model is small. However, as
the overspecification of the signal subspace increases, so does
the probability that we may inadvertently include a noise-only
subspace that correlates with our models, so some prudence
is called for in rank selection. We demonstrate examples of
overselection of the subspace in Section V.

We design a sufficiently dense grid in our volume of interest,
and at each grid point we form the head model for the
single-dipole gain matrix . We initialize the topography
complexity as “1-dipolar topography,” i.e., each topography
comprises a single dipole. We then proceed as follows:

1) For index from 1 to rank :
2) Let be the model extracted

as of the previous loop ( is a null matrix for the first
loop).

3) Form sets of grid points , where for a 1-dipolar
topography each set consists of the location of a single
grid point . For a 2-dipolar topography, contains
the locations of pairs of grid points, and so on for
higher order dipolar topographies. If the combinatorics
make it impractical to consider all possible combina-
tions of grid points, choose a random subset of the
possible combinations.

4) For each set of grid points , form the grid model
, i.e., concatenate the set of grid point

models to the present extracted model.
5) Calculate the set of subspace correlations,

subcorr , using the algorithm
described in the Appendix.

6) Find the maximum over all sets of grid points for
, e.g., for index , find the maximumsecond

subspace correlation.
7) Optionally, if the set of grid points is not particu-

larly dense or complete, then use a nonlinear optimiza-
tion method (e.g., Nelder–Meade simplex) to maximize

, beginning the optimization at the best. If the
grid is dense and our sets in Step 2) complete, this
step may not be necessary.

8) Is the correlation at the location of the maximum “suf-
ficient,” i.e., does indicate a good correlation? If
the correlation is adequate, proceed to Step 11). If it is
not, proceed to Step 9).

9) [Insufficient correlation in Step 8)] We have two sit-
uations to consider. We may have overspecified the
true rank of the signal subspace, in which case we are
now attempting to fit a topography into a noise-only
subspace component. We can test for this condition by
forming the projection operator (where
is the pseudoinverse[12]) from the existing estimated
model, then forming the residual .
Inspection and testing of the residual should reveal
whether or not we believe a signal is still present. If
we believe the residual is simply “noise,” break this
loop. Otherwise, proceed to Step 10).

10) (Signal still apparent in the residual) Increase the
complexity of the topography (e.g., from one to two
dipolar) and return to Step 3) without increasing the
loop index.

11) [Good correlation in Step 8)] We have found the
best set of locations of the next indepen-
dent topography, with corresponding gain matrix

. We need the best-fitting orientation.
Calculate the principal orientation vector (see
the Appendix) from subcorr ,
normalize , and form the topography
vector .

12) Increment theindex and loop to Step 1) for the next
independent topography.

In Step 8), we have used a minimum correlation
of 95%. In [14], we discussed some of the means for
determining if a MUSIC peak represents “adequate” or
“sufficient” correlation. Our recommendation of 95%
reflects the empiricism that a “good” solution should
generate a topography which explains at least 90% (the
square of the correlation, i.e., the “R-squared” statistic)
of the variance of the topography identified in the
data. If we overselect the rank of the signal subspace,
then we will in general break out of the loops at Step
9), once we have found the true number of sources
and have only noise left in the residual. We will not
address the determination of statistical “sufficiency” of
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Fig. 1. The upper plot is the overlay of the response of all 255 EEG sensors
to the simulated three dipolar sources. The sources were given independent,
overlapping time series. White Gaussian noise was added such that the SNR
was 20 dB, and the percent variance explained by the true solution was 91%
of the total variance.

the model in this paper. See [1] and [26] for discussions
on the testing of the residual for remnant signals.

If the grid is dense or we performed Step 7) for
each topography, we may find the R-MUSIC set of
parameters is already a good solution. The R-MUSIC
algorithm has maximized a set of subspace correlations,
a metric different from the least-squares approach. We
may refine this solution with a least-squares search:

13) Our R-MUSIC search has yielded an estimate of the
full spatial topographies gain matrix ,
which is a function of the estimated full set of dipole
locations and orientations . Beginning with these
parameters, initialize a nonlinear search using the cost
functions (24) or (25).

Step 13) represents an increase in the complexity in the
nonlinear search over that of R-MUSIC, at possibly dimin-
ishing returns in terms of improvement in the solution. Note
that each iteration of the nonlinear search must now adjust the
parameters of all of the dipoles, not just a single topography
as in R-MUSIC.

V. COMPUTER SIMULATIONS

We present two simulations to illustrate some of the features
of our proposed IT model and the R-MUSIC algorithm. In
the first simulation, we arranged 255 EEG sensors about the
upper region of an 8.8-cm single-shell sphere, with a nominal
spacing between sensors of 1 cm. For illustrative purposes, we
arranged three dipolar sources in the same plane, cm,
and the three sources were given independent, overlapping
time courses. The overlay of the responses of all sensors
is given in the upper plot of Fig. 1. We then added white
Gaussian noise to all data points, scaled such that the squared
Frobenius norm of the noise matrix was one-tenth that of the

Fig. 2. Subspace correlation between an EEG dipolar model and the rank five
signal subspace extracted from the data. The correlations were calculated in the
z = 7-cm plane on a 1-mm grid. Each grid point was then scaled in intensity
using the color bar on the right-hand side of the figure. All correlations below
95% are scaled as black. The largest correlation of 99.8% is correctly at
[�1, �1, 7] cm, as rounded to the nearest mm; however, this peak and the
other two peaks, as indicated by the arrows, are not readily discernible, either
graphically or computationally.

squared Frobenius norm of the noiseless signal matrix, for an
SNR of 20 dB. The lower plot of Fig. 1 shows the overlay of
all sensors for the signal plus noise data.

The singular value spectrum was clearly rank three, but
we selected rank five to illustrate robustness to rank over-
selection. We created a 1-mm grid in the -cm plane
and calculated the correlation between a single-dipole model
and the signal subspace. Fig. 2 displays these correlations as
an image whose intensities are proportional to the primary
correlation . We have defined the gray scale in Fig. 2 such
that the subspace correlation must exceed 95% in order to be
visible. In Fig. 3, we have replotted the same data, but in this
case we plot in order to graphically intensify the
appearance of the peaks. This image is the original MUSIC
scan proposed in [12]. The measure is equivalent
to the correlation with the noise-only subspace, the original
proposal by Schmidt [19].

The largest subspace correlation of 99.8% is easily found at
[ 1, 1, 7] cm, as rounded to the nearest mm. The peak at [1,
1, 7] is apparent in Fig. 3, but the peak at [0, 0, 7] is obscured
in both figures (see caption). Graphically or computationally
declaring the location of these other two peaks is not obvious
without subjective interpretation by the observer.

We generated the forward field for this first dipole, then
rescanned the subspace correlation on the same grid with
the combined model. Fig. 4 displays thesecondsubspace
correlation; in this and subsequent figures, we will resume
plotting the correlation value directly, rather than the inverted
metric. We can now more clearly see the peaks corresponding
to the two remaining sources, and the first source has been
suppressed. The maximum peak of this image at 99.7% is
easily located at [1, 1, 7]. We then generated the forward field
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Fig. 3. Rather than plot each pixel as a scaled version of a correlation value

as in Fig. 2, here we plot1=( 1� c2
1
). This image metric is equivalent to

the MUSIC metric discussed in [12], [19]. We see two of the three peaks
rather clearly, but the central peak is somewhat obscured, since its graphical
"intensity" is about 75% of the intensity of the other two peaks. Although
the peaks are better defined than in Fig. 2, interpretation of the intensity
scale is now ambiguous, and the user must still "peak pick" graphically or
algorithmically in three dimensions. Subsequent figures resume the correlation
scaling of Fig. 2.

Fig. 4. The forward field from the first dipolar solution was formed and
concatenated with the forward field generated by each point on this grid. The
subspace correlations were again computed between this combined model and
the signal subspace. Thesecondsubspace correlation is displayed here as an
image. The original peak has been suppressed, and we more clearly see two
peaks in this image. The maximum correlation in this images is found at [1,
1, 7] of 99.7%.

for this second dipole and appended it to the first dipole’s
forward field. We then rescanned the subspace correlations on
the same grid with the combined model. Fig. 5 displays the
third subspace correlation, where we now readily observe the
single remaining peak for the third source, 99.6% at [0, 0, 7].

Fig. 5. We generated the forward fields for the first two dipolar locations and
concatenated that set with the field generated by each point in the grid. We then
re-ran the subspace correlations, then imaged thethird subspace correlation.
The remaining source solution is now easily observed at [0, 0, 7], with a
correlation of 99.6%. The percent variance explained by the combined three
dipoles was 91%.

Visual examination of the residual at this point indicated no
remaining signal, and subspace correlations of multiple-dipole
models yielded no substantial correlations.

The second simulation was designed to demonstrate the
localization of a “rotating” dipole and a pair of synchronous
dipoles, as well as to illustrate the use of a directed search
algorithm to refine these locations. In this simulation, we
arranged 240 MEG planar gradiometer sensors about the upper
hemisphere, with a nominal spacing of about 2 cm and a
baseline separation of 1 cm. A “rotating” dipole was located at
[0, 0, 7] cm, and a pair of dipoles with synchronous activation
was located at [ 2, 2, 7] and [2, 2, 7] cm. We then created
a 1.5-mm grid in the -cm plane, i.e., in a plane
displaced from the true source plane, and the gridding was
slightly coarser than the first simulation. The noise level was
again set to 20 dB. The true rank of the signal subspace was
three, with the rotating dipole comprising two single-dipolar
topographies, and the third topography comprising a 2-dipolar
topography. Fig. 6 displays the overlay of the noiseless and
noisy sensor responses.

We again overselected the rank of the signal subspace to
be five, then scanned the one-dipole model against the signal
subspace. We found a single good peak at 99.3%, as displayed
in Fig. 7. Note the absence of any other peaks; the remaining
“rotating” dipolar topography is obscured by this peak, and
the other topography is not a single dipole. The peak observed
in the grid was at [0.1, 0.2, 6.5] cm. We initiated a directed
search from this point to maximize the correlation to 99.8%
at [0.0, 0.0, 7.0] cm, the correct solution for the single-dipole
topography, rounded to the nearest mm.

As in the previous example, we then scanned for a second
dipole, observing the second subspace correlation. The maxi-
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Fig. 6. MEG Simulation comprising 240 planar gradiometers with a 1-cm
baseline spaced about 2 cm apart, arranged about the upper region of a 12-cm
sphere. A rotating dipole was located at [�2, �2, 7] cm, and a pair of
dipoles with synchronous activation was located at and [2, 2, 7] cm. The
white Gaussian noise was scaled such that the squared Frobenius norm of the
signal was ten times that of the noise (20 dB). The true rank of the signal
subspace was three, but we again overselected it to be five.

Fig. 7. Subspace correlation between the 1-dipole model and the rank five
MEG subspace. A single peak is observed at the location of the rotating dipole;
the second dipolar source is effectively buried by this peak. This plane was
scanned atz = 6:5 cm, but the true solution lay above this scanning plane.
The peak in this plane was used to initiate a directed search for the maximum
correlation, which was located correctly at [0, 0, 7] cm, as rounded to the
nearest mm.

mum correlation in the grid was again high, 99.2%, at [0.1,
0.2, 6.5], as shown in Fig. 8. A directed search initiated at

this point maximized the second subspace correlation at 99.7%
at [0, 0, 7], the same dipole location as the first solution. The
dipole orientations of the two solutions were nearly orthogonal,
[0.94, 0.34, 0] and [ 0.3, 0.95, 0], indicating we had correctly
identified the simulated “rotating” dipole at this point.

Fig. 8. Second subspace correlation between the 1-dipole model and the rank
five MEG subspace, using the solution from Fig.7. The peak in this plane
was used to initiate a directed search for the maximum second correlation,
which was located correctly, again at [0, 0, 7] cm as in Fig.7. We have, thus,
located a "rotating" dipole. The remaining IT source was not a single dipole
and, thus, not observed in these single-dipole scans.

We then scanned for a third single-dipole solution, but only a
peak of 88.8% was found, and a directed search maximization
only improved this correlation to 88.9%. Thus this third dipole
could only account for of the variance of
the third topography, and we rejected this third single-dipolar
topography solution.

Since one dipole was inadequate to describe the third
topography, we shifted to our next putative solution, that of
two dipoles. Our grid comprised 729 dipole locations, and
all combinations of two dipoles yielded 265 356 sets. Rather
than exhaustively search all set combinations, we randomly
selected a small subset for a total of about 3000 sets. We
then concatenated each of these 3000 pairs with the first two-
dipole solutions, calculated the subspace correlation of the
combined model and observed the third subspace correlation.
The maximum third correlation of 98.4% corresponded to the
pair at [ 2, 1.9, 6.5], [1.8, 1.8, 6.5]. We initiated a 2-
dipole directed search from this set and achieved a maximum
correlation of 99.7% at [ 2.0, 2.0, 7.0], [2.0, 2.0, 7.0] cm,
the correct solution. In Fig. 9, we plot 2-D cross-slices of this
6-D function, holding constant the correct plane and the
true location of one of the two dipoles. We clearly observe
the correlation metric peaking at the correct solution. As in
the first example, visual examination of the residual from
this model revealed that no signal was present, and further
correlations with multiple-dipole models yielded no substantial
correlations.

This relatively simple pair of simulations has illustrated
some of the key concepts of the R-MUSIC algorithm and
the IT model. Both simulations used relatively dense grids
of EEG or MEG sensors, such that sensor spacing was
not an issue; see [13] for analysis of the effects of EEG
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(a)

(b)

Fig. 9. Third subspace correlation of the MEG simulation, computed in a 6-D
space comprising the synchronous two-dipole topography. Pairs of dipoles
were concatenated to the model identified in the first two topographies, then
the third subspace correlation computed. (a) is a 2-D slice through this 6-D
space, holding fixed the true location of one of the dipoles and the true
z = 7-cm value of the second dipole. We observe the correlation peaking
correctly at [2, 2, 7]. (b) holds fixed this dipole and the same value, and peaks
correctly at the other dipole [�2, �2, 7].

and MEG sensor spacing on dipole localization performance.
In both simulations, we overselected the true rank of the
signal subspace to illustrate the robustness to such an error;
we repeated the localization results with the true rank and
achieved nearly identical results to those presented here.
In these simulations, as in [12], the subspace scans were
presented as images to highlight the MUSIC peaks; however,
the R-MUSIC algorithm readily extracts these peaks without
the need for the user to manually observe and select these
solutions. A “blind test” simulation study using R-MUSIC
can be found in [11].

In practice, after we have scanned on a discrete grid for any
of the single- or multiple-dipolar solutions, we always then
initiate a directed search from these points to maximize the
correlation. By optimizing the correlation in this manner, we
bypass some of the concerns of coarse or inadequate gridding.
In the first simulation, each of the three dipoles was located
with a single-dipole search of three location parameters; in

contrast, a full nonlinear least-squares would have required
nine parameters. In the second simulation, we performed two
single-dipole searches, followed by a two-dipole search of
six nonlinear parameters. A full nonlinear least-squares search
would have required a 12-parameter search.

VI. CONCLUSION

In the E/MEG inverse problem, our goal is to estimate a
set of parameters that represent our source. In the multiple-
dipole model, an issue that complicates the least-squares
problem is that it requires a multidimensional search over a
highly nonconvex cost function. Here we have described a
new algorithm, R-MUSIC, which uses subspace correlations
between the model subspace and the data subspace to reduce
the problem to a sequential search. By identifying one source at
a time we reduce the computational complexity of the search.
The search for topographies comprising a few dipoles can then
be performed over the entire source volume, largely avoiding
the local minima problem.

The IT model that was also presented here is a new
framework in which to view the concept of a source. We often
encounter dipolar sources that are effectively fully correlated
in their time courses due to either bisynchronous activation or
strong noise. The IT model allows a straightforward interpre-
tation of these correlated dipoles as a single source topography
comprising multiple dipoles. Combining the R-MUSIC method
with the IT source model keeps the complexity of the parame-
ter search simple relative to more traditional multidimensional
cost functions while bypassing the “peak-picking” problem of
the classical MUSIC algorithm. While determining multiple
peaks in a single parameter case (the common presentation
in much of the array signal processing literature on MUSIC)
is possible, we found the problem confounding in even our
simplest case of single-dipolar topographies, where we must
search for peaks in three dimensions. Graphically searching
for multiple peaks in two-dipolar topographies (a 6-D space)
is generally not practical.

In this paper, we have used multiple dipoles as our source
model, increasing the independent topography complexity by
simply increasing the number of synchronous dipoles. The
IT model and R-MUSIC algorithm are readily extended to
include source models that can represent more distributed
current activity, as we will address in a future publication.

APPENDIX

SUBSPACE CORRELATION

A. Definitions and Computation

From [8], we summarize the definition and method for
computation of the canonical or “subspace” correlation. Given
two matrices, and , where is , and is , let

be the minimum of the ranks of the two matrices. We wish
to calculate a function subcorr ,
where the set of scalars are defined as follows:

(38)
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subject to

(39)

The vectors and are theprinci-
pal vectorsbetween the subspaces spanned byand , and
by construction, each set of vectors represents an orthonormal
basis. Note that . The angles ,
where , are theprincipal angles,representing the
geometric angle between and , or analogously, is the
subspace correlationbetween these two vectors. The steps to
compute the subspace correlations are as follows [8, p. 585].

1) If and are already orthogonal matrices, we redesig-
nate them as and and skip to Step 2). Otherwise,
perform a SVD of , such that .
Similarly decompose . Retain only those components
of and that correspond to nonzero singular
values, i.e., the number of columns in and
correspond to their ranks, and the other matrices are
square, with dimension equal to the ranks.

2) Form .
3) If only the correlations are desired, then compute only

the singular values of (the extra computation for the
singular vectors is not required). Theordered singular
values are the subspace
correlations between and .

4) If the principal vectors are also desired, then compute
the full SVD, . The ordered singular
values are extracted from the diagonal of . Form the
sets of principal vectors and
for sets and , respectively.

The matrices and are each orthogonal, and the
columns comprise the ordered sets of principal vectors for
matrices and , respectively. If both matrices are of the
same subspace dimension, the measure is
called thedistancebetween spaces spanned byand [8].
When the distance is zero, we see thatand are parallel
subspaces. A maximum distance of unity indicates
at least one basis of is orthogonal to or vice versa; if the
maximum subspace correlation is , then all bases are
orthogonal. We see that minimizing the distance is equivalent
to maximizing the minimum subspace correlation between
and .

We may also readily compute the specific linear combi-
nations of and that yielded these principal vectors and
angles. By construction, we know that for some ,
and can be simply found using the pseudoinverse of. If
we have used the SVD to decompose, then the calculation
of reduces to ; similarly, we compute

.
The best way to linearly combine the columns of(i.e., the

combination that minimizes the angle of the resulting vector
with ) is found in the first column of
(similarly define ), , which is best correlated
with when it is arranged as . In other words,
there is no other (excepting a scale factor of ) for which

Fig. 10. Geometric interpretation of principal angles. The 2-D plane is spanned
by the two columns,AAA1 andAAA2, of the matrixAAA. These vectors and the vector
pass through the coordinate origin. The function subcorrfAAA; BBBg returns the
subspace correlationcos �1, where�1 is theprincipal anglebetween the line
and the plane. The principal vectors areaaa1 and bbb1, which are unit length
vectors in the plane and line, respectively.

a corresponding best-fitting will yield a better correlation
between and . The first columns of and are and .

Similarly, the worst way to linearly combine is .
The best fit to this particular is , with a correlation
of only . No other will yield a bestfitting such that the
subspace correlation islower.

If two correlations are identical, for instance ,
then the two corresponding vectors and are, themselves,
arbitrary, but they form a plane such that any linear combina-
tion of the two vectors yields a vector whose corresponding
correlation is .

B. Geometric Example

To give an intuitive geometric insight into these subspace
correlations, consider subcorr , where we define the
columns of a 3 2 matrix to represent two vectors that form
a basis for a 2-D plane in a 3-D space. Similarly, let the 31
vector represent a 1-D vector (line). The subspacesand

both pass through the origin. In this case, subcorr
yields a single correlation coefficient, representing the cosine
of the angle between the line and the plane. We can directly
form , which is the unit length vector in the plane
of closest to . We illustrate this case in Fig. 10. If the
correlation is unity, then lies in the plane of ; if the
correlation is zero, then is perpendicular to the plane, and

is arbitrary.
Next, consider a second 2-D plane spanned by a 32 matrix
, and again the planes formed by the columns of bothand
pass through the origin. We find that the first (maximum)

subspace correlation of subcorr is always unity, since
two such planes always intersect along a line, namely the line
found by or . The second subspace correlation is the
cosine of the angle between the planes, the angle we intuitively
picture when visualizing two intersecting planes.

C. Subspace Correlations and E/MEG

In E/MEG MUSIC processing, we may compute the sub-
space correlations between a dipole model and the signal
subspace, e.g., subcorr . In this case, the vectors
in relate to the dipole orientations. By scaling the first
orientation to unity, , we obtain the unit-
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dipole orientation that best correlates the dipolar source at
with the signal subspace. For a two-dipolar topography,

subcorr , then represents the con-
catenation of the two dipole orientations, , such
that the two-dipolar topography

(40)

best correlates with the signal subspace. Consistent with our
IT model description, we note that the dipole orientations
and in (40) are themselves not unit vectors, but that their
concatenation into the vector is constrained to unity norm.
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