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EEG and MEG: Forward Solutions
for Inverse Methods

John C. Mosher, Richard M. Leahy,* and Paul S. Lewis

Abstract—A solution of the forward problem is an important ~ cognitive process. The recent development of systems with
component of any method for computing the spatio-temporal \whole-head coverage offer the potential for E/MEG to produce
activity of the neural sources of magnetoencephalography (MEG) 400 rate estimates of the location and time courses of these
and electroencephalography (EEG) data. The forward problem derlvi . In th fthe | lizati
involves computing the scalp potentials or external magnetic UNderlying primary sources. In the context of the localization
field at a finite set of sensor locations for a putative source Of neural sources, thierward problemis then to determine the
configuration. We present a unified treatment of analytical and potentials and magnetic fields that result from primary current

“Elmefrica' solutions of the Lora"’ard hProfb'em li”, a form r?”it'd sources. Thenverse problemis to estimate the location of
able for use in inverse methods. This formulation is achieve these primary current sources.

through factorization of the lead field into the product of the s L
moment of the elemental current dipole source with a ‘kernel ~ 1he emphasis in E/MEG modeling is, therefore, the rela-

matrix” that depends on the head geometry and source and tionship between grimary current source distributiorand
sensor locations, and a “sensor matrix” that models sensor the data at the sensor array. As reviewed by Tripp [49], the
orientation and gradiometer effects in MEG and differential linearity of the forward model can be expressed as the inner
measurements in EEG. Using this formulation and a recently . -

developed approximation formula for EEG, based on the “Berg product of a _ve_ctorlea_ld field [6] and the primary current.
parameters,” we present novel reformulations of the basic EEG Since the majority of inverse methods for E/MEG are based
and MEG kernels that dispel the myth that EEG is inherently on linear algebraic formulations, a matrix formulation is a
more complicated to calculate than MEG. We also present novel npatural framework for the solution of the forward problem. To

investigations of different boundary element methods (BEM'S) - ity the presentation here, we restrict the primary current
and present evidence that improvements over currently published

BEM methods can be realized using altemative error-weighting (@ current dipoles, since more complicated sources can be
methods. Explicit expressions for the matrix kernels for MEG and expressed as sums or integrals of these elemental sources.
EEG for spherical and realistic head geometries are included. ~ We describe solutions to the forward problem for both MEG

Index Terms—Boundary element method (BEM), electroen- and EEG by partitioning the lead field into the product of a
cephalogram (EEG), forward model, head modeling, realistic sensor matrix, a kernel matrix and the moment of the dipole.

head model, spherical head model. The sensor matrix models sensor orientation and gradiometer
effects in MEG and the effects of the reference electrode(s)
| INTRODUCTION in EEG. The kernel matrices are functions only of the sensor

and source locations and the head geometry. This form, in

N EURAL current sources in the brain produce extem@\'/hich the dipole moment is explicitly factored out of the

magnetic fields and scalp surface potentials that can i arq model, is well suited for source localization methods
measured using magnetoencephalography (MEG) and elﬁc

troencephalography (EEG), respectively. The current fiel

E/h';lhsGheqd thlat prodl;Jce theset %E.Gt ar:d MEG (coIIec;uveg_l localization accuracy as a function of dipole location.
) signals can be separated into two components, Srthermore, our explicit matrix formulations of the forward

primary currgnt term. (cf. [‘.19])’ representing the Impresse(éolutions make these results directly applicable to the various
neural andmicroscopicpassive cellular currents, and thec- linear imaging models, e.g., [12], [27], and [42]. Finally

ondaryor volume currents that are a result of thecroscopic . . . .
2 . ) ecoupling of the kernel and sensor matrices facilitates studies
electric field. The primary currents are considered to be the . .

of issues such as the effect of the reference electrode in

sources of interest in E/MEG, since they represent the ar G and comparisons of planar and radial gradiometers in
of neural activity associated with a given sensory, motor, REG
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High-resolution anatomical imaging of subjects is becoming We divide the current into two componenfsassiveand
routine, and the trend in the biophysics community is tprimary. We define as passive those currents that are a result of
move toward more realistic nonspherical head models. Bye macroscopi@lectric field in the conducting medium of the
far the most common approach in E/MEG for arbitrary heatblume 3°(r) = o(r)E(r). All other currents are considered
geometries is the boundary element method (BEM). Here, ywemary j°(r) = j(v) — 3¥(r), which, as described by Tripp
review the E/MEG BEM literature in terms of thmethod of [49], can be considered to be the sum of iimpressecheural
weighted residualsWe show that the majority of publishedcurrent and themicroscopic passive cellular currents. The
methods can be viewed in this framework, using either thivision of the current as primary (r) and passivg”(r) is to
collocation or Galerkin weighting methods [5], [48]. Weemphasize that neural activity in a region gives rise to macro-
include numerical comparisons of collocation and Galerkscopic primary currents in that same region that may then flow
methods using linear and constant basis functions and shpassively throughout the rest of the conducting medium.
that a linear Galerkin method, which has not previously beenBecause of the quasi-static assumptions, the electric field
used in this field, can produce substantial improvements ¢an be modeled as the gradient of a scalar poterfilat) =
accuracy. We also examine the effect of the “isolated skullVu(r). Substituting our interpretation gfr) into (1) yields
approach” (ISA) [26] on the accuracy of the computed fields. "

The solutions for the forward EEG and MEG problems for ~ b(r) = 4—0 / () — o(r)Vo(r)) x d/d® dr’.  (2)
spherical and realistic head geometries are presented here in TG
an attempt to: i) provide a unified framework for comparisomhe typical head model assumes that the head may be repre-
of the accuracy and computational cost of different solutionsgnted by three to five regions, e.g., scalp, skull, cerebrospinal
ii) to present these different solutions in a consistent notatifigid, gray matter, and white matter, and that the conductivity
in relatively concise form, and iii) to present the solutiong(r) is constant and isotropic within these regions. The
in a form suitable for direct use in inverse procedures and fgfadient of the conductivity is, therefore, zero except at the
comparisons of different modalities and system configuratiorgirfaces between regions, which allows the volume integrals

The paper is organized as follows. In Section 1I, we revie¥@ be reworked into surface integrals. We assume our volume
the basic quasi-static assumptions used in E/MEG, both @an be divided inta¥/ + 1 regions with conductivities;, i =
establish notation and to clarify where some of the simplifying; - - -, M +1, which includes the nonconducting region outside
assumptions arise that allow the BEM approach to solvij the head. These regions are separated by a total f M/
the forward problem. In Section Ill, we present the analyticgurfacesS;. Through simple vector identities, we can rewrite
solutions for the spherical head models in a form suitable fite volume integral in (2) as a sum of surface integrals ([19],
generating gain matrices. In Section IV, we develop discre¢é [27], [45], [49])

formulations of the BEM solutions using the method of 1o -

weighted residuals, then compare the effects of the choice b(r) =bo(r) — 4—02(0—; — o)

of basis and weighting functions. In Section V, we discuss in i

particular the issues and implications of the various approaches ) p p 3 p

to BEM, and review several recent publications within the s v(r)na(r') x dfd” | dr (3)

framework presented here. _ . .
P wheren;(r) is the “outward” directed unit vector normal to

the ith surface, and the+" (* —") superscript indicates the

. ] ) ) conductivity outside (inside) thah surface. Therimary field
We review first the assumptions that form the basis of mogt () is

of the E/MEG forward models. For the biological signals
of interest in E/MEG, the time-derivatives of the associated boo(r) = @/ 7Y x d/d> dr’ 4)
electric and magnetic fields are sufficiently small that they Ar Ja

can be ignored in Maxwell's equations. Recent discussiopich is the magnetic field observedsatue to the primary
and details of this quasi-static approximation can be fourdrrent only. If no boundaries were present, thes(r) would

in [27], [28], and [49]. The static magnetic field equationgepresent the magnetic field generated by a primary source in
are V x b(r) = poj(r) and V- b(r) = 0, i.e,, the curl of an infinite homogeneous medium.

the magnetic field at location is proportional to the current  To compute the magnetic field using (3) we must first know
density, and the divergence of the magnetic field is zero. Wee potentialu(r) on all boundaries. Using Green’s theorem,
are interested in the current densjy) in a closed volume of we can obtain a surface integral equation fgr) (see [2],
finite conductivities. Outside this volume the conductivity anfi 7], [18], and [45] for details)

current density are zero. The integral equation relatifbg

Il. THE FORWARD PROBLEM

andj(r) is the integral form of the Biot—Savart law O0Ueo(T) = MU(T) + L zm:(a— — o)
i °° 2 dr = ¢
b(r) = 2> / 3y x d/d® dr’ (1) B
Ar Ja / v n(r') - d/d® dr’, resS; (5)
Si

whered = r — 7’ (with magnituded) is the distance between
the observation point and the source point/, and the where we have assumed all surfaces are smoothyayid)
integration is carried out over a closed volurfie is the primary potentiaJ i.e., the solution for the infinite
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homogeneous medium of unit conductivity, due to the
primary currentj?(r)

v’r—l iP(r'y - 3 dr’
oo(T) /G]()d/dd. (6)

T droyg

Equations (3) and (5), therefore, form our general set of
boundary mtegral equations for solvmg the fo_rw_ard prOble'ﬁg. 1 From [52], the angle between vectors pointing to surface position
for scalp potentials (EEG) and external magnetic fields (MEGnd dipole locatiorr is denotedy. The angle the dipole makes with the
If we assume that the primary current exists only at a discréggial direction atrq is denoteda. The angle between the plane formed by

. . . . . andq, and the plane formed byq andr is denoteds.
point, i.e., the primary current source is a current dipof@
with momentgq located atr, thenb..(r) and v..(r) can be

simplified as If the sensors are not radially oriented, then the effects of
the volume currents must be included; however, as shown by

beo(r) = (110 /4m)q x d/d® (7) " limoniemi et al. [29] and Sarvas [45], the full magnetic field
Voo (1) =(1/4700)q - d/d®. (8) for nonradially oriented sensors outside a set of concentric

spheres may still be calculated without explicit consideration
The key modeling assumptions are that the fields are quasi-the volume currents. Since no currents exist outside the
static and that the shape of the homogeneous regions of Ha@d, both approaches use the radial magnetic bigld) to
head are known and of known constant isotropic conductivitjerive the scalar magnetic potentialr). The full magnetic
Refinements of the models for anisotropic conductivities majid is then derived as the gradient of this scalar. Sarvas’
be found in [38], [44], and [52] and references therein, but Wermulab(r) = — o Vu(r) for outside the spherical conductor
will restrict our attention to the isotropic case. in Cartesian coordinates is ([45], cf. [27] (34), and [28])

Ho
br) = — 1 (F _ PVE
1. SOLUTIONS FOR SPHERICAL HEAD MODELS ™) 4 F2(r,r,) (F(r,r)a x g — (@ x g -7VE(r,7y))

For the case where the head is assumed to comprise a set of (10)

nested concentric spheres, each of constant conductivity, anA : :
; . ) ere the scalar functiod'(r, and the vector function
IWmSNMDnsemﬁﬂxbmhMEG(diMSDandEEG(d{ﬂyvgomT)am (r7q)
g

Analytic solutions for other head shapes have been presented,

such as prolate and oblate spheroids [11] or eccentric spheres F(r.ry)) =d(rd+ r? — (1, -7)) (11)
[8], and numerical solutions for narrow or wide ellipsoids are 2 (d-7r)

presented in [9]. In these presentations of other head shapes, VE(r,ry) = <7 + P +2d+ 27’>T

dipole localization errors are presented for the simplifying case d-7)

of spherical models, and the conclusions are that the deviations - <d +2r + T)rq. (12)

between spherical models and these other smooth shapes did
not appear to greatly affect source localization. We wil

therefore, focus this review on the spherical solutions only.‘g' EEG, Spherically Symmetric Conductor

The simplest case in EEG is a single spherical shell head
A. MEG, Spherically Symmetric Conductor model, i.e., the entire conducting volume is modeled as a

sphere of constant conductivity Brody et al. [6] review ear-

_Ingeneral, to solve the forward MEG problem (3), we MUgfe; tormulations and present a generalized expression for this
first solve (5) for the surface potentialr) on all surfaces.

, . " process is in the case o present solutions for both anisotropic and multisphere
the concentric spherical head model, where the MEG forw. dels. Here, we give the form of the solution as recently

problem can be solved directly. The radial component of ﬂb‘?esented by Zhang in [52], with reference to the geometry

field at sensor locatiom is computed a$,(r) = b(r) -7/7, iy Fig 1. The signed dipole intensity can be represented
and for a spherically symmetric conductor, the vector normgb its radial and tangential components, = ¢cosa and

to the surface is easily expressedrds’) = '/ forall v " & | The potential can then be expressed as the sum of
on all surfaces. In this case, the contribution of the passiyg, potentialsy! (r; 74, q) = vi(r;7q, q) + vl (r;74, q), Where
b PR B - Yr PR B P g b

currents tob,.(r) vanishes, since substitution and expansion of
(3) yieldsr -+ x d = 0. Thusb,(r) is simply calculated from  v.(r;74.9)

the well-knownprimary current model . . —r
- (R )
bo(r) =boo(r) - 7/7 = (po/dm)(q % dfd® -7 /r) oirir ) oo
= (po/4m)r X 10 - q/(rd®). @ “\"Ted

. . ) = (i)cosﬁsinfy<—;+ Tt )
This formula shows that a radially oriented MEG sensor sees dro d rd(r —rqcosy +d)
only the dipole moment and not the volume currents. (14)
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Our explicit statement of the dependence of the potential sammed. The scalar values are a predetermined function of

(rq,q) Will be made clear below. conductivities and shell thicknesses, and evaluation of the
The single spherical shell is too unrealistic as a model for thd shell model becomes quite fast and accurate. See [3]

head due to the large difference between the conductivitiesasfd [52] for examples and details on computing these “Berg

brain and skull. The typical multishell spherical model includgsarameters.” These approximations are enhancements to an

three layers for the brain, skull, and scalp; some also includarlier approximation presented in [1] (the “Airy correction

a cerebrospinal fluid layer. The multishell caselMéfspherical factor”), as well as extensions of the approximation theory

shells requires the evaluation of an infinite series. The infinipgesented by de Munck in [38].

series presentation by Zhang in [52] is especially compact

compared to earlier presentations (cf. [44]) C. Matrix Kernels for Spherical Heads
" q 2 2n 41 frg\nl If the primary sources were completely specified in both
v (rirg,q) = Ao g2 Z " (7) location and moment, then implementation of the above for-
n=l ) mulas could proceed directly. The inverse problem, however,
“ n(ncos by (cos ) + cos Fsin involves finding a suitable set of primary sources that ade-
-PY(cos 7)) (15) quately describe the data recorded by a limited set of sensors.
) As we showed in [33], the inverse problem can often be
where P, and P, are the Legendre and associated Legendggyter approached if we separate the linear moment parameters
polynomials, respectively, and g from the nonlinear location parameterg. The inverse
I = n (16) problem can then be approached as an explicit function of
" nmas + (14n)mar just the location parameters, reducing the complexity of the

. solution search.
The coefficientsn,; andmy, are found from (17), shown at |, this section we factor the solutions from Section II-B

the bottom of the page, where the conductivities are arranged e product of a “field kernel” and the dipole moment.

from the innermost sphere to the outer mest,- - -, aar, COT- e will represent each model solution as the MEG vector
responding to the radii of the sphergs<r; < --- <r,,, and b(r) = K(r,r,)q or the EEG scalan(r) = kT(,r’ r4)q, Where

the matrices in (17) are noncommuting with the highest ind%(hr ) is a 3x 3 matrix kernelandk(r, r, ) is a 3x 1 vector
matrix applied first. See [52] for details. Similarly, see [38]erel These field kernels are then combined with the sensor
in which the infinite series analytic solution to the multilayegy,acteristics to yield discrete matrices of lead fields [6], [49]
isotropic model is presented in Cartesian coordinates and {fg; are clearly separated from the dipole moments.

dipole moment clearly separated. Before presenting the table of field kernels, we mention
~ When computing the solution to this forward problem, thegyera| properties useful in reducing the solutions to kemnel
infinite series in (15) must be truncated or approximated. Vaks,ms. We first note the triple scalar product identity b-¢ =

ous approximations for the multishell case have been propo%e_gxq and the anticommutative property of the cross-product,
[1], [3], [38], [52]. In [38], de Munck and Peters consider the,  , — _ » q, both of which are useful in the reduction of
more general case of anisotropic conductivities, and the infinfie, tormulas. To simplify the algebraic manipulation of the

series is suk_)gtituted with one which converges more rapidBfoss-product, we convert the operation to the product of a
Recent empirical work on closed-form approximations by Betgarix and a vector and explicitly state all vectors in their
and Scherg [3], and related theoretical studies by Zhang [5@]a tesian forms

describe a valid method for approximating the infinite series

with as few as three evaluations of scaled forms of the single 0 —a; ay | | bz

shell model (13) and (14). For a givev-shell head model, axb=Cob=| a. 0 —a,||b,|. (19)

these so-called “Berg parameters” [52] can be designated as —ay az 0 b.

{1, 11, Az, 2, Az, i3} (See [3] and [52] for definitions). The ] N o ) ]

potential in theM-shell is then approximated as These identities and substitutions are usefu_l in reducing the
Sarvas formula (10) to the product of a matrix kernel and the

VM (157, q) 2ot (r; pary, Mg) + v (5 porg, A2q) dipole moment.
+ vl (r; psry, Aaq). (18) For the EEG solutions, we prefer to avoid calculations

involving explicit transcendental functions, which are com-
This method uses the true dipole locatipn to select three putationally expensive. In (13), we note that= gcosa =
dipole locations along the same radial line and uses thege, - ¢)/(r,q). With similar conversions for the other tran-
dipoles to evaluate the single shell model (13) and (14tendental functions, we note thatin «cos Bsiny may be
three times. These three evaluations are then scaled aadivalently expressed @8- q)/r —cosy((rq - q)/7,). Using

2n+1
1)oy . -
YIS I L <n+1>< L _1) <_)
[mn le} _ 1 H Ok+1 _— Ok+1 Tk (17)
M-1 . n
Moy 22 (27‘L+1) oty 71< O} _1> <7_k> (7‘L+1)+ nog
Ok41 Tq Ok41
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these substitutions in (13) and (14) yields surface potentiakb(r), and must be solved numerically for
) ) Al WY realistic head geometrieBoundary element metho(BEM'’s)
vi(r) = <q(rq q)/(”q)) <2(7((T Tq)c/lgwq)) a) for solving (5) have been widely studied in the MEG and EEG
dno literature (cf. [4], [9], [10], [15], [16], [26], [27], [30]-[32],
I L) (20) [351-037], [39], [40], [43], [46], [47], and [50]). Here, we
red Ty review the BEM approach to solving the E/MEG forward
=ciry g (21) problem using thenethod of weighted residuaks a frame-
work. We then describe how most of the previously published
and methods in this field are of the “constant collocation,” “linear
1 gsina . collocation,” or “constant Galerkin” forms. We also present
v (r) = cos (3 sin ~y . . al: S
dro our own novel investigations of “linear Galerkin” weighting,
2 d+r - as well as the effects of the “isolated skull approach” [26] on
' <$ +7,d(7,_ ra((r-19)/(r79) +d)> (22) MEG and EEG solutions.
1 . . . ) )
=i <(TTQ) — <(TT:(1)> <(T‘; q)>> A. Method of Weighted Residuals
. q ! We can express the right-hand side of (5) as a linear operator
. dtr (23) acti the potential functi ie. L =
& d(r? = (r-ry) +dr) acting on the potential function(r), i.e., L(v(r)) = veo(r).

) In the forward problem, the source and hence the function
=(rg(r-@) —(r-rg)(rq - @)c2 (24)  vo(r) is known, and the task is to determinér), such that
the residualL(v(r)) — v.o(r) is as small as possible. The

where the scalar coefficients andc; are defined as : . .
& 2 standard method of weighted residuals solves this problem

=1 2(d'7‘q) 11 (25) Using a weighting functionw(r), i.e., we solve the related
L= dror? d? d problem
1 2 d+r
2= 4ror? <$ + rF(r, 'rq)>' (26) / (L (v(r) = veo (")) w(r’) dr’ =0 (28)
Thus, the single shell EEG model solution can be expressedoasequivalently
o) = ((er = ealr -r))ry + corir) - q (27) (w(r), veo(r)) = (w(r), L(v(r))) (29)

This novel form of the EEG single-sphere solution is awhere (-,-) denotes the inner product of the two functions.
algebraic reformulation of the original presentation in [6]The integration is over the domain of the unknown potential
but with an emphasis on vector notation. Our form includdgnctionv(r), which in (5) is restricted to the two-dimensional
the term F'(r,r,), which also appears in the MEG solutiorsurfaces.

(11). This reworking of the single shell EEG solution now The selection of a particular weighting function determines
has a clear separation between the vector kernel and e class of error method. The BEM restricts the weight-
dipole moment, and all calculations are in vector Cartesi#td functions to a finite combination o known linearly
coordinates. Additionally, our simplification to the coefficientildependent basis functions, (r)

in (25) and (26) highlights the computational similarities N

between the Sarvas formula in (10) and this single-shell w(r) = Z/}nz/;n(r). (30)
formula. For the multishell formula, similar reductions may be n=1

applied to the infinite series in (15), as presented by de Mun - . .
and Peters [38]. Our preference is to use the Berg parametrl; Eg coefficients, are arbitrary, such thak(r) spans thisV

in (18) to effect the approximation to the multishell mode. imensional space. Therefore, (29) must hold for each of the

using a single shell equivalent. Using these properties a'rr1]c(ihvIdual basis functions),,(r), yielding & equations

observations, the E/MEG solutions presented in the previous(ty;(r),veo(r)) = (¥;(r), L{v(r))), i1=1,2,---,N.
section can be reduced to their kernel forms as listed in Table I. (31)

IV. BOUNDARY ELEMENT METHODS We next need to transform the unknown potential function
%T) into something more tractable for numerical computing.

Clearly, the hgad is not spherical, and impr_ovements n e BEM approximates(r) as another finite combination of
forward calculations can be effected by replacing the spherl% known linearly indep

geometry with a more realistic head shape extracted from
anatomical images. Since it is not currently possible to obtain N

accurate estimates of spatially varying tissue conductivities, u(r) = Z”n‘Pn(T)' (32)
the head is typically assumed to consist of a set of contiguous n=1

isotropic regions, each of constant conductivity, yielding thEhe unknown coefficients,, are thenodal parameterswhich
boundary integral equations of Section Il. Equation (5) iare functions of thenodesor nodal pointsr,. The basis
a Fredholm integral of the second kind for the unknowfunctione,, is chosen with the property that,(r,,) = 1 at the

endent basis functiopg(r)
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TABLE |
THE E/MEG MobDELS FOR DIFFERENT HEAD MODELS ARE PRESENTED IN THE LEFT COLUMN, WITH THE CORRESPONDINGEQUATION FROM
THE TEXT INDICATED IN PARENTHESES THE SOLUTION KERNELS ARE GIVEN EITHER IN A MATRIX FORM K (7, rq) OR A VECTOR FORM
k(r, rq), AND THE SUBSCRIPTS ON THEKERNELS RELATE TO THE SPECIFIC EJ/MEG MoDEL. THE KERNELS CAN BE APPLIED AS
b(r) = K(r, 74)q OR v(r) = k(r, 74)’ ¢, WHERE 14 AND g ARE THE LOCATION AND MOMENT OF AN EQUIVALENT CURRENT DIPOLE

Model Solution Kernel
K ( ) = 1 d
EEG, Infinite Homogeneous Model (8) w5 Fy) = LF[}J

(Primary Potential)

where d = r—r,.

.u()Cl,, - Cr
MEG, Infinite Homogeneous Model (7) K_(r, rq) = Zl71’ 3
(Primary Field) d
where C( ) is defined in (19)
MEG Spherical, Radial Field (9) Uy C,.rq
(b(1) = b (/1) irr) =\ s

T
Ho[VFr - FI],
MEG Spherical, Full Field (10) K(r.r) = Lﬁ;[rTJC,J

(Sarvas Model)
where I and VF are defined in (11) and (12).

2
kr,r) = [(c,=c(F-r.))F +Cor.r
EEG Spherical, Single Shell (13), (14) 1y = Ley = ealrr ))rg + eyrgr]
where ¢ and ¢, are definedin (25)and (26).

ky(r, rq) =
EEG Spherical, M Shell, Approximate (18) Ak (r, “1'},) + Aok (r, .Uzrq) + l3k1(r7 .U3rq)

where {4t;, A;} are “Berg Parameters”[3], [52].

Ko 7)) = [[@,(D). ... %,(r)]ﬁlaw}

EEG BEM (41 ~
“1) where H is “deflated” from (33), and

G _ is defined by (40).

=

<1
Kpowlr:r) = [K (r.r)+AMH G_]

where A(r) is from [15] or [37].

MEG BEM (42)

nodal point and is otherwise zero at all other nodes. This choiceThus (33) represents the BEM in its more general form.
of nodal points and basis functions yields the equivalence By design, the only unknown is the vector &f coefficients,
(32) between a nodal parameter and nodal point,as v(r,). {v;}. Once the coefficients have been calculated, ther)
Substituting (32) into (31) yields a system of equations  can be computed on any surface using (32). Selection of the

(1(r), voo(T)) potential and weighting basis functions determines not only the
e adequacy of the approximation in (32), but also the complexity
(PN (1), veo(T)) of inner product calculations in (33).
(1(r), L{pr(r)) -+ (1(r), L{pn(r))) The two most common weighting functions in the E/MEG
= literature are the collocation and Galerkin forms. In tiod-
(n(r), L{gi(r)) -+ (n(r), Lien(r)) location form, v;(r) is chosen as the Dirac delta function
vy &(r — r;), wherer; is the corresponding nodal point. In

(33) other words, the weighted residual equation (28) is satisfied
vN at certain collocation points instead of in an average sense,
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such that (33) becomes yield a generally well-conditioned matril that is directly
invertible. With this deflation, the vector of unknown basis
Vo) Lgn(r)) - Llen(r)) | [ coefficients is

-1

Voo(TN) L{gi(rn)) - L{en(ry)) | [vn v=H g (37)
(34)
The potentials are then found from (32) for an arbitrary point
The obvious advantage of (34) is that the inner products in (38)on a surface using

reduce to simpler function evaluations at the nodal points. The ,
Galerkin form is a weighted residual method for which the wv(r) 2 [p1(r), -, on(r)|v = [p1(r), -, on(r)]|H g.
weighting basis functions are identical to the potential basis (38)
functions, i.e.,i;(r) = (7).

The two most common potential basis functions used in As discussed in Hmalainen and Sarvas [26] and Meig
E/MEG areconstantand linear. Each closed surface is firstal. [32], numerical implementations for multilayer models may
tessellated intd planar triangles witlf’/2 + 2 vertices. The yield unacceptable errors in voltage potentials at the scalp
constant potential basis function assumes thafr) = 1 surface. They introduce an approximation they refer to as the
for » on the nth triangle. The resulting potential(r) is isolated skull approacliSA) in which the skull is modeled as
discontinuous on the boundary between two triangles andpairfectly insulating; the result of the resulting field calculations
vertices. The nodal point for each potential basis function ée then mapped back into the multishell model. Although
usually assumed to lie at the centroid of the triangle, resultipgesented in [26] as a “two-pass” algorithm (first calculate
in N = T basis functions. the one shell model, then the updated multishell model), the

For the linear potential basis function, gt r;, andr; be effects of their approximation are readily folded into a single
three vertices of thexth triangle ordered in such a way thatmodified matrixH. Srebro [47] presents a recent modification
the permutation; — r; — 73 corresponds by the right-handof this concept to yield an alternative “one-pass” algorithm.
rule to the outward normal of the surface. The linear basis

functions are then defined as (cf. [37]) B. Matrix Kernels
;( ) = r-(r; X Ty ’ {( ) = r-(re ¥ r;) ’ To reduce the_ BEM equations to the inner_ product of a
‘ ri - (r; X r) J ri - (1 X T) kernel and the dipole moment, each element in the vegtor
o) = r-(ri xrj) - in (38) can be represented as
i {1y xr) 6 = (i(r), 0o (1) = (i(r), Ko (r,7))Tg (39)

wherer is in the interior of the triangle. Thus any point in the ” . )

interior of a triangle is represented by three basis function¥here the specific form will be dependent on the choice of the
any point along a border between two triangles is representiégighting functiony(r), andko(r, 74) is defined in Table I.

by two basis functions, and the points at the vertices are tha€ dipole moment can, therefore, be separated from the inner
nodal points, represented by a single basis. Friangles on prodyct, and for theV basis functions we define a x 3

a closed surface, the linear approximation fas= 7/2 +2 Malrix Geo such that

basis functions. (W1(r), koo(r,74))T
These weighting and potential basis functions can be sub- g=Goog= q. (40)
stituted in theN x N system of equations in (33), which we (P (1), koo (1, 74)) T

can represent as
From (32), we see that the potential on any surface is, therefore

vr
whereg is an N x 1 vector, H is an N x N matrix, and (r) Y
v is the N x 1 vector of unknown coefficients. The matrix =[pa(r), - on(MH  Goog (41)

e o A the EEG foward prlen i soec.
AT 9 Y- 9 y For the MEG solution, we insert (38) into (3). Ferguson

be precomputed without knowledge of the primary current& al. [15] and de Munck [37] have shown that the resulting

or sensor locations. Depending on the choice of Weightinﬁ;t : .
and ootential basis functions. the inner oroductsinma iftegrations in (3) can be performed exactly for the constant
P ' P Y and linear basis functions. The MEG forward problem is,

be computed analytically or by using a numerical integraﬁc{ﬂerefore solved for arbitrary point as
scheme. '

In E/IMEG, the Neumann boundary condition used to gener- b(r) = boo(r) + A(r)v (42)
ate (5) leads to a well-known ambiguity; an arbitrary constant
potential may be added to any valid solution. The result w8here A(r) is a3 x N matrix found analytically by inserting
a singularity in the matrix, but the eigenvector associatedhe basis functions into the integral in (3). We refer the reader
with the zero eigenvalue is simply the constant vector (&b [37, (13)] and [15, (12)] for the explicit calculation df(r),
elements equal). The matrix can be “deflated” [7], [31] teince the definition of terms used becomes quite involved.

g=Hv (36

(1

[p1(r), -, on(r)]v
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C. Matrix Inverses and Transfer Matrices D. Comparisons of Error Weighting

As noted, the solution of the forward problem is usually The performance of BEM methods is dependent on the
incorporated into an inverse method. The inverse problem msgiection of the basis and weighting functions. To demonstrate
require computation of the forward fields for thousands dlfie effects of these weightings, we have applied BEM to a
dipole locations. With the sensor locations known, efficienciglree-shell spherical model, so that numerical comparisons
can be realized by precomputing terms independent of tbeuld be made with the known analytic solution. The radii
dipole locations. These terms can be combined traosfer of the model were 88, 85, and 81 mm, and the conductivities
matricesthat are stored and retrieved at “run-time” for morevere 0.33, 0.0042, 0.3 ' m~! for the scalp, skull, and
efficient generation of the gain matrices. brain, respectively. The MEG sensors were placed 120 mm

Since the matrixH is independent of both the dipolefrom the center, i.e., 32 mm from the “scalp” and all oriented in
location and sensor location, it can be precomputed and stotled x-direction; the use of nonradial MEG sensor orientations
prior to the determination of the sensor locations. In sonhéghlights the effect of volume currents on the BEM calcula-
early work, such as [2], the computational resources wetiens. The EEG electrodes were assumed to be at the nodal
not available to invertd directly, and iterative techniquespoints of the triangles (i.e., centroids for the constant basis
were instead discussed. While some recent papers contiané vertices for the linear basis) on the upper hemisphere of
to use Gauss—Seidel or Jacobi iterations [32], or power she outer most surface.
ries expansions [10], these approaches are, generally, ndtor the potential basis sets we applied both the constant
numerically advisable [20], and the inverse can be moand linear basis functions, and for the weighting functions we
efficiently and stably computed using an LU decomposition ased both collocation and Galerkin methods. Computations
suggested in [25] and [40] and subsequent works. Let the Mikre performed with and without the ISA [26]. We used 492
decomposition be denoted A8 = H. The LU decomposition and 1016 nominally equilateral triangles per surface for the
allows efficient and stable calculation of the transfer matriconstant and linear BEM respectively, so that the degrees
using Gaussian backsubstitution, and we will emphasize thit freedom (DOF’s) for the linear and constant cases were

efficiency by denoting the inverse i = (LU)~L. approximately equal. The average length of the side of triangle
If we assume a single common reference electrode, the EBG the inner skull was 20.0 mm in the constant case and
BEM kernel can be concatenated far+ 1 sensors as 13.9 mm in the linear case. The matrices for the forward

model were “deflated” [7], [31] and the forward gain matrices
were computed as described above. We used the approach in
[15] to compute the MEG solutions from the BEM calculated
potentials.

The dipole was moved along theaxis from [0, 0, 3]-[0,
0, 78] mm, i.e., to within 3 mm of the vertex of a triangle
We can generate the full EEG gain matrix by premultiplyingessellated on the inner most shell. The dipole was oriented in
the kernel by the “switching matrixW which subtracts the each of the three orthogonal directionsy, =, and the EEG
(m + 1)st sensor from ther single-ended electrode locationsand MEG forward fields calculated for each orientation. The
[35]. Combining this matrix with (43) allows us to precomputgomparison metric used was the relative difference measure
a “transfer matrix” 7', that is independent of the dipole(RDM), defined as

e1(r1), - en(r1) 1
H G (43)

901("'771-1—1)7 B} QON("'rn-l—l)

location
o1(r1), - on(ry) ROM = \/(bth O b)/(ba‘bth) (43)
w (LU ' |G =T,Goo ) )
O1(Pmit)s N (Trmg1) where b;, and b denote the analytic and numerical EEG or

(44) MEG sensor values.
In Fig. 2, the RDM for EEG and MEG are shown for the
dipole oriented in the:-direction. Since the MEG sensors are
where Gaussian backsubstitution is used to efficiently generatso oriented in the:-direction, the contribution in (42) from

T,. For m EEG channels ana&v BEM basis functions this the primary current is completely suppressed, and the RDM
transfer matrix ism x N. The extension to multiple referencereflects the error from calculating the contributions from the
electrodes and differential pairs follows easily. At “run-time,¥olume currents only. For the EEG results without ISA, we

one or more candidate dipole locations are selected, the matbserve that “constant Galerkin” (effectively the original Lynn
G is formed using (40), then the gain matrix is formed aand Timlake [30] approach) and “linear collocation” do not
the productT,G... The development of the magnetic fieldgenerally improve the RDM over that of the simpler “constant
transfer matrix follows similarly. collocation” method. These results are consistent with Schilitt
The precomputation of these EEG and MEG transfer matgt al. [46] who show errors on the outermost surface using
ces can greatly increase the efficiency of inverse procedurd® linear approximation (analogous to our case of linear
We note similar descriptions, alternative decompositions [suchllocation) that are almost twice as great as when using
as the singular value decomposition (SVD)], and the use #ie constant basis (our constant collocation case). “Linear
such transfer matrices in [4], [16], [25], [39], [40], and [43]. Galerkin” achieves a better RDM over constant collocation.
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Fig. 2 The RDM (in percent log scale) versusadirected dipole. The dipole is positioned along thaxis from 3 mm to 78 mm, i.e., to within 3 mm of the

radius of the innermost of the three spherical shells; see the text for descriptions of the model and the locations of the EEG and MEG sensors E&nce the M
sensors and dipole are both aligned in thdirection, the MEG sensors measure only the contributions from the volume currents. The top row shows the results
using a constant basis function across each triangle; the bottom row assumes a linear basis function. The left two columns use collocationHtadthe weig
residuals, and the right columns use the Galerkin approach, i.e., the error basis is the same as the model basis. The solid line denotes the RIBA using the
[26], and the dashed line is without ISA. We note that ISA improves the EEG solution for a dipole near the surface, but generally degrades the MEG solutio

In all EEG cases without ISA, the RDM is on the order of In Fig. 3, we repeat the analysis foradirected dipole. By
100% error as the dipole approaches the innermost surfamgational symmetry, the EEG results are virtually identical;
The EEG results with ISA show a remarkable improvement fowever, ther-directed MEG sensors now measure contribu-
the RDM, and we see that both the constant collocation af@ns from both the primary and volume currents. At the sphere
the linear Galerkin results show about 8% error as the dipdienter, all dipoles are virtually radially oriented, such that the
approaches the inner surface. external MEG should be zero and, therefore, the primary and
In the MEG plots, we observe that in general the RDM j¢olume current terms in (42) must now canc;el each other. We
below 10%, a significant improvement over the EEG RDMP€€ that th@_-dlrected_ dipole generates relatively larger RDM
This low RDM confirms the generally held belief that the ME@NaN thez-directed dipole, for dipoles near the center of the
forward solution is less sensitive to BEM errors. We note thgph_ere. At sr?allower depths, both “tangential” directions yield
both constant collocation and constant Galerkin are in gene? |Iar- RDMhS' dinole i di 4 Si he dinol
better than linear collocation, particularly for dipoles near thpeosnitilj)lgég’otn?hel?gx?slStﬂg\rl]v:chggti?ec.:teéngspf)I: r(;?)cr)e?s(:\;t
surface. We note that ISA doestimprove the MEG results, !

. . .a radial dipole, for which the external magnetic field is zero
which suggests that although ISA improves the scalp potentialsy ihe MEG RDM. therefore, undefined. In this case, we

for EEG, the cost is a perturbation of the stronger innermos.jated for MEG the root-mean-square (rms) error for a
currents that are detected by MEG. Near the innermost surfagg.na-m dipole moment

the constant model results show errors of only a few percent,

but we see that the linear Galerkin results are dramatically rms = 1/ (b"5)/104 (46)
superior to all others, with RDM below 1% even directlywhich gives an indication of the amount of error for a putative
below the surface. dipolar source across the MEG array of 104 sensors.
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Fig. 3 The RDM (in percent log scale) versusiadirected dipole along the-axis from 3 mm to 78 mm. See Fig. 2 for simulation details. Contrasted
with Fig. 2, the MEG sensors in this simulation measure contributions from both the primary and volume currents. By symmetry, the EEG results are
virtually the same as Fig. 2.

Again, by spherical symmetry, radial dipoles near the centerThese results demonstrate the importance of proper basis
of the head yield EEG RDM'’s similar to the tangentiabelection for both the weighting and potential functions. Since
directions. As this radial dipole approaches the surface, homost primary activity is presumed to lie in the cortex, the
ever, the differences in the various approximations becorgecuracy of the forward solution for sources within a few
dramatic. At shallow depths, the radial orientation yields Rillimeters of the inner skull is of vital importance in E/MEG.
strong potential gradient across the tessellated surface, seveYéfyhave shown that with the number of nodes held constant,
“straining” the constant and linear assumptions. Without ttfifferences in RDM error can exceed factors of 100, partic-
ISA, the EEG RDM'’s exceed 100% near the surface, excéﬂtar'y in the critical regiqn near the inner skull. The ISA in
in the linear Galerkin case. With ISA, the constant Galerkiéneral yields a dramatic improvement for EEG for dipoles

RDM remains remarkably consistent at all depths, but t@@ar the surface; however, the approximation is somewhat
e

linear Galerkin RDM'’s are again superior, remaining belo trimental to MEG calculations.
6% even just inside the surface.

For MEG the radial dipoles generate no external magnetic V. DISCUSSION
field and the primary and volume currents in (42) should can-
cel. The rms values in this case reflect the BEM error in cancél-: Summary
ing the numerically calculated volume current term versus the, geveloping the kernels listed in Table 1, we were attempt-
analytically computed primary current term. As the dipole apng to address aspects of the forward problem in E/MEG that
proaches the innermost surface, we see that the rms error f@jr@ of particular interest in the development and implementa-
10-nA-m dipole exceeds 100 fT, except for the linear Galerkijon of inverse methods. One important issue addressed here
case. Again, in all cases ISA doeetimprove the MEG rms. is the ability to factor out the dipole moment in a matrix
In the linear Galerkin case without ISA, the rms error remairfsrmulation of the inverse problem, for both spherical and
below 6 fT, an error level dramatically below all other casesealistic head geometries. In [33], we showed that the least
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Fig. 4 The RDM (in percent log scale) and rms (in fT log scale) versédsdirected dipole along the z-axis from 3 mm to 78 mm. See Fig. 2 for simulation
details. Since the dipole is radially oriented in this simulation, the MEG sensors should theoretically measure a zero external field, and thedefiidds un

In this instance, we plot instead the rms error (in fT) for a 10 nA-m dipole moment. For example, a 10 nA-m radial dipole generates about a maximum
6-fT rms error, in the linear Galerkin case without ISA. The radial direction appears to strain the assumptions of constant or linear potentéifokes the
approaches the inner surface, but the linear Galerkin results are dramatically improved over the other techniques.

squares localization problem can be solved efficiently fdrecomes routine, spherical representations of the head in
a complete set of spatio-temporal data by first solving f&/MEG can be replaced with more realistic geometries. In
the linear parameters as a function of the nonlinear onggneral, these geometries require numerical solutions, and our
this linear solution reduces the problem to a search owvdevelopment and presentation show EEG and MEG BEM
the nonlinear parameters only. To do this, we first need kernels to be of similar complexity. Both modalities require the
cleanly separate the nonlinear dipole location parameters fregecification of the conductivities and boundaries in generating
the linear moment parameters. Although this separationti¥e final transfer matrix. Finally, we note that when using
theoretically straightforward (cf. [6], [38], and [49]), a unifiedrealistic geometries, numerical solution of the forward problem
presentation of the concise forms listed in Table | has nitvolves several design parameters. The numerical results in
previously been published. the previous section highlight the dramatic effects that these
A second goal of our work was to explicitly compare th@arameters can have. In an attempt to explain these effects,
computational complexity of EEG and MEG forward modelgve discuss next an illustrative example. We follow this with a
In recent review papers such as [27], [45], and [51], the MEGView of the existing E/MEG BEM literature in terms of the
spherical solutions are nicely developed, but the EEG spheriégvelopment presented in Section IV.
solutions are omitted, with the possible impression that their
formulation is perhaps too complicated to present. When ) )
combined with the “Berg” parameters, our reformulations ¢ Weighted Residuals
the single-shell field kernel show computation of the EEG A simple illustrative example will serve to explain the
solution to be of the same complexity as the MEG solutioneffects that different error weightings can produce in E/MEG
As the acquisition of anatomical magnetic resonance irferward solutions. Letf(x) = z? be a quadratic function
ages as part of an experimental or clinical EIMEG paradigta be approximated by a constant or a linear basis function,
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potential at discrete sensor sites about the scalp. Thus the
collocation approach implies we might actually achieve better
error performance than Galerkin if we assign nodal points
to the sensor sites. In MEG, however, the sensor sites are a

Collocation vs Galerkin Comparison
1 T T T T T

o function of the integral of the potential over all surfaces, and
& the Galerkin approach implies that we might achieve better
0.6 »c}\)“/ error control over the continuum of potentials and hence better

. T e MEG approximations.

% o4l P ’ ‘\&‘Cﬁ\" e y | This example helps explain some of the differences we note
X et VP Consan Galerkin , among linear collocation and both forms of constant bases

el T er ComamColoaon ] in our simulations; however, we found linear Galerkin to

o2r R 7 1 be generally superior. For the same number of DOF'’s, the
e . //‘\ P oo iy 12 triangles can be smaller in the linear case than in the constant
ol 2 * case, and we are weighting the error over the entire triangle,

not just the nodal points. These differences are most notable
near the inner skull surface; we contrast these with the much
O T T o2 o3 o4 05 o6 o7 os o5y larger relative errors in the same region in [16], [47] (most
x other BEM publications do not include error results for sources
Fig. 5 Simple example suggested by S. Ferguson (private communicat®@ Cl0Se to the inner skull).
February 1996) to show the effects of approximation and error weighting. The
true function over the interval ig(z) = =2, and its true integral over the

interval is 1/3. The collocation forms precisely match the true function at thea'f Other BEM Approaches
respective nodal points; = 0.5, andx = 0, 1. The linear collocation has ~*

EI\_/\r/]ice thle il?_te?ration error over thathof codnsltant_ coII(l))catli)onhf(;r this interval. The weighted residual approach in Section IV is not the
inteeg?aatleetroItnheO(r:?r?eacrteng]ueer,rg;Se.ltTthL?snc%II?)cg?ig]rtlsrha;tbeoéeezrzlsnﬁ)irneiﬂisze ly numerical apprqach to SOIV!ng an mte.gral equation. This
the error at specific points, while Galerkin weighting minimizes the error iapproach, however, is a useful interpretation for much of the
a more global sense. work on BEM's in E/MEG forward problems, although the

terminology “collocation” and “Galerkin” as presented here
as illustrated in Fig. 5. The weighted residual expression &nd in [36] is not often used. One of the first papers often
therefore,/ (f(z) — 2*)w(x) dz, which we will evaluate on cited for the computational solution of the E/MEG integral
the interval [0, 1]. For constant collocation, we approximatequations is Lynn and Timlake [30], which presented a formal
f(x) as a constant functiorze(z) = 1, with a nodal point at error analysis for the case of the average error across planar
the midpoint,z = 0.5. Substitution into the weighted residualriangles, over which the potential had been assumed constant.
expression and minimization yieldsy = 1/4. Similarly, for Lynn and Timlake noted that the work of [2] and others were
linear collocation, the two basis functions asg(x) = 1 — = ad hocspecial cases of their rigorous method, which we have
and ¢ (z) = = with corresponding nodal points = 0 and referred to as constant Galerkin, since their average error is
x = 1. Minimizing this weighted residual yields, = 0 and the same as the method of weighted residuals with constant
vy = 1. basis sets for both the weighting and potential functions.

Both the constant and linear approximations ftac) are In many other papers, the “geometry” matrix in the Galerkin
overlaid in Fig. 5, and we see that both collocation errdorm of (33) is approximated by the values at the triangular
methods yield the correct values ffx) at their nodal points. centroids (cf. [27]), which some authors also refer to as the
Next we consider Galerkin weightings over the same intervaliscretization points” (cf. [32] and [37]). Many of these forms

1 may be more formally described as constant collocation, since
/ (Z vipi(x) —x2)<pj(x)dx (47) the weighting function is the Dirac delta. Often, however,
0 authors begin with the constant Galerkin form of Lynn and
yieldinguo = 1/3 for constant Galerkin, and, = —1/6,v; = Timlake, then shift to a collocation form for the geometry

5/6 for linear Galerkin. These solutions are overlaid on Fig. Bnatrix, yielding (probably) a hybrid mix between collocation
Two features distinguish the Galerkin solutions from thand Galerkin.
collocation methods: i) the Galerkin approximationstc) Another hybrid based on the constant assumption is that
have larger errors at the nodal points than the collocatiof Meijs et al. [32]. They assume a constant potential across
results (which are perfect at the nodal points in this exampl&ach triangle, but their discretization points (or nodal points)
and ii) both Galerkin approximationsitegrate to the same are at the triangle vertices (rather than centroids), where the
value as the true function over this interval,f(z) dz = 1/3. potential is generally discontinuous. In Schéttal. [46], their
By comparison, the constant and linear collocation fornfgertex method constant” potential follows the constant hybrid
integrate to 1/4 and 1/2, respectively, where we note that theethod in [32], and their center of gravity “COG” technique
linear collocation error is twice the constant collocation errois equivalent to our constant collocation.
The differences in integration error versus nodal evaluationOther work has focused on assuming a linear variation
error in this example has implications for EEG and MEGacross each triangle. In [37], de Munck presents a linear
In EEG, we are primarily interested in the evaluation of theasis for the potential across each triangle, with the equations
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assessed at discrete points, yielding our equivalent of lingdae matrix elements doa®t necessarily lead to better results
collocation BEM. He presents analytic solutions for some @fhen compared to numerical integration of these elements:
the central integrations in the linear collocation approach ftWe regret to report that these inexact numerical integrations
EEG. Schlittet al. [46] compare a linear collocation BEM tohave even been shown in some casesrprovethe quality

the two constant BEM'’s discussed above; analytic solutionsad the solutions. This is one instance ... in which computa-
some of the integrations are also included. In [15], Fergustinnal experiments yield results which are frustrating to the
et al. present analytic solutions for both constant and linearathematical analyst but nevertheless numerically valid and
assumptions for the integrals in the MEG forward model (3)mportant.”

formally completing the model for these basis functions. More

recently, Ferguson and Stroink [14] discuss several variations VI. CONCLUSIONS

of constant and linear approximations and their impact on

forward model accuracy. We have shown that the forward problem in MEG and EEG

In solving for (5), two boundary constraints were usedan be expressed in a matrix formulation in which the various

the potential and the currents normal to this surface must gamponents of the model are factored. _Th|s common _frame-
continuous across the boundary. As detailed in [2], [17], [18%0”( includes MEG and EEG data, spherical and realistic head

and [45], these constraints were used analytically to yield ( (?ometrles, fe?rso: one(r;tauont, gragmm deter andt d_|ffe;e(;1_t|all
which is a function of the unknown potentials only. In [5], easurement eliects, and constrained and unconstrained dipole

Brebbiaet al. refer to this approach as an “indirect’” BEM orientations. A key component of this factorization is the field
since the potential function (5) is first analytically derive kernel that relates a dipole with arbitrary orientation and lo-
Cation to the surface potentials and the (vector) magnetic field

before applying the BEM. The “direct” method sets up §atio : o .
system of equations based on both the potentials and théé;?;(ieﬁﬁs Eeeﬁif;o;fepzljzfﬁ;ﬁgg drier?lglbclehlead geometries.
normal derivatives, then proceeds to solve numerically fi In the case of MEG, the lead field can be specified as

the unknowns. Examples of the “direct” method in E/IMEG : ) . .
are Boemmelet al. [4], Urankar [50], and Fletcheet al separate matrices for the field kernel, sensor orientations and

[16], who apply collocation BEM to these “direct” equationsgradiometer configurations. For methods using constrained

Boemmelet al [4] and Urankar [50] have also presenteéﬁpde orientations, the dipole moments are explicitly factored,

analytic solutions for these “direct” kernels using a linear bas%mh that their orientations are easily incorporated in the gain

function. Fletcheet al. [16] present comparisons of their direcfﬂa.tr'xi S|m|larly for EEG we can separate th‘e f|elq ke"rnels and
%wnchmg matrices, as well as reduce the “run-time” compu-

technique with other BEM forms. See [5] for a more Complettations for inverse techniques using precomputation of source

discussion on "direct’ versus "indirect” methods. d’ndependent terms and, in the case of BEM methods, through

In Gonzalezet al [21], a collocation technique is describe calculating the surface potentials at the sensor locations onl
wherein the number of collocation points may exceed the = . g poter . L Y-
Using the recent theoretical work in approximating the

number of potential basis functions, and the potential basi?

X . .. infinite series for the EEG spherical calculation, we have
functions themselves are drawn from a Fourier description . ”

: shown that the computational complexities of EEG and MEG

the surfaces rather than planar triangles. Hafner [23] refers

. e . . , re approximately equal for both spherical and BEM models.
to this overspecification of collocation points as “general: . :
. . . . . hrough the use of our gain matrix framework, we can
ized point matching,” and multipolar expansions of surface

boundary parameterizations are discussed in the frameworkec"’)liSlly compare different modeling assumptions using a com-

P ) . oo . . ,mon inverse method, or conversely, compare different inverse
a “generalized multipole technique” or “multiple multipoles . .
: : . methods using a common forward model. Combining the two
[23]. Approaches of this type have not been widely studied Modalities into a single gain matrix is relatively simple usin
the E/MEG literature (but, see also [24]). geg y n 9

From this brief review of BEM as applied to E/MEG,the formulation presented here, although scaling differences

o . in the data and noise must be accounted for to effectively use
we observe many variations and hybrids, yet few of thege . T )
?[ys combined E/MEG matrix in an inverse procedure.

publications place their methods into a common framewor . -
or standard BEM terminology, such as used in [5] and [48%. Although the spherical head model may not be sufficiently

. r we have presen numerical resul monstratin
We hope that the framework presented here illustrates geurate, we have presented numerical results demonstrating

e
, ) o " o hat BEM methods can also produce large errors. Conse-
important issues of “constant” versus “linear” (with some

presentation of “quadratic” in [15], [16], and [37]) Iootentialquently, details of specific BEM implementations are nec-

. . . . B ] . essary when they are used as part of an inverse procedure,
basis function, and “collocation” versus “Galerkin” weight- ; . .
: . . . in_order to delineate the effects of numerical errors in the
ing basis functions. We note also that these issues are glso . ; -
. : . orward solution on the inverse method. More sophisticated
discussed in the more general computational electromagnefics : . . . ;

. €ad models employing anisotropic conductivities will need
community—see [13] and [22] for example.

: . . t r th me numerical i in their BEM or finit
Even with the numerical technique and bases selected, ea0 gddress these same numerical issues € ° €

of the elements in the geometry matd¥ in (36) generally e%]ment method (FEM) solutions to the forward problem.

still requires an integration or multiple integrations. The works

in [4], [15], [37], [41], [46], and [50] present analytic solutions ACKNOWLEDGMENT

to many of these integrals. We note, however, that Strang andrhe authors would like to thank J. Chang and T. Zhang
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