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MEG-Based Imaging of Focal
Neuronal Current Sources

James W. Phillips,Member, IEEE, Richard M. Leahy,*Member, IEEE, and John C. Mosher,Member, IEEE

Abstract—We describe a new approach to imaging neural
current sources from measurements of the magnetoencephalo-
gram (MEG) associated with sensory, motor, or cognitive brain
activation. Many previous approaches to this problem have con-
centrated on the use of weighted minimum norm (WMN) inverse
methods. While these methods ensure a unique solution, they do
not introduce information specific to the MEG inverse problem,
often producing overly smoothed solutions and exhibiting severe
sensitivity to noise. We describe a Bayesian formulation of the
inverse problem in which a Gibbs prior is constructed to reflect
the sparse focal nature of neural current sources associated with
evoked response data. We demonstrate the method with simulated
and experimental phantom data, comparing its performance with
several WMN methods.

Index Terms— Bayesian imaging, magnetoencephalogram,
mean field annealing, minimum norm.

I. INTRODUCTION

M EASUREMENTS of the magnetic field produced by
electrical brain activity can be made using an array

of superconducting quantum interference device (SQUID)
biomagnetometers. These measurements of the magnetoen-
cephalogram (MEG), and the associated scalp potentials or
electroencephalogram (EEG), are able to follow changes in
neural activity on a millisecond time scale and provide unique
insights into the dynamic behavior of the human brain. In com-
parison, the other functional neuroimaging modalities [func-
tional magnetic resonance imaging (fMRI), and single-photon
and positron emission computed tomography (SPECT and
PET)] are limited to temporal resolutions on the order of,
at best, one second, due to physiological time constants and
signal-to-noise considerations. Furthermore, MEG signals are
produced directly by the electrical activity through which the
brain communicates, rather than the indirect correlates, such
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as regional cerebral blood flow or glucose metabolism, that
are imaged by the alternative functional modalities.

To produce estimates of the neural current sources that gen-
erate the observed MEG signal, we must solve the associated
quasi-static electromagnetic inverse problem. The inherent ill-
posedness of this problem, compounded by the limited number
of spatial measurements available with current MEG systems,
presents a difficult challenge for standard methods of image
reconstruction. In the following we will describe an alternative
Bayesian approach that uses a physiologically based model for
the source to estimate a plausible solution from the available
data.

Physiological models for event related MEG assume that the
dominant sources are transmembrane and intracellular currents
in the apical dendrites of the cortical pyramidal cells [1].
The source image can, therefore, be constrained to the cortex,
which can be extracted from a registered volume magnetic
resonance (MR) image of the subject’s head. Furthermore, the
orientation of these cells normal to the cortical surface allows
us to constrain the orientation of the cortical current sources
[1].

By tessellating the cortex with disjoint regions and
representing the sources in each region by an equivalent
constrained current dipole [2] oriented normal to the surface
with amplitude , the MEG inverse problem can be expressed
in terms of a linear model. The linear forward model relating
the sources and the MEG measurements

can be written

(1)

where the th row of the system matrix may be
viewed as a discrete constrained projection of the lead field
(sensitivity) of the th sensor. Theth column of specifies
the gain vector for the th constrained dipole component.
The vector represents noise generated within the
sensor and by unwanted electromagnetic sources (power lines,
the heart, background brain activity, etc.), or from modeling
errors.

We use a quasi-static approximation, since the time deriva-
tives of the electric and magnetic field are small compared to
the ohmic current [3]. If the head is modeled as a spherically
symmetric conductor, the radial component of the magnetic
field outside the head is entirely due to the primary current;
consideration of the volume or return currents can be ne-
glected. In this case, the relationship between theth source
dipole and the radial magnetometer measurement at theth
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sensor is [4]

(2)

where is the permittivity of free space, and are the
locations of the dipole and sensor, respectively, and is a
unit magnitude vector for the orientation of theth constrained
source.

In practice, of course, the head is not spherical and the
sensors do not make point measurements of the radial com-
ponent of the magnetic field. To reduce sensitivity to distant
sources and the earth’s magnetic field, a gradiometer is used
to measure the difference in the magnetic flux through two
adjacent coils. The forward model is easily modified to include
the effects of the gradiometer and of nonradial sensors [4], [5].
Finite and boundary element methods can be used to further
extend the model to include nonspherical head geometries
(cf. [6]). While the forward model in these cases becomes
increasingly complex, the problem remains linear and the
reconstruction methods described below can still be used. In
the experimental results presented below we use a spherical
head geometry but specifically model the nonradial, planar
gradiometer configuration of the Neuromag122 MEG system
used in our work [4], [7].

A linear relationship also exists between the primary current
density and the potential difference between two electrodes
measured by the EEG. Mosheret al. [8] and Cuffin and
Cohen [9] show quantitatively that MEG and EEG provide
complementary information. In the spherical head model,
MEG is sensitive only to the tangential component of the
primary current density, whereas EEG is sensitive to all
components, and the MEG lead field magnitude falls off more
quickly than EEG near the center of the sphere. However, EEG
is more sensitive to uncertainties in the head model. To obtain
the best conditioned data set, therefore, simultaneous EEG and
MEG data can be acquired and used to reconstruct the current
source distribution. In the following, we will concentrate on
MEG only.

Most inverse procedures for EEG/MEG can be classified
as either multiple dipole or imaging methods. Multiple dipole
methods assume that a small set of current dipoles can ade-
quately represent the unknown source distribution. The dipole
locations and moments form a set of unknown parameters
which are typically found using a nonlinear least squares fit
to the observed data [10], [11]. Scherg and von Cramon [12]
extended the least squares approach to utilize the full spatio-
temporal data by constraining the dipole locations to be fixed
for the duration of the measured response. The error surface is
highly nonconvex with respect to the location parameters. The
multiple signal classification (MUSIC) algorithm [13] avoids
some of the problems due to this nonconvexity through the
use of signal subspace techniques [14]. While multiple dipole
methods are ideal for point sources, they may perform poorly
if sources are distributed and nondipolar over a significant
area. Multipole expansions can be used to represent these
more distributed sources [15], but this approach has received
little recent attention in the EEG and MEG literature. Imag-
ing is also well suited for distributed source representation,

with the advantage that the inverse problem is linear in the
source intensities and that anatomical constraints can be easily
introduced.

The major disadvantage of the imaging approach over
multiple dipole methods is that the number of unknowns can
rise dramatically and the problem is typically highly under-
determined. The search for an appropriate imaging method
is primarily concerned with finding a way to choose within
a set of images that produces essentially the same fit to
the data. Weighted minimum norm inverse methods [4], [7],
[16], [17] typically find solutions which match the data while
minimizing a weighted norm on the solution vector. These
techniques tend to smear sources over the entire reconstruction
region and are generally unstable due to ill-conditioning of
the system matrix. The instability can be overcome using
Tikhonov regularization [18] but the reconstructions remain
smeared.

The iteratively reweighted minimum norm method [19],
[20] is a nonlinear approach to overcoming the problem of
smeared sources in which the norm weighting is updated at
each iteration based on the result of the previous iteration.
This method uses a weighting matrix which, as the iterations
proceed, reinforces strong sources and reduces weak ones.
This results in very sparse solutions, but again the method is
extremely sensitive to noise and highly dependent on the initial
estimate. Leahy and Jeffs [21], [22] examined minimization
of the norm of the solution vector, for , subject
to linear inequality constraints on the data. They show that
there exist values of for which the resulting solution
is maximally sparse. Later, Matsuuraet al. [23], [24] re-
examined the linear programming case ( ), which they
refer to as the selective minimum norm approach, and showed
examples of sparse solutions obtained using linear inequality
constraints.

Here, we propose an alternative approach to the inverse
problem based on a Bayesian formulation. Rather than use
an arbitrary weighted norm to select the solution, we
introduce a prior distribution on the source which is used
to resolve the ambiguities inherent in the inverse problem.
This prior is constructed to favor the reconstruction of phys-
iologically plausible solutions. Basic studies of functional
activation, such as somatotopic or retinotopic mapping us-
ing fMRI or PET, reveal the sparse and highly localized
nature of activation in the cerebral cortex [25]. Our prior
is, therefore, specifically designed to reflect the expectation
that current sources tend to be sparse and focal. This prior
is combined with a Gaussian likelihood model for the data
which is based on the linear model (1) and an assumption
of additive white Gaussian noise. Maximization over the
resulting posterior probability results in a maximuma pos-
teriori (MAP) estimate of the primary current sources. In the
following, we briefly describe the regularized, weighted min-
imum norm (WMN) methods. We then develop our Bayesian
approach and describe a numerical procedure for computing
a MAP image estimate. We compare the performance of
the different methods for simulated data and experimental
phantom data from a clinical Neuromag 122 channel MEG
system.
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II. M INIMUM -NORM APPROACHES

The weighted minimum -norm approach to linear inverse
problems involves solving the constrained optimization prob-
lem

arg min
such that

(3)

where is an arbitrary symmetric positive definite matrix.
Writing the Cholesky decomposition , we can
form the solution as

(4)

where denotes the pseudoinverse of . The WMN
solution can also be formed from the singular value decom-
position (SVD) of

(5)

where and are the th singular value and correspond-
ing right and left singular vectors of , respectively.

Several forms of have been proposed for MEG
imaging applications. In [4] and [17], the weight matrix
is implicitly the identity matrix ( ). In the nor-
malized minimum norm method [19], [26],
diag where is the Eu-
clidean norm of the th column of . This weighting is
designed to compensate for the reduced sensitivity of MEG
to deep sources which results in a preference for superficial
distributions when . The Laplacian operator

may be selected to smooth the reconstruction of minimum
norm techniques using [27]. The low-resolution
brain electromagnetic tomography (LORETA) technique [16]
uses a combination of column normalization and the Lapacian
operator . Dale and Sereno [28] use a
weighting based on estimates of signal power at each location.
The signal power is estimated from the MEG data using
a minimum variance array beamforming technique which
may perform poorly for distributed or temporally dependent
sources. If sources are independent and represented well by
dipoles, however, the method has been shown to perform
well empirically. They also introduce the possibility in [28]
of making use of source location information extracted from
other functional modalities.

Exact matching of the data in (3) results in ill-conditioning
and high sensitivity to noise. Regularized forms of WMN
methods lower this noise sensitivity. One popular technique
is the truncated SVD [29] in which the summation in (5)
is truncated at a threshold index. Tikhonov regularization
[18] replaces the original problem (3) with the unconstrained
minimization of a combination of the residual error norm and
weighted norm of the solution vector

arg min
(6)

For any value of the regularization parameter, the solution
can be found as

(7)

(8)

where the filter parameters are . Note that
the filter coefficients decrease asdecreases. Therefore, the
contributions of to the solution from the smaller

are effectively filtered out. In our implementation of the
regularized WMN methods we select an optimal value for
using the L-curve method [18], [30].

The minimum norm methods can be reinterpreted in a
Bayesian framework. Let denote a prior probability on
the unknown image the probability of observing
the data given the source image, and the probability
of the observed data. Then, by Bayes’ theorem, the posterior
probability for the image given the observed data

is

(9)

While a general approach to image estimation using (9)
involves the minimization of the expected value of an appro-
priately chosen loss function [31], in most image processing
applications, the posterior probability is used to compute a
MAP estimate

arg max
(10)

If and are independent and normally distributed with zero
mean and covariance and , respectively, then the MAP
estimate is

arg max

(11)

That is

(12)

For the noiseless case ( ), this result is identical to (4),
the WMN solution. Therefore, the various weight matrices can
be interpreted in terms of the covariances of a Gaussian prior
with . If we assume , we arrive at the
general Tikhonov regularized form as given in (7) and (8).

This equivalence between regularized minimum norm meth-
ods and MAP image estimation is well known, see for example
the discussions of Bayesian image estimation methods in [7],
and [32]–[35]. If we view the WMN methods in this way,
the choice of weight matrices are equivalent to a generally
arbitrary selection of the covariance matrix of a Gaussian
prior. The alternative formulation presented below replaces
this arbitrary Gaussian prior with one chosen to better reflect
the expected attributes of the current sources that produced
the observed data.
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III. SPARSE OPTIMIZATION

Since data from PET and fMRI show the sparse nature
of neural activity, researchers have developed techniques to
achieve a sparse image from the neuromagnetic data. In the
WMN method of Dale and Sereno [28], sparse solutions
are obtained by using a weighting function that favors the
formation of sources at particular locations. While the method
will perform well if the weightings are correctly specified,
the problem of choosing where the sources should lie, i.e.,
choosing the weighting function, remains. Below, we briefly
review other methods that do not require that the specific
locations of the sparse sources be specified.

Leahy and Jeffs [21] describe a method for finding a solution
vector to a set of linear inequality constraints that has the
minimum number of nonzero elements. They show that under
certain restrictions, this maximally sparse solution can be
found by minimizing the norm for all in the range

for some

arg min
such that

(13)

where is a vector bounding the magnitude of the error
in each data sample. The solution can be found using a
modification of the simplex algorithm for linear programming.
Matsuuraet al [23], [24] also examine the linear programming
simplex algorithm for MEG image reconstruction. In [24]
an inequality constraint is used to bound the error on each
measurement to where is the standard deviation of the
measurement noise. While this approach does lead to sparse
solutions, placing a separate error bound on each measurement
is undesirable for Gaussian noise, since we would expect a
substantial number of the measurement errors to exceed.

An alternative approach to finding sparse solutions is a
WMN method in which the weight matrix is iteratively up-
dated using the result of the previous iteration. This method
was originally investigated by Ioannideset al. [36], then
more thoroughly developed by Gorodnitskyet al. [20]. The
iteratively reweighted minimum norm approach, also known
as focal underdetermined system solution (FOCUSS) [19], is
a novel inverse method which first provides an initial estimate
of using (4) with as the weighting matrix. At each
step thereafter, a new weight matrix diag
is formed. The solution is updated using

(14)

For any starting point , asymptotic convergence to a
fixed point is guaranteed [20]. The fixed points are, however,
unknown and highly dependent on the initial estimate. Also,
the final error in fitting the data may be large, even for
the noiseless case. In our implementation we use Tikhonov
regularization with a fixed regularization parameter to avoid
ill conditioning.

IV. THE NEW BAYESIAN APPROACH

Since the primary sources of the MEG are widely accepted
to be sparse and focal [25], [37], we suggest that this informa-

tion be used in reconstructing the image. This information can
be naturally introduced into the problem using the Bayesian
paradigm in which the source is modeled as a random field.
Since we assume that sources are sparse, the large majority
of source pixels will have zero amplitude. We, therefore, use
a binary indicator process to model whether each source
dipole is on ( ) or off ( ). Those sites that are
active are assumed to have a Gaussian amplitude,. We can
then write the source image vectoras

.* (15)

where “.*” signifies the Schur product (element by element
pair-wise multiplication) and diag is a diagonal
matrix. Assuming independence of the indicator and amplitude
processes, we can write the posterior probability forand
given the MEG data as

(16)

We find a MAP estimate of as .* where

arg max
(17)

The joint probability is chosen to reflect the expecta-
tion that the sources are sparse and focal. To achieve this goal,
we use a Markov random field (MRF) [38] model for which
sparse focal sources have a higher probability of occurring
than more distributed sources. We define to be a Gibbs
distribution

(18)

where is the partition function and the energy function
is given by

Sparseness Term Clustering Term
(19)

where the parameters and determine the relative
weights of the sparseness and clustering terms. The potential
function is defined in terms of each pixel
and its eight nearest neighbors as

(20)

This clustering term is small if neighboring pixels are of the
same magnitude. The exponential parameterdetermines
the strength of the clustering. As increases, the size of
the clusters tends to increase. Some examples of 2-D binary
images produced by sampling from this prior using a Gibbs
sampler [38], are shown in Fig. 1. Note that for the
neighborhood consists of the eight nearest neighbors, but for

, this dilates to the nearest 24 neighbors since the
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(a) (b) (c)

Fig. 1. Three examples of a random sampling fromp(x) on an annular
segment reconstruction region.�i is set as the pixel’s nearest eight neighbors.
(a) Q = 1:0, � = 0:20, and � = 0:25 (b) Q = 2:0, � = 0:20, and
� = 0:078, and (c)Q = 3:0, � = 0:20, and� = 0:024.

pairwise terms interactions become coupled when raised to
any power .

Since the parameters determine the relative probabilities
that each source pixel is active, it is straightforward to include
pixel-wise probability weightings determined from fMRI or
PET activation studies to influence the formation of these
sparse images. However, here we assume no specific prior
spatial information is available and we set and

for all pixel sites . The two characteristics of
primary significance in choosing the parameters of the prior
are the average number of active regions (clusters) and their
average size. By qualitative inspection of images sampled
from this prior we determined that gives acceptable
control over the average number of clusters and cluster size by
adjusting only the parametersand . We then used Markov
Chain Monte Carlo methods to compute the average number
of clusters and cluster size as a function of the parameters
and . Mesh plots of the number of clusters in the image and
the average cluster size are shown in Fig. 2.

To generate the values for these mesh plots, 2000 images
were generated using a Gibb’s sampler for each combi-
nation. In this, we utilized the “single long run” described by
Goutsias [39] by cycling through the image disregarding the
first 1000 iterations and then examining the image generated
every tenth iteration thereafter. The number of clusters and
cluster size were found for each image and then these values
were averaged. Once these functions are found, we can de-
termine the parameter values that match the expected image
characteristics. For the purposes of our examples, we assumed
two to three clusters on average, with an area of 0.3 cmfor
each cluster. Using the mesh plots in Fig. 2, we found that the
appropriate parameter values are and .

Due to boundary effects, the average number of clusters
and cluster size will vary with different reconstruction regions.
Therefore, the plots shown in Fig. 2 and the specific parameter
values are included here only as examples. The procedure de-
scribed here could be repeated for new reconstruction regions.
Alternatively, standard parameter estimation methods could be
used if suitable training images are available.

Having specified the parameters of the prior on the indicator
process , we proceed with the development of the posterior
probability. The source amplitude process,, is assumed to be
a set of independent zero-mean Gaussian random variables
with covariance . Assuming the noise process in (1) is

(a)

(b)

Fig. 2. Mesh plots showing the average properties for the annular image
region in Fig. 1 for0:15 � � � 0:25, 0:01 � � � 0:07, andQ = 2:5. (a)
Average number of clusters. (b) Average cluster size (in cm2). The “*” shows
the position of the�; � combination used in subsequent studies.

zero-mean Gaussian with covariance, we can write

(21)

where is the posterior partition function. The posterior
energy function is given by

(22)

The MAP estimate is found by maximizing over the log-
posterior, or equivalently

arg min
(23)

The solution to the optimization problem (23) provides our
estimate of the neural current sources.
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V. MEAN FIELD ANNEALING

Minimization of is difficult since the optimization
must be performed over a mixture of discrete and continuous
variables. Since this function is quadratic in the continuous
variables, , we can derive a closed form expression for the
optimal as a function of any particular indicator process.
i.e. the vector which minimizes (22) given the binary
vector is given by [cf. (12)],

(24)

Substituting into results in

(25)

which is a Gibbs energy function for the binary density
. We can, therefore, first find

the optimal indicator process by minimizing , then
substitute this result in (24) to obtain the optimal amplitude
process.

Coordinate-wise optimization with respect to a collection
of binary variables using, for example, iterated conditional
modes (ICM) [40], tends to produce rapid convergence to an
undesirable local minimum. We have found that to be the case
here, and use instead a continuation method based on mean
field annealing (MFA) [41].

MFA changes an optimization problem into a series of
expected value problems. We form a new density function
based on a temperature parameter

(26)

where is a temperature-dependent normalization param-
eter. The mean of the newly defined process ap-
proaches the mode of as in the following
sense.

Theorem: If is the unique global maximizer of ,
then

(27)

where denotes the expected value ofwith respect
to

(28)

Proof: If we separate from the summation and multi-
ply the numerator and denominator by , we
can rewrite this as

(29)

Since is the unique global maximizer,
. Therefore, the summations go to zero

as and (27) results. Q.E.D.
Using (28) to determine is infeasible due to the

large dimensionality and coupling in. Instead we use a
mean field approximation [42] to simplify the computation
of the (approximate) mean. Let represent all elements of the
field. For each pixel we create a univariate energy function

, written as

(30)

where denotes the mean of the field restricted on .
We define to be the corresponding mean field local
partition function

(31)

We then approximate the joint probability, , as the
product of independent mean field approximated univariate
probabilities

(32)

where the overall mean field partition function is the
product of all local mean field partition functions. This mean
field approximation effectively replaces the influence of the
statistical fluctuations of neighboring sites by their mean
values, where the means are computed with respect to the
approximated probability .

Using this mean field approximation, we can compute
, the approximated posterior mean at temperature

and pixel site , as

(33)

(34)

Note that the mean is computed with respect of the approxima-
tion in (32) to the joint density in (26). Substituting

from (31) and dividing numerator and denominator by
, we can simplify this to

(35)

where the difference in energies is given by

(36)

Note that to compute the mean of pixel, we need the mean
of all other pixels in the image since the statistical coupling
between sites in the original probability is replaced with a
coupling through their means. Therefore, the mean field must
be computed iteratively. In our work, the algorithm cycles
several times through all pixels using (35) to update their
mean values.
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The temperature parameter is slowly reduced as the
iterations proceed. As , coordinate-wise updating using
the conditional mean reduces to the method of ICM [40].
Therefore, the asymptotic local convergence behavior of MFA
is identical to that of ICM. It is easy to show that ICM will
converge to a local minimum , i.e., to a point where

such that and
differ at no more than one site. The potential advantage of
MFA over direct application of ICM is that by using the mean
in combination with an annealing schedule, we can slowly
approach the solution and hopefully avoid undesirable local
minima.

Our algorithm to perform MFA is summarized as follows.

1) Set and find an arbitrary initialization for
. Set the location of interest

and the iteration number .
2) Use (24) to determine for and

, all other set to .
3) Use the vectors to find and

.
4) Use (35) to calculate .
5) Increment . If , go back to 2), else go to 6).
6) Increment the iteration number and decrease ,

set , and if not converged go to 2).

We have found empirically that a good choice for the
annealing schedule is

(37)

where is a constant controlling the rate of ’s decrease
and is the initial temperature. Bilbroet al. [41] find that
in MFA, after a certain “critical temperature,” all locations
in a binary problem move to the binary values without any
direction change. They suggest at least 40 iterations to reach
this temperature. Hiriyannaiahet al. [43] have found the
optimal initial temperature is noise dependent and of order

, where is the noise variance. They also find that a
decrement of 5% or less in the temperature works well as
a general annealing schedule. We have found these numbers
to be a useful guide.

Note that this algorithm requires that we take the inverse of
an matrix twice in step 2). This can be computationally
prohibitive, especially if we have a large number of sensors. To
increase the computational speed, we recognize that when we
change only one element from its current value to either a zero
or a one, we effectively make a rank one update of the matrix

in (24). A fast method for performing
the inverse of a rank one updated matrix was proposed by
Sherman and Morrison [cf. 27]. The method is based on the
property that the new inverse is a rank one update of the
previous inverse. This method requires storing the previous

, but it reduces the order of computation from to .

VI. SIMULATIONS

We have conducted extensive simulations based on a
simplified two-dimensional (2-D) source model with a one-
dimensional (1-D) array of 80 sensors. All dipolar sources
are constrained to the annular segment of the plane

Fig. 3. Sample plot showing the support of the source region (a 90� annulus
from 5 to 9 cm) and the locations of the 80 MEG sensors (radial orientation,
point measurement). Sources are shown as full boxes (positive amplitude) and
empty boxes (negative amplitude), with the area of the box proportional to
the magnitude of the source. In the following reconstructions, sources with
magnitude less than 1% of the maximum are not included to improve the
clarity of the figures.

shown in Fig. 3. The distance between source locations
was set to 1.5 mm providing an isotropically sampled
image grid of 1098 pixels. All dipoles were constrained in
orientation perpendicular to the plane. The source
images were chosen using stochastic sampling from with

and nAm
. The first three parameters were chosen using the

method described in Section IV. The fourth parameter, the
standard deviation of the dipole moments, reflects the typical
activity seen in an evoked response study [7]. We setto

, where is the added noise variance which we assume
known. For the study with noiseless data, we assumed a
small nonzero for our likelihood function, comparable to
a signal-to-noise ratio (SNR) of 40 dB, to avoid numerical
instabilities.

The results of a representative simulation are shown in
Fig. 4 for three scenarios: one noiseless and two with added
white Gaussian noise. The percent residual error printed above
these images is defined as

(38)

where is the solution shown. SNR is defined as the average
signal power at each sensor divided by the noise variance
at the sensor. We compared the MAP technique to the four
methods described in Sections II and III: standard minimum

-norm technique, the normalized minimum norm technique,
the LORETA method, and the iteratively reweighted minimum
norm technique (FOCUSS).

These results show a wide variation in the characteristics
of the solution obtained using different weighting functions.
All of the linear minimum norm methods produce results
exhibiting a relatively large degree of smoothness. In com-
parison, both the iteratively reweighted minimum norm and
the new Bayesian method produce very sparse solutions.
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(a)

(b)

(c)

Fig. 4. Sample 2-D simulation with a 1-D sensor array. 80 point measure-
ments, 1,098 point image grid. The percent residual error (% RE) is shown
above and the range of source values (in nAm) is shown below each image.
Three scenarios are presented: (a) No noise added to the computed data; (b)
white Gaussian noise added to the data to achieve an SNR of 20 dB; (c) white
Gaussian noise added to the data to achieve an SNR of 8 dB.

Fig. 5. A view from below of the interior of the helmet electronics of
the Neuromag-122, showing the configuration of the 61 dual-channel planar
first-order gradiometers (Neuromag Ltd., Helsinki, Finland).

For each scenario, all five methods generally give similar
residual errors in the fit to the data. In some instances, the
iteratively reweighted minimum norm method gives larger
errors since there is nothing inherent in the method to limit
increases in the error from one iteration to the next. All
results can be considered “correct” in the sense that they are
configurations that could have produced the observed data.
This observation emphasizes the severely under-determined
nature of this problem.

We see that as the SNR decreases, performance of all
methods deteriorates. In the 20-dB and 8-dB cases, the MAP
solution clearly misplaces one of the source clusters, indicating
that at these SNR values, it is not possible to resolve between
the true source configuration and the MAP reconstruction since
both give similar fits to the data and both exhibit the sparse,
clustered property preferred by our prior—in fact the MAP
reconstruction generally produces a lower posterior energy
than the true solution.

Since this is a continuation method, the time required to
converge to a solution is an important consideration. Through
our rank-one updating techniques, we have managed to keep
the time commitment to a minimum. For the simulation shown
in Fig. 4(a), using a 100-MHz Indigo-2 SGI workstation, the
total CPU time taken to converge was 4 min, 45 s. Note that
the time required is a function of the and parameters
from (37). We set and for the MFA in our
MAP estimation algorithm.

VII. PHANTOM EXPERIMENTS

We have applied the same techniques used in Section VI
to experimental phantom data collected with a Neuromag-
122 system [7] using the 28-dipole phantom supplied by the
manufacturer. The Neuromag-122 system employs 61 dual-
channel planar first-order gradiometer units in a helmet-shaped
configuration at a radius of 10–11 cm, measuring the magnetic
field gradient in two orthogonal tangential directions, for
a total of 122 individual sensor measurements. The sensor
configuration for a Neuromag-122 is shown in Fig. 5.

The phantom consists of two half circles with a 7-cm
radius in the plane and plane, with dipoles in
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(a)

(b)

Fig. 6. (a) The phantom used in the Neuromag-122 experiments consists
of 28 tangentially oriented dipoles on two orthogonal planes. These trian-
gular-shaped magnetic dipoles are virtually identical to current dipoles in a
conducting solution (see [44] for discussion). (b) Schematic representation of
the phantom reconstruction regions (two orthogonal, 180� annular regions)
with the locations of the planar gradiometers of the Neuromag-122 system
superimposed.

fixed positions in these planes oriented tangential to the outer
edge. The image reconstruction grid consisted of 768 locations
spaced 4 mm apart on two 180annuli, with an inner radius
of 3 cm and an outer radius of 7 cm. A photograph of the
phantom is shown in Fig. 6(a), and a schematic of the imaging
surface with the surrounding sensor elements is shown in
Fig. 6(b). The distance between sources and sensors creates
a gain matrix which is more poorly conditioned than the one
in the previous simulations. This increases the sensitivity to
noise of all inverse methods. In all cases, the gain matrix
was constructed to include gradiometer effects and nonradial
sensor orientations assuming a spherical source volume using
the Sarvas approach [4].

The phantom data were collected at high SNR, then scaled
to reflect a reasonable evoked field response. We then added
data collected in the same system from a passive human
subject (100 averages of a prestimulus interval from an evoked
response paradigm). This background was added to the phan-
tom data to obtain a specified SNR. Fig. 7 shows the true
configuration and the MAP solution plotted as a 2-D projec-
tion of the three-dimensional 3-D source distribution. In this
example, noise was added equivalent to an SNR of 15 dB. The
minimum norm techniques tested on phantom data performed

(a)

(b)

Fig. 7. Reconstructions from a phantom experiment with three active
dipoles. 122 point measurements, 768-point image grid. Colored subject noise
was added to the data to achieve an SNR of 15 dB. (a) True configuration
of phantom dipoles. (b) MAP Solution.

comparably to the simulations in Section VI. The comparison
plots are shown in Fig. 8 with high and low SNR. The phantom
experiments show that our forward model is accurate and that
the MAP technique can also be used effectively to reconstruct
sparse sources from real data. We found that colored noise
from the human subject was slightly more damaging than
white Gaussian noise, since human subject noise tends to be
smoother across the sensor array and, therefore, more likely
to resemble spurious sources.

VIII. C ONCLUSIONS

We have developed a Bayesian framework for image esti-
mation from MEG data and described a MAP reconstruction
algorithm. In the simulations and phantom studies we have
conducted, our MAP solution was generally superior to those
obtained using minimum norm methods. However, this is true
only when the sources exhibit the sparse focal characteristics
on which our method is based. We stress that all of the methods
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(a)

(b)

Fig. 8. Sample phantom results with three active dipoles on two orthogonal
planes. 122-point measurements, 768-point image grid. Percent residual error
(% RE) is shown above and the range of source values (in nAm) is shown
below each image. Two scenarios are presented. (a) Colored subject noise
added to the data equivalent to an SNR of 15 dB. (b) Colored subject noise
added to the data equivalent to an SNR of 10 dB.

provide good fits to the data, and hence are physically (if
not physiologically) plausible. This ambiguity is inherent in
attempting to infer spatial information from on the order of
100 external sensor measurements. Specific prior information
is essential if useful spatial information is to be extracted from
the data.

This approach can be extended to include information from
other modalities (fMRI or PET) as well as using anatomical
MR images to constrain sources to the cortex. The method
can also be combined with more accurate forward models, and
also used for combined MEG/EEG data. We can also directly
extend the model for dynamic imaging by simply replacing

each of the amplitude processes,, in our model with a time
series model, .

The results that we have presented assume sources are
constrained to 2-D planes. Future research will focus on
sources constrained to a realistic cortical surface. Only then
can we begin to establish realistic limits on the ability of MEG
to usefully image neural activity.
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