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Abstract. We describe the use of truncated multipolar expansions for
producing dynamic images of cortical neural activation from measure-
ments of the magnetoencephalogram. We use a signal-subspace method
to find the locations of a set of multipolar sources, each of which repre-
sents a region of activity in the cerebral cortex. Our method builds up
an estimate of the sources in a recursive manner, i.e. we first search for
point current dipoles, then magnetic dipoles, and finally first order mul-
tipoles. The dynamic behavior of these sources is then computed using
a linear fit to the spatiotemporal data. The final step in the procedure
is to map each of the multipolar sources into an equivalent distributed
source on the cortical surface. The method is demonstrated through a
Monte Carlo simulation.

1 Introduction

Magnetoencephalography (MEG) data are measurements of the magnetic fields
produced by neural current sources within the brain. The problem of estimating
these sources is highly ill-posed due to the inherent ambiguities in the associated
quasistatic electromagnetic inverse problem, the limited number of spatial mea-
surements and significant noise levels. To overcome these problems, constraints
can be placed on the location and form of the current sources. Mapping studies
using direct electrical measurements, fMRI and PET reveal discrete focal areas
of strong activation within the cortex that are associated with specific cognitive,
sensory and motor activities. Consequently, a plausible model for the current
generators in an event related study consists of a number of focal cortical re-
gions each of which has an associated time course [12]. The MEG inverse problem
requires estimation of the spatial and temporal characteristics of these sources.

There are two major classes of methods for solving the MEG inverse problem
which we will refer to as “imaging” and “model based.” The imaging methods
typically constrain sources to a tessellated representation of the cortex, assume
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an elemental current source in each area element, and solve the linear inverse
problem that relates these current sources to the measured magnetic field. Ac-
curate tessellations of the cortex require on the order of 105 elements. Since
the maximum number of MEG sensors in the current generation of whole head
MEG system is approximately 300, the problem is highly underdetermined. By
using regularized linear methods based on minimizing a weighted L2-norm on
the image, we can produce unique stable solutions [11,14]. Unfortunately, these
methods tend to produce very smooth solutions that are inconsistent with the fo-
cal model described above. Many nonlinear algorithms have been proposed that
attempt to avoid this oversmoothing problem. While they have met with some
success, the cost functions required to achieve more focal solutions are usually
highly nonconvex and computation times can be very high, e.g. [1,11].

The model-based methods assume a specific parametric form for the sources.
By far the most widely used models in MEG are multiple current dipoles [4,9,12].
These assume that the neural sources are relatively small in number and each
sufficiently focal that they can be represented by a few equivalent current dipoles
with unknown locations and orientations. Parametric methods can be extended
to model the temporal correlation expected in the solutions through fitting the
multiple dipole model to the entire data set and estimating the time course
for each estimated dipole location. As with the nonlinear imaging methods, the
cost functions are nonconvex. Signal subspace based methods such as MUSIC
or RAP-MUSIC [7,8,9] can be used to rapidly locate the sources in a sequential
fashion and avoid the problem of trapping in local minima.

The equivalent current dipole model is directly interpretable as a current
element restricted to the cortical surface. As discussed in [10], the dipole may
also represent locally distributed sources that are not necessarily restricted to
a single point. However, one of the perceived key limitations is that these dis-
tributed sources may not be adequately represented by the dipole model. This
problem was one of the prime motivations for the development of the imaging
approaches. An alternative solution is to remain within the model-based frame-
work but to broaden the model to allow parametric representations of distributed
sources. The multipolar expansion provides a natural framework for generating
these models. The multipolar expansions are formed using a Taylor series repre-
sentation of the magnetic field equations. If the expansion point is chosen near
the center of a distributed source, then the contribution of higher order terms
will drop off rapidly as the distance from the source to the sensor increases.
Using this framework we expand the set of sources to include magnetic dipoles
and first order multipoles. These sources are able to represent the field from a
distributed source more accurately than is the current dipole. While the idea of
using multipolar expansions in MEG source modeling is not new, the approach
has generally seen only limited used in magnetocardiography, e.g. [6,15].

The parameters of the estimated higher-order multipolar terms are not eas-
ily related to the actual physiological processes that produce the MEG signals.
We describe here a two-stage procedure in which we first estimate the locations
and parameters of the multiple multipoles, then relate each of the multipoles to
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equivalent cortical sources. The method described here for estimating the loca-
tion and moment parameters of these multipolar representations is an extension
of the RAP-MUSIC method developed in [8] for localizing current dipoles. The
algorithm recursively builds a model for the current source configuration by first
testing for the presence of point current dipoles, then magnetic dipoles, and fi-
nally first order multipoles. In this way the model order and complexity is gradu-
ally increased until the combined estimated sources adequately explain the data.

In the cortical re-mapping stage, we find regions of cortex in the vicinity
of the parametric source on which we fit current distributions consistent with
the fields associated with each estimated multipole. The final result is then a
dynamic image of current activity mapped onto a tessellated representation of
the cortex which reveals the time varying behavior at the various locations on
the cerebral cortex activated during a particular experiment.

2 Multipolar Source Modeling

2.1 Multipolar Expansions

The relationship between the measured magnetic field and the current sources
is determined by the quasistatic form of Maxwell’s equations. In the special
case in which the head is modeled as a set of concentric nested spheres, each
with uniform and isotropic conductivity, there is a simple integral equation that
relates the external magnetic field to the current sources. We use this result
to derive the multipolar expansion. We include details only for the case where
measurements are made of the radial component of the magnetic field. They
extend directly both to the case of non-radial magnetic field measurements and
to measurements of surface potentials of the type that would be collected using
an EEG system.

Fig. 1. Primary neural activity of current density jp(r′) at location r′ inside a closed
conducting volume generates an external magnetic field at location r as detected by a
magnetometer with radial orientation r/r, to yield the scalar magnetic measurement
br(r). We develop a multipolar expansion for sources in a small region, G, using a
Taylor series for local displacement x
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A truncated multipolar expansion will be used to represent the measured
magnetic field for the case of a current source restricted to a relatively small
volume, G as illustrated in Fig. 1. As the extent of the source grows, more terms
are required in the expansion to adequately represent the external magnetic field.
In the following we will develop expressions for the special cases of (i) point
sources that are exactly represented as point current dipoles, (ii) highly focal
sources that can be represented by a magnetic dipole model, and (iii) locally
distributed sources that can be represented by a first-order multipole model.

The external magnetic field is generated by the sum of the primary neural ac-
tivity, designated by the current density vector jp(r′), and the volume or return
currents resulting from the electric field produced by the current source. It is the
primary currents that are the sources of interest in MEG inverse problems [4].
The contribution of the volume currents to the external field must be accounted
for but the currents themselves are of little interest. In the special case treated
here of radial measurements for sources confined to a spherical volume, the vol-
ume currents do not contribute to the measured field, and the radial component
br(r) of the magnetic field b(r) at location r is given by direct extension of the
well known Biot-Savart equation:

br(r) ≡ r

r
· b(r) =

r

r
· µ0

4π

∫
G

r′ × jp(r′)
d(r, r′)3

dr′ =
r

r
· µ0

4π

∫
G

M(r′)
d(r, r′)3

dr′, (1)

where d(r, r′) = r − r′ is the distance vector between the two arguments,
d(r, r′) = ‖r − r′‖ the corresponding scalar distance, and G is any volume
containing the source. For the final equality, we define the magnetic moment
density or magnetization as M(r′) = r′ × jp(r′) (e.g., [5](eq. 5.53)).

The multipolar representation is found using the Taylor series expansion of
a scalar function

ψ(r + x) =
∞∑

n=0

(x · ∇)nψ(r)/n!, (2)

applied to the distance d(r, r′), where ∇ represents the gradient with respect
to r. Using the equalities ∇r = I (where I is the identity matrix), ∇rn =
∇(r · r)n/2 = nrn−2r, and ∇d(r, r′)n = −∇′d(r, r′)n = nd(r, r′)n−2

d(r, r′)
(where ∇′ is w.r.t. the primed variable), yields the expansion about r′:

d(r, r′ + x)−3 = d(r, r′)−3 + 3d(r, r′)−5(x · d(r, r′)) + . . . . (3)

To produce the multipolar expansion, we use (3) to expand (1) about rl, the
centroid of the region to which the primary source is confined (cf. [6] (eq. 9.3.18)):

br(r) =
µ0

4π
r

r‖r − rl‖3 ·
∫

G

(
M(rl + x) +

3M(rl + x)
‖r − rl‖2 x · (r − rl) + . . .

)
dx. (4)
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If ‖x‖ � ‖r − rl‖, then we may generally neglect the higher order terms.
From Fig. 1 we can see that this inequality is equivalent to the extent of the
distributed source being much smaller than the distance from the source to the
sensor. We now consider the three types of sources that will be used to represent
regions of increasing size in our model of cortical activation.

Point Current Dipole: We consider first the case where the current source
is confined to a single point, i.e. jp(r′) = δ(r′−rl)q where q is the current dipole
moment and δ is the Dirac delta functional. Substitution into (4) produces the
result

br(r) =
µ0

4π
r × rl

rd(r, rl)3
· q, (5)

since all terms but the first are identically zero. This is the standard current
dipole model that is widely used in the MEG and EEG literature. The source is
characterized by the location rl and moment q.

Magnetic Dipole: We now consider the effect of allowing the extent of the
source to grow so that it can no longer be represented using a delta function.
We let the extent of the source be sufficiently small that the second and higher
order terms are negligible, and we rewrite the first term of (4) as

br(r) ∼= µ0

4π

(
r

rd(r, rl)3
·
∫

G

M(rl + x)dx
)

=
µ0

4π
r

rd(r, rl)3
· m, (6)

where we define m to be the magnetic dipole moment

m =
∫

G

(rl + x) × jp(rl + x)dx. (7)

Thus we can characterize the magnetic dipole with the moment vector m and
location rl. In (7) we can define q(rl) =

∫
G

jp(rl + x)dx to be the equivalent
current dipole moment and m̃(rl) =

∫
G

x×jp(rl+x)dx to be the local magnetic
dipole moment, i.e. a local “spin” of the source about a central point. We can
therefore express the magnetic moment as m(rl) = rl × q(rl) + m̃(rl), and the
magnetic dipole includes the equivalent current dipole as the special case.

First-Order Multipole: Now we consider the final case where the source is
sufficiently large that the first two terms in the Taylor series should be included.
In this case we can rewrite (4) as

br(r) ∼= µ0

4π
r

rd(r, rl)3
·
(

m +
3(Q(rl) · d(r, rl))

d(r, rl)2

)
, (8)

where Q(rl) is the magnetic quadrupolar term defined as the matrix formed from
the tensor product

Q(rl) ≡
∫

G

M(rl + x)xdx. (9)
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We can rewrite (8) using the Kronecker product a⊗b, defined as the concate-
nation of the product of each element of a with the vector b, and the operator
vec(A), defined as the concatenation of the columns of a matrix into a vector:

br(r) ∼= µ0

4π

(
r

rd(r, rl)3
· m +

3(d(r, rl) ⊗ r)
rd(r, rl)5

· vec(Q(rl))
)
. (10)

We therefore characterize the first-order multipole using the combination of the
magnetic dipole moment vector m, the nine magnetic quadrupolar terms in
Q(rl), and the location rl.

We could obviously continue to expand the multipolar series to higher-order
terms. In theory, focal sources could exist such that the leading terms of the ex-
pansion integrate to zero, leaving only the higher-order terms. In practice, how-
ever, our assumption that the primary activity is modeled as elemental dipoles
restricted to the cortex minimizes our need to consider these higher terms. The
spatial distance from the cortex to the sensors, the relative smoothness of the
cortical surface, and the relatively high noise levels suppress these higher-order
moments in relatively focal regions of activation.

2.2 The Forward Problem

The multipolar development above includes three models of assumed increasing
spatial extent, each of which produces a radial magnetic field measurement which
is a nonlinear function of the location (i.e. the center of expansion for the Taylor
series) and a linear function of its moments. In the inverse problem, both the
linear and nonlinear terms are assumed unknown. The decomposition into linear
and nonlinear components for the current dipole model has previously been
used to simplify nonlinear least squares fitting [9] and localization using signal
subspace methods such as MUSIC [7,8]. Since the magnetic dipole and first order
multipole are similarly decomposed, these methods can be directly extended
to include searches for distributed non-dipolar sources. Furthermore, as noted
above, the expansions included here can be readily extended to the case of non-
radial MEG and EEG measurements for the spherical head models.

The radial magnetic field can be represented for each of the three types of
source as the inner product of a gain vector and the vector of linear parameters,
b(r) = g(r, rl) · l. The separation of nonlinear and linear parameters are clearly
shown in (5), (6), and (10). We assume an MEG array of m sensors sampling
the magnetic field of the source. By concatenating these measurements into a
vector, we can represent the “forward field” of the source as

[
b(r1) . . . b(rm)

]T =
[
g(r1, rl), . . . , g(rm, rl)

]T
l = G(rl)l (11)

where G(rl) is the “gain matrix” which accounts for all possible orientations of
the source at rl [9]. The forward model for an arbitrary combination of sources
can be found by linear superposition. To extend the forward model to include
temporal variations, we adopt the assumption that there are a finite combination
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of sources that are active. The solution of the inverse involves estimating the
location, moment parameters and time courses of each of these sources.

It is possible for two sources to be synchronous. For example, bilateral ac-
tivation in sensory or auditory cortex could be represented by two synchronous
focal dipoles, one in each hemisphere. To account for this possibility in the sub-
space methods described below, we adopt an independent topography model [7] in
which each topography consists of one or more elementary sources, all of which
have identical time courses. For a p-source topography sampled over m sensors
and n time instances, we may express the resulting m× n spatiotemporal data
matrix as


b(r1, t1) · · · b(r1, tn)

...
. . .

...
b(rm, t1) · · · b(rm, tn)


 =

[
G(rl1), · · · , G(rlp)

]



l1(t1) · · · l1(tn)
...

. . .
...

lp(t1) · · · lp(tn)


 (12)

where lj(tk) represents the linear parameters for the jth source sampled at the
kth time instance. Since all of these sources have the same time course, the
matrix of linear parameters is rank one and may be decomposed using an SVD
into the outer product of a single pair of singular vectors u and v scaled by the
singular value σ,

uσvT =




l1(t1) · · · l1(tn)
...

. . .
...

lp(t1) · · · lp(tn)


 . (13)

Defining the scalar time series of this independent topography to be s = σv,
we may rewrite (12) as

[
G(rl1) · · · G(rlp)

]
u

[
s(t1), · · · , s(tn)

]
= a(ρ1,u1)sT . (14)

The p-source topography vector is a function of the set ρ1 of p source locations,
ρ1 = {rli

}, i = 1, . . . , p and the unit norm vector u1 from (13). The vector u1
may be viewed as a generalization of an “orientation” vector by concatenating
all of the linear source parameters and scaling by its length,

ul ≡
[
lT1 , . . . , l

T
p

]T

/
∥∥∥[

lT1 , . . . , l
T
p

]∥∥∥ . (15)

To complete the full model for the observed MEG data we simply concatenate
the r independent topographies that make up the complete source and add noise:

F = A(ρ,u)ST + N =
[
a(ρ1,u1), . . . , a(ρr,ur)

]



sT
1
...

sT
r


 + N , (16)

where each m × 1 column vector a(ρi,ui) ≡ G(ρi)ui represents the ith inde-
pendent topography corresponding to the ith time series si. The set ρ comprises
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the r sets of source locations {ρi} and the set u the corresponding topogra-
phy orientations {ui}. Each topography may comprise one or more multipolar
sources, but only a single time series. By our definition of independent topogra-
phies, the matrix of time series S is rank r, and the matrix of topographies A
is assumed to be unambiguous and also of rank r. The matrix N represents ad-
ditive random noise, which we will assume to be spatially and temporally white
with zero mean and variance σ2

e .

2.3 Signal Subspace

Under the assumption that the signal is uncorrelated with the noise, the auto-
correlation matrix for the m× n spatiotemporal data in (16) is

R = E{FF T } = A(ST S)AT + nσ2
eI. (17)

The autocorrelation matrix can expressed using an eigendecomposition as:

R = [Φs|Φe]
[

Λs 0
0 Λe

]
[Φs|Φe]T (18)

where the diagonal matrix Λs = Λ + nσ2
eI represents the r largest “signal plus

noise” eigenvalues and their corresponding eigenvectors form the matrix Φs. The
diagonal matrix Λe = nσ2

eI represents the smallest “noise” eigenvalues and their
corresponding eigenvectors form the matrix Φe.

We refer to Φs as spanning the signal subspace and to Φe as spanning the
noise-only subspace. In practice, we estimate the signal Φs and noise Φe subspace
basis vectors by a eigendecomposition of the outer product FF T or an SVD of
F . We denote the estimate of Φs as Φ̂s.

3 Source Localization

3.1 RAP-MUSIC

The RAP-MUSIC algorithm is described in detail in [8]. Here we briefly review
the method and describe its application in combination with the multipolar
models developed above. The first source is found at the location which produces
the global maximum of the metric

ρ1 = arg max(subcorr(G(ρ), Φ̂s)1). (19)

The function subcorr(·) represents the “subspace correlations” between the two
matrices. The subspace correlations are the ordered set of cosines of the principal
angles as defined in [3]. The first subspace correlation, subcorr(·)1, corresponds
to the cosine of the smallest principal angle and will be unity if the two matrices
have at least a one-dimensional subspace in common. If we define UG to be
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the orthogonal matrix spanning the same space as G(ρ), then the square of the
subspace correlations are found as the eigenvalues of the matrix

UT
GΦ̂sΦ̂

T
s UG. (20)

By maximizing the first subspace correlation in (19), we identify the source
location and corresponding gain matrix that has the smallest principal angle with
respect to the signal subspace. Since we only need to search over the location
parameter, a nearly exhaustive search over a relatively dense three-dimensional
grid within the brain volume can be performed relatively quickly for any of the
three source models of the previous section. For the case of synchronous sources,
the dimensionality of the search increases by at least a factor of two and the
computational cost rises dramatically, but the procedure nonetheless proceeds
directly.

To complete the first independent topography model, we need the corre-
sponding source orientation vector, which is a simple linear transformation of
the eigenvector of (20) corresponding to the maximum eigenvalue [3,7]. The re-
sulting estimates yield the first estimated independent topography, a(ρ̂1, û1) =
G(ρ̂1)û1.

For each of the remaining k = 1, 2, . . . , r RAP-MUSIC recursions, the non-
linear source location parameters are found as

ρ̂k = arg max
(
subcorr

(
Π⊥

Âk−1
G(ρ),Π⊥

Âk−1
Φ̂s

)
1

)
(21)

where Âk−1 = [a(ρ̂1, û1), . . . ,a(ρ̂k−1, ûk−1)] represents the composite indepen-
dent topography matrix, and the projection operator Π⊥

Âk−1
is computed as

Π⊥
Âk−1

= I − Âk−1Â
†
k−1 (22)

where Â
†
k−1 ≡ (Â

T

k−1Âk−1)−1Â
T

k−1 is the pseudoinverse of Âk−1. Through this
recursion, we sequentially remove the components of the signal subspace that
can be explained by the sources that have already been found. We then search
the remaining signal subspace for additional sources.

At each iteration the source location set ρ in (21) may represent one or more
multipolar sources. To find the simplest sources consistent with the data, we
begin the search with the current dipole model, then progress through the mag-
netic and first-order multipole models. The decision to increase the complexity
of the model is based on a minimum correlation threshold. In this paper, we
will restrict the search to one-source models only, halting the recursion when the
first-order multipole maximum subspace correlation drops too low. Examples of
different correlation thresholds are given in the Monte Carlo simulations in the
next section. Extensions to multiple synchronous dipolar sources are discussed
in [7], with obvious extensions to multiple multipolar sources.

With all sources in the data identified and their independent topographies
represented in the final topography matrix Âr, estimates of the corresponding
time series are readily found as Ŝ = (Âr

T
Âr)−1Âr

T
F or in some regularized

form thereof.
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3.2 Mapping Parametric Sources onto Cerebral Cortex

The linear parameters of the multipolar model computed using the RAP-MUSIC
search are estimates of the moments formed by integrating the primary current
sources as defined in (1). When the sources are confined to cortex, which we
can represent as a continuous surface, the moments are generated as integrals
over a surface patch containing the sources. For the single-source topographies
considered here, we assume that each source represents the activation of a single
contiguous cortical patch. The final step in our parametric imaging method
is then to relate the multipolar moments back to a plausible distribution on
the cortical surface which consists of a set of patches of activation consistent
with the estimated moments. Fitting the moments to sources on the cortex
involves estimation of both the surface patch and the current distribution on that
patch. As with the original MEG inverse problem, the solutions are ambiguous.
However, under the assumption that each surface patch is contiguous and in the
vicinity of the estimated multipole, the degree of ambiguity is greatly reduced.

To perform the final stage of the multipolar imaging method we use a finely
tesselated cortical surface extracted from an MRI volume. In fitting the multi-
polar sources to the cortex, we allow a current element at the vertex of each
triangular patch on the surface, with an orientation derived as a weighted sum
of the triangular normals adjacent to the vertex. To fit a specific multipolar
source with topography a(ρi,ui) to the cortical surface, we begin by creating a
list of candidate locations on the cortex in the vicinity of the source location.
For each candidate point, we test the subspace correlation between the point
and the topography. If the point with the highest correlation meets a minimum
threshold (e.g. 98%), we designate it as the corresponding re-mapped cortical
source for that topography and halt. Otherwise, we add adjacent points to each
of the candidate points to form small distributed patches and continue to swell
each candidate point until we find a patch that meets the threshold.

This approach will generate a patch of minimal size consistent with the iden-
tified topography. We may continue to swell the patch and find additional pos-
sible sources consistent with the topography, a consequence of the ambiguity in
the inverse problem rather than a specific limitation of the method described.
Currently we grow the patch by adding a ring of triangles around the elements
already in the patch. A more sophisticated approach based on testing a number
of possible candidates to add to each patch may prove more robust. Alterna-
tively, we could adopt a stochastic model for the mapping between the estimated
multipolar parameters and the corresponding cortical activation. This approach
could readily incorporate the activation models described in our previous work
on Bayesian MEG imaging [11].

4 Monte Carlo Simulations

In the first simulation we used the tesselated human cortex shown in Fig. 2
which contains approximately 230,000 triangles. Radial magnetic fields sensors
and a spherical forward model were used in the generation of the simulated
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Fig. 2. (a) The ground truth for the simulation study showing mappings of the three
sources onto the cortical surface; (b) Reconstruction of the cortical activity using the
multipolar method; (c) Reconstruction of the data from time t = 10 using a regularized
minimum L2 norm method

data and in the inverse method. Three distributed sources were created on the
cortical surface, also shown in Fig. 2. The three sources were given overlapping
independent time courses as shown in Fig. 3. The forward magnetic field was
measured by a simulated array of 104 magnetometers spaced approximately
uniformly on the upper hemisphere at a radius of 12 cm. Zero mean Gaussian
white noise was added to the sensor data at a ratio of 100:1 signal to noise
variance.

Although analysis of the singular value spectrum of this high SNR data
clearly revealed a rank of three, we overspecified the rank to ten to demonstrate
robustness to selecting too great a rank. We set the acceptance threshold for
correlation at 98%. The RAP-MUSIC algorithm was first run with the simplest
of the source topographies, the current dipole (5), for which a maximum cor-
relation of 99.9% was found. On the second recursion, the correlation with the
dipole model dropped below the threshold of 98%. We therefore increased the
complexity of the model to the magnetic dipole (6) and achieved a correlation
of 98.3%. The third recursion was below the threshold for the magnetic dipole,
so we increased the model to a first-order multipole (10) to obtain a correlation
of 99.9%. On the fourth recursion, the correlation plummeted to 62% for the
multipole and the recursion was halted at three sources. The three topographies
found were then used in a least-squares fit to determine the time series of the
three sources, Fig. 3.

We mapped the three topographies into the minimal cortical source regions,
also shown in Fig. 2. For comparison we also include a regularized minimum
L2-norm solution fitted at one of the intermediate time slices, for which the
spatial distribution and time series are also shown in Fig. 2 and Fig. 3. We see
that although the re-mapped topographies obtained using the multipolar method
are not identical to the “ground truth” they are indeed similar. In comparison,
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Fig. 3. Time courses for the three sources (a) ground truth; (b) time courses estimated
using the multipolar method; (c) time courses averaged over each of the true activation
areas computed from the minimum norm solutions. In this high SNR example, the time
series reconstruction in (b) is nearly perfect, while (c) exhibits high noise sensitivity

the minimum norm solution exhibits substantial source blurring due to the low
resolution of the linear inverse methods.

As discussed above, the multipolar source center is assumed to be near the
distributed cortical source. We tested this assumption in a Monte Carlo simu-
lation of 10,800 distributed sources over a range of noise levels. We also tested
the effects of the correlation threshold parameter used in the RAP-MUSIC algo-
rithm to accept a model. Each source was centered randomly on the upper half
of the brain surface in Fig. 2. With a 50% probability, each source was either
a “monophasic” contiguous patch of 200 mm2 or a “biphasic” patch of two 200
mm2 patches centered about 8 mm apart (about 50% overlap) and of opposite
polarity. Each Monte Carlo realization simulated three such sources with over-
lapping non-orthogonal time series. No attempt was made to force the three
sources to be widely separated, so that source overlaps were possible in any sin-
gle realization. A hemispherical array of 138 magnetometers was simulated a few
centimeters above the cortical surface. Although the true signal subspace rank
was three, we intentionally selected a larger rank of five for each realization.

Twelve cases of SNR and correlation threshold were tested, with 300 Monte
Carlo realizations per case, for a total number of 10,800 sources. For each simu-
lated source, we determined the geometric centroid of the patch. We then com-
puted the distance from this centroid to the multipolar source location nearest
to the source as an indication of the accuracy of the estimate. However, we note
that the multipole that gives the best fit to a particular distributed cortical
source does not necessarily lie on the cortex.

The global statistics presented in Table 1 show that the current dipolar loca-
tions are in general closer to the patch centroids than the non-dipolar locations.
The 20 dB SNR case represents a mostly noiseless signal to allow observations of
the modeling effects. Even though the sources were spatially large, the majority
of the monophasic and some of the biphasic sources were modeled quite well
as dipoles, even at the 99% correlation level. The first-order multipole model
accounted for the remainder. The 3 dB SNR case represents a rather severe case
of 67% signal variance to 33% noise variance. At 99% correlation, most sources
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Table 1. Monte Carlo Study. SNR is ten times the log base-ten of the ratio of the
total signal variance to the total noise variance, both values measured at the array of
sensors. Correlation threshold is the minimum subspace correlation value for the model
to be accepted. The first row summarizes the results over all trials for a total of 10,800
sources localized. Each additional row represents a different Monte Carlo trial of 300
realizations and 900 sources. The sources are described in the text. The mean and
standard deviation (in mm) for the solution distances are given for the ECD model
and the non-ECD (magnetic dipoles and first-order multipoles combined). The final
column gives the number not localized at the given threshold.

SNR Correlation Number Mean, Non- Mean, Missing
(dB) Threshold of ECDs Std.Dev ECDs Std.Dev Sources
ALL ALL 6659 (5.34, 4.56) 2977 (7.06, 5.98) 1164

3 0.94 643 (6.51, 5.38) 183 (6.05, 5.81) 74
3 0.96 565 (5.69, 4.03) 215 (6.28, 6.58) 120
3 0.98 378 (5.17, 3.88) 282 (7.25, 6.59) 240
3 0.99 65 (6.32, 3.98) 220 (14.58, 8.37) 615
10 0.94 698 (6.35, 5.81) 198 (4.85, 6.70) 4
10 0.96 641 (5.68, 4.86) 254 (4.43, 5.55) 5
10 0.98 575 (4.47, 3.15) 302 (4.20, 3.41) 23
10 0.99 489 (3.99, 2.86) 332 (4.41, 3.57) 79
20 0.94 737 (6.03, 5.60) 163 (4.99, 6.72) 0
20 0.96 702 (4.97, 4.17) 198 (4.73, 5.27) 0
20 0.98 625 (4.69, 3.94) 275 (3.96, 3.56) 0
20 0.99 541 (4.26, 3.38) 355 (3.96, 2.97) 4

are lost in the noise, but at the lower correlation thresholds we see the majority
of sources still detected quite well as either dipoles or multipoles. Although we
intentionally set too large a rank for the signal subspace, we also note the impor-
tant fact that no spurious sources were found, i.e. we never saw more than three
sources. As we might expect, the effect of lowering the correlation threshold is
to allow more sources to be detected, but at the cost of greater mean distance
between the source locations and the patch centroids.

5 Conclusion

We have described an algorithm for computing estimates of cortical current
activity from MEG data. The method exploits the low dimensionality of para-
metric multipolar models to estimate the locations of equivalent representations
of the current sources. These representations are then mapped onto a tessellated
representation of the cortical surface resulting in a spatiotemporal estimate of
cortical activity. Monte Carlo simulations indicate that the potential of this
method to extend the parametric approach to the representation of more dis-
tributed sources. The resulting images avoid the very low resolution encountered
using minimum norm methods and the high computational costs of the other
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nonlinear imaging methods. Planned studies include experimental phantoms and
human studies of self paced and visually cued motor activation.
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