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ABSTRACT

Dynamic images of functional activity in the brain offer the poten-

tial to measure connectivity between regions of interest. We want

to measure causal activity between regions of interest (ROIs) with

signals recorded from multiple channels or voxels in each ROI. Pre-

vious methods, such as Granger causality, look for causality be-

tween individual time series; hence, they suffer from local interac-

tions or interferers obscuring signals of interest between two ROIs.

We propose a metric that reduces the effect of interference by tak-

ing weighted sums of sensors in each ROI, as is done with canon-

ical correlation. Hence, we measure region-to-region, rather than

channel-to-channel or point-to-point, Granger causality. We show in

simulation that our “canonical Granger causality” accurately mimics

the underlying structure with few samples, unlike current methods

of multivariate Granger causality. We then use anatomically rele-

vant regions of interest in a visuomotor task in a multichannel in-

tracortical EEG study to infer the direction of transmission in visual

processing.

Index Terms— Intracranial EEG, Connectivity, Causality

1. INTRODUCTION

Our goal is to convert functional images of the brain into descriptions

of interactions between the activity at different regions in the brain.

We must analyze time series of activity to understand the functional

relationships between anatomical structures. We can obtain these

time series from any of several modalities (E/MEG, fMRI and depth

electrodes are common examples) each with a common property:

every recording is an amalgamation of different underlying signals

within a region of the brain. We want to infer causal signal interac-

tions between regions of the brain from these time series.

Communications in the brain occur between spatial clusters of

neurons; thus, it is prudent to model the data in terms of anatomical

ROIs rather than individual readings. We infer transfer of activity

between ROIs by fusing multiple time series – from voxels, chan-

nels or cortical tessellations – within each ROI to determine whether

some signal in an ROI affects any signal in a second ROI. Thus, we

focus on a specific network of interest (NOI) in the presence of an in-

terfering background. In addition, we obtain a functional description

of the brain directly related to pre-defined ROIs.

We want to find which regions of interest help infer future activ-

ity at other regions of interest. Granger causality [1] can measure the

effect of the past of one signal on the future of another, but is hard to

extend to signals recorded in regions of interest. On the other hand,

canonical correlation [2] can measure the relationship between re-

gions of interest but does not find the direction of inference between

participating regions.
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We propose a framework for estimating inter-regional connec-

tions in which we find the maximum bivariate causal connectivity

between components of two ROIs, rather than finding multivari-

ate Granger causality [3]. Like other methods of regional Granger

causality [4] we find combinations of signals within each ROI that

are maximally related. Rather than maximizing residual cross-

correlation, we maximize Granger causality between these com-

binations. Our metric also finds regional connections rather than

summing connections between univariate signals [3]. In simula-

tions we compare our proposed metric against multivariate Granger

causality. By imposing a model in which only one signal from each

ROI participates in the network, we can extract the structure of the

NOI with fewer samples than other estimates of Granger causality.

2. BACKGROUND

2.1. Granger causality

For determining information transfer between regions we ask the

question, “How much does one region’s past behavior affect the be-

havior of a second region?” We measure this strength of connectivity

by Granger causality [1]. Granger causality is the measurement of

how the past of one signal x2 (the “source”) is able to predict of the

future of another signal x1 (the “sink”). This influence is measured

as the change in prediction error of the sink x1[n] given only the

sink’s past {x1[n− k]}
k>0

versus the prediction error of the sink

given its past as well as the source’s past {x2[n− k]}
k>0

:

G2→1 =
Var

(
x1[n]

∣∣{x1[n− k]}
k>0

)

Var
(
x1[n]

∣∣{x1[n− k], x2[n− k]}
k>0

) (1)

If G2→1 is significantly greater than 1, then we conclude that the

source x2 causes at least a part of the sink x1 [1]. We calculate the

prediction errors using an autoregressive model.

The multivariate extension [3] to measure causality from one set

of signals y2[n] ∈ R
M1 to another set of signals y1[n] ∈ R

M2

requires the use of conditional variance matrices. The relative “size”

of these matrices can be calculated via determinants:

G2→1 =

∣∣Σ
(
y1[n]

∣∣{y1[n− k]}
k>0

)∣∣
∣∣Σ

(
y1[n]

∣∣{y1[n− k],y2[n− k]}
k>0

)∣∣ (2)

where Σ(·) measures the covariance and |·| is the determinant. Using

the determinant provides stability and invariance to linear transfor-

mations of channels [3]. We find the prediction errors via a multi-

variate autoregressive model with O
(
(M1 +M2)

2
)

parameters.

2.2. Canonical Correlation

Canonical correlation [2] is one way to determine relationships be-

tween sets of channels. Canonical correlation finds the most related



components of y1 and y2 by maximizing a correlation measure be-

tween projections of each vector:

P2→1(α,β) =
Cov

(
αTy1[n],β

Ty2[n]
)

Var(αTy1)Var
(
βTy2[n]

)

P2→1 = max
α,β

P2→1(α,β) (3)

This measure reflects the assumption that there is only one sig-

nal from each group of sensors that is participating in the network.

However, it does not reflect the causality between y1 and y2.

3. METHODS

3.1. Proposed: Canonical Granger Causality

Granger causality methods suffer from local interferers that increase

the within-ROI connectivity and thus drown out between-ROI con-

nectivity. Current methods to aggregate ROI sensors, such as princi-

pal or independent components, find the strongest components in

a signal, not necessarily the components used within a network.

Canonical correlation can reduce the effect of these non-participants

by finding components that are most correlated to each other. We

want to draw conclusions about inter-regional causality, so we com-

bine these two approaches. Thus, we find signals within one group

of sensors whose past is most related to the current signals within

a second group of sensors. This method is then more resistant to

local interferers (as in canonical correlation) while determining the

directed interaction (as in Granger causality) between ROIs.

To do this, we reduce the causality between the two ROIs to a

bivariate process. A group of signals in a region of interest (y1 or

y2) can be broken into a signal (x1 or x2) pertinent to the network

between the ROIs and interferers that do not enter the network. We

aggregate each set of channels, as in section 2.2, while maximizing

causality as calculated in section 2.1:

C2→1(α,β) =
Var

(
αTy1[n]

∣∣αTy1[n− 1], . . .
)

Var
(
αTy1[n]

∣∣αTy1[n− 1],βTy2[n− 1], . . .
)

C2→1 = max
α,β

C2→1(α,β) (4)

where α ∈ R
M1 and β ∈ R

M2 . When each group of sensors is

located in an anatomical ROI, α and β can represent how much of

the signal is being generated near a sensor in an ROI.

When M1 = M2 = 1, optimization reduces to bivariate

Granger causality. Since the calculation of variances is a bivariate

model independent of M1 and M2, the number of parameters is

O(M1 +M2), an order lower than multivariate causality (2). In

comparison to very recent independent work on regional causal-

ity [4] we maximize causality rather than residual correlation. In

the future, we will investigate the relationships between these two

metrics.

3.2. Optimization Parameters

The optimization in (4) is non-convex so local maxima must be

avoided. To obtain a unique global maximum, we constrain ||α||2 =
||β||2 = 1. We solve the maximization in (4) using an interior-point

method, which chooses direction first by direct calculation of the

Hessian. If the Hessian is ill-conditioned, then the algorithm falls

back to linear conjugate gradient descent.

We found effective convergence to a maximum in under 100 it-

erations for all simulations regardless of initialization. A multistart

investigation indicated that the solutions we found were global max-

ima.

4. RESULTS

4.1. Simulated functional networks

We simulated two regions of activity x1 and x2 recorded on two sets

of sensors y1 and y2 with random gains g1 ∈ R
M1 , g2 ∈ R

M2

related by a first-order autoregressive model:

[
x1[n]

x2[n]

]
=

[
0.7 A

0 0.7

][
x1[n− 1]

x2[n− 1]

]
+

[
η1[n]

η2[n]

]

y1[n] = g1x1[n] + δ1[n] (5)

y2[n] = g2x2[n] + δ2[n] n = 1, . . . , N

Fig. 1. Model of functionally connected regions. The past of one region –
the source – affects the current signal at a second region – the sink. We infer
this causal relationship from the sensor readings on the right.

This system, illustrated in Figure 1, models bivariate con-

nectivity between two regions detected by groups of sensors.

We simulate 4 channels for each region. Our source innova-

tions η1, η2 are i.i.d. normal. We generate simulations by setting

A = 0.2, 0.3, . . . , 0.8, 0.9 for 50 simulations each. We build δ1 and

δ2 from region-specific interferers and noise:

δ1[n] =

Q1∑

q=1

δ
q
1
[n] + γ

1
[n] δ2[n] =

Q2∑

q=1

δ
q
2
[n] + γ

2
[n]

δ
q
1
[n] = 0.8 δq

1
[n− 1] +ψq

1
[n] δ

q
2
[n] = 0.8 δq

2
[n− 1] +ψq

2
[n]

Every innovation ψ
q
1
[n],ψq

2
[n] is standard normal and i.i.d. In

addition, γ
1
[n] and γ

2
[n] are colored Gaussian noise. We use Q1 =

Q2 = 3 interferers per region and set the signal-to-interference-and-

noise ratio (SINR) to 2.5.

4.2. Comparison to multivariate causality

We expect the two measures of causality between y1 and y2 – canon-

ical and multivariate – to each be closely related to the underlying

causality between x1 and x2. Hence, we use the bivariate causality

between x1 and x2 as our ground truth. In Figure 2 we compare



(a) 5000 samples (b) 1000 samples (c) 200 samples

Fig. 2. Canonical Granger causality and multivariate Granger causality between y1 and y2 plotted against the bivariate Granger causality of x1 and x2 in the
simulation of section 4.1. We see from the legend that our proposed measure better follows the underlying bivariate causality. In addition, canonical causality
has a much higher true positive rate than multivariate causality, whose true positive rate is at the level of chance.

(a) 5000 samples (b) 1000 samples (c) 200 samples

Fig. 3. Weighted bivariate Granger causality using fixed weights – most powerful singular vectors of R
y
·
yT
·

[1] (top) and the known weights g1,2 (bottom) –

against canonical Granger causality. Using the strongest singular vectors of R
y
·
yT
·

[1] or the ground truth weights is nearly equivalent to maximizing Granger

causality for this model.

canonical Granger causality (4) to multivariate Granger causality (2)

in terms of their relationships to the underlying bivariate causality.

Multivariate Granger causality tends to over-estimate causality for

shorter time series. In contrast, our proposed metric more closely

follows the dynamics of the hidden system, as seen by its tighter fit

to the dashed black line representing zero bias.

We define a ”true positive” as detection of significant causal-

ity in the regional metric given that the bivariate causality measure

is significant. Then, from Figure 2(c) the true positive rate using

N = 200 time points with multivariate Granger causality is 47.66%
when controlling for a 5% false positive rate in the null case of no

interaction. In contrast, canonical Granger causality under the same

false positive rate has a true positive rate of 84.6%.

Again using the bivariate causality as the ground truth, the bias

and variance of our causality estimator is 32.6 · 10−3 and 89.6 ·
10−3, respectively. The bias and variance of multivariate causality

estimation is 184.1 · 10−3 and 123.2 · 10−3, respectively. Thus, our

measure has lower bias and variance, as shown in the general trend

of Figure 2. Hence when there are fewer samples our measure is

more robust and consistent than multivariate Granger causality.

4.3. Lagged cross-covariance in simulation

Based on some assumptions of our simulation, such as no cross-talk,

we can solve for the weights g1 and g2 another way. We want our

measure to be as good without those assumptions. The simulation

forces x1[n] and x2[n] to be the only signals that co-vary at lag one:

R
y1y

T

2

[1] = E{x1[t]x2[t− 1]}g1g
T
2

so we can estimate the topography by singular value decomposition

R̂
y1y

T

2

[1] =
N∑

n=1

λiuiv
T
i , λ1 > λ2, . . . , λN ⇒ α̂0 = u1 β̂

0
= v1

(6)

from which we measure causality by calculating C2→1(α̂0, β̂0
). We

want our estimated weights to be nearly as good as the weights cal-

culated from idealized assumptions.

In Figure 3, canonical GC is approximately equal to C2→1(α̂0, β̂0
)

and bivariate causality using the known weights (C2→1(g1,g2)).
Hence, canonical GC is excellent at determining network topol-

ogy for an ideal simulation. For fewer samples R̂
y1y

T

2

[1] leads to

sub-optimal causality in Figure 3(c).

The true positive rate is best when using known weights at any

number of samples, and almost as good when using the SVD of

R̂
y1y

T

2

[1], a property specific to the model. Our canonical causality

measure is almost as good, indicating that it is a consistent measure

in the ideal case. We will explore variations of this model, including

the effect of cross-talk and different noise models, in future work.

4.4. Application to monkey data

We use intracranial EEG signals recorded on the macaque cortex

at six locations – three in striate (S1, S2, S3) and three in prestri-

ate (P1, P2, IT ) shown in Figure 4(a) – during a visuomotor ex-

periment. Intracranial EEG signals have a small footprint, so we

delineate regions of interest anatomically. The visual cue tells the

subject whether to perform a motor action (“GO”) or refrain from



(a) Locations of sensors in striate and prestriate (b) Estimated topography (c) Frequency-domain canonical GC

(d) Bivariate GC: striate → prestriate (e) Bivariate GC: prestriate → striate

Fig. 4. (a) Locations of local field potential recordings in the striate and prestriate. (b) Weights optimizing canonical Granger causality during [20, 120]ms
post-stimulus. The arrows show what weights are largest for the two important directions of causality. (c) Frequency-domain Granger causality between ROIs
using projections from weights in (b), showing causality from striate to prestriate. (d-e) Bivariate Granger causality between striate and prestriate channels,
agreeing with (b) (see arrows).

acting (“NoGO”). We use 137 trials restricted to 20-120ms poststim-

ulus, a time period in which there is previously published evidence

of causality from striate to prestriate in this data [5].

In Figure 4(c) our metric shows that striate appears to be driving

prestriate during this critical window of visual processing. The to-

pography shown in Figure 4(b) tells us that the entire striate region is

sending to a small area in the prestriate around P2. Figure 4(d) how-

ever only shows 2 of 3 striate channels sending information. Hence,

S1 affects the regional connection in a way undetected by bivariate

causality. We see a small amount of information transfer from PST

to STR during the NoGO condition in Figure 4(c), evidenced in the

bivariate measurements of Figure 4(e). Overall, our metric agrees

with previous results [5] supporting the idea that the striate region –

and not just each sensor – sends visual information to the prestriate.

5. DISCUSSION AND CONCLUSION

Signals participating in a network of ROIs can be obscured by inter-

ferers within each ROI. We form a measure of Granger causality that

is less affected by interference and time series length than other mul-

tivariate methods. With respect to multivariate Granger causality,

canonical causality has less variance and more accurate estimation

of causal inference. We attribute this to the reduction in the number

of parameters as well as the focus on univariate causal relationships.

For the visuomotor experiment, we found a large difference in

causality between the GO (act on stimulus) and NoGO (do not act

on stimulus) conditions. With a smaller sample size we are still able

to find causality from striate to prestriate cortex. The weights used

to maximize canonical GC indicate which areas contribute to the

network.

We built this measure as a way to calculate Granger causality

between regions, similar to how canonical correlation calculates the

correlation between regions. We selected anatomical ROIs and in-

vestigated possible functional relationships between those ROIs. In

future work, we will use either anatomical or functional information

to determine ROIs. To find the network, we maximized the Granger

causality between projections of channels in each ROI. Canonical

causality requires few samples to reliably estimate the topology of

a network of ROIs, including which ROI members contribute to the

network. We plan to derive optimization methods tailor-made to our

metric and constraints, as well as expanding to multiple regions.
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