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ABSTRACT

Phase relationships between neuronal sources are often quantified

by the phase locking value (PLV). Since the PLV is a bivariate

measure and computed pairwise between sources, it cannot differ-

entiate between direct and indirect connections in a multidimen-

sional network. Schelter described a non-parametric partial phase

synchronization index by extending sample PLV to the multivari-

ate case by analogy to the relationship between full and partial

network correlations. Here we derive an analytical expression for

partial PLV for a multivariate circular Gaussian model and show

that a partial PLV can be computed from partial coherence. We

demonstrate our method in simulations with Roessler oscillators

and experimental data of multichannel local field potentials from

a macaque monkey. We show that the multivariate non-parametric

and circular complex Gaussian based models suggest similar syn-

chronization networks while the latter has a lower variance.

Index Terms— Phase locking value, multivariate network,

Gaussian signals

1. INTRODUCTION

Brain functional connectivity, or the study of interactions between

cortical regions and their modulation during experimental tasks,

has begun to reveal the highly organized structure of large scale

networks. It is now believed that cortical networks are mediated

by the coordinated activation of thousands of neurons that oscillate

synchronously in specific frequency bands. Sample phase locking

value (PLV) is one of the most widely used measures of brain syn-

chronization [1],[2]. It quantifies the phase relationship between

two signals with high temporal resolution without making any sta-

tistical assumptions of the data.

A significant limitation of PLV is that it is a bivariate measure

which cannot differentiate between direct and indirect interactions

in a multiple-node network. To overcome this problem, Schel-

ter et al. [3] investigated the inversion of the matrix of pairwise

PLVs to compute a non-parametric estimate of partial PLV. Their

approach is analogous to the inversion of cross-correlation and

cross-spectral matrices to compute partial correlations and partial-

coherence, respectively. An alternative parametric approach was

proposed by Cadieu et al. [4] via multivariate extension of the von

Mises distribution. Direct phase coupling measures can be deter-

mined in a straightforward manner from this model.
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In this paper, we derive an analytical expression for partial

PLV under the multivariate circular complex Gaussian model [5].

We show that under this model, partial PLV is a nonlinear function

of partial coherence, which is computed from both the phase and

amplitude information of the signals. We demonstrate our partial

PLV measure in detection of synchronization of Roessler oscilla-

tors. We further show that local field potentials from a macaque

monkey study approximately follow our modeling assumptions

and our measure of partial PLV has reduced estimator variance

compared to the non-parametric PLV in [3].

2. METHODS

The PLV between two coupled oscillators sa(t) and sb(t) is de-

fined as PLV =
∣
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∣
E
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∣
, where φa,b = φa(t) − φb(t) is

the relative phase of the two oscillators a and b with instantaneous

phase φa(t) and φb(t) respectively [6]. The instantaneous phase

of an arbitrary signal s(t) is often derived from its Hilbert trans-

form and the construction of the analytic signal [7]. If the signal is

broadband, it must first be filtered into a frequency band of interest

[8].

In this section, we discuss three different measures of phase

synchrony. We first describe the bivariate sample PLV, which is

the maximum likelihood estimator of PLV under the assumption

of Von Mises distribution for the relative phase. We also describe

the non-parametric multivariate partial PLV measure proposed by

Schelter et al. [3]. Finally, we derive a parametric measure of par-

tial PLV using the multivariate circular complex Gaussian model.

2.1. Sample PLV

The sample estimate of PLV between sa(t) and sb(t) at time in-

stant t is:

PLV sample =
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where N is the total number of trials. In the following we drop

the term t for convenience. Even though this measure is non-

parametric, it is also the maximum likelihood estimator of PLV
when the distribution of relative phase φa,b is Von Mises [9], i.e.

the relative phase has probability density function:

p(φa,b|µab, κab) =
1

2πI0(κab)
ejκab cos(φa,b−µab) (2)



where −π ≤ θ ≤ π, κab ∈ [0,∞) is the concentration parameter,

µab ∈ (−π, π] is the mean offset between the two oscillators and

I0(κab) is the modified Bessel function of zeroth order.

Since sample PLV captures only pairwise phase interactions,

it is not suitable to separate direct and indirect connections in the

case of multiple oscillators. In the following we present non-

parametric and parametric extensions of PLV for multivariate case.

2.2. Non-parametric Partial PLV

Schelter et al. [3] proposed inverting the matrix of pairwise PLVs

to compute a non-parametric partial PLV. This is motivated by the

analogous inversion of cross-correlation and cross-spectral matri-

ces to compute partial correlation and partial coherence, respec-

tively [10]. First, the matrix of pairwise phase synchronization in-

dices is constructed such that Pmn = E
[

ejφm,n

]

, where m,n ∈
{1, · · · ,M} and M is the total number of oscillators.

Then, inverting matrix P and normalizing with the diagonal

elements leads to the partial PLV:

PPLVnonparam
△
=

(

P−1
)

ab
√

(P−1)aa (P
−1)bb

. (3)

Since the above expression is based on the sample bivariate PLV,

it is a non-parametric estimate of partial PLV.

2.3. Parametric partial PLV Using the Multivariate Circular

Complex Gaussian Model

In this paper we introduce a parametric measure of partial PLV

using the multivariate circular complex Gaussian model. Given

jointly Gaussian, zero mean, time series si(t), i = {1, · · · ,M},

j =
√
−1, the analytic random vector z(t) is constructed with

elements

zi(t) = Ai(t)e
jφi(t) (4)

where Ai(t) =
√

s2i (t) + s̃2i (t) and φi(t) = tan−1(s̃i(t)/si(t))

are the instantaneous amplitude and phase of si(t), respectively,

and s̃i(t) is the Hilbert transform of si(t). Again we drop the time

index t for convenience. The probability density function of z is

circular complex Gaussian distribution [5]:

p(z) =
1

π2|Kz|
exp

{

−z
H
K

−1
z z

}

(5)

where K−1
z is the inverse covariance matrix of z with mn-th entry

κmne
jµmn ,κmn = κnm > 0 and −π < µmn = −µmn < π.

For M > 2, let z =

[

x

y

]

where x =

[

z1
z2

]

and y =

[

z3 · · · zM
]T

; then the distribution of x conditioned on y

is also circular Gaussian with conditional inverse covariance ma-

trix K−1
x|y

=

[

κ11 κ12e
jµ12

κ21e
jµ21 κ22

]

. Hence, the conditional

distribution can be written as:

p(x|y) = p(z1, z2|zM) =
1

π2|Kx|y|
exp

[

x
H
K

−1
x|yx

]

(6)

where M = {3, · · · ,M}. We represent this in terms of phases

and amplitudes as p(φ1, φ2, A1, A2|φM, AM). Further condi-

tioning on A1 and A2 reveals the distribution of the pair-wise

phase conditioned on all the other variables.

p(φ1,2|A1, A2, AM, φM) = (7)

1

2πI0(−2κ12A1A2)
e−2κ12A1A2 cos(φ1,2−µ12).

This is a von Mises distribution with coupling parameter

−2κ12A1A2, verifying that the distribution of relative phase

is a function of amplitudes and thus not independent of am-

plitude. As a final step we marginalize with respect to (A1,

A2) to compute the parametric partial PLV:
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where w =
κ2
12

2κ11κ22−κ2
12

and 2F1 is the hypergeometric func-

tion (derivation of this equation is too long to include here).

The data can be re-indexed in order to find the PPLV between

any pair of nodes or channels. Since the signals have been

band-pass filtered before computing their Hilbert transform,

the inverse of the conditional covariance matrix, Kx|y, ef-

fectively corresponds to the partial coherence matrix for that

frequency indicating that the partial phase locking value for

Gaussian time series is simply a function of the partial co-

herence, κ12/
√
κ11κ22. To estimate PPLV param, we find

the maximum likelihood estimate of the partial coherence and

than perform the transformation in (8).

3. RESULTS

3.1. Roessler Oscillator Simulations

Roessler oscillators are commonly used models of weakly

coupled stochastic oscillators. To test whether the aforemen-

tioned meaures of partial PLV can separate direct from indi-

rect phase relationships, we generated 3 Roessler oscillators

ξi using the equations as described in [3]:

ξ̇j =





Ẋj

Ẏj

Żj





=







−ωjYj − Zj +
[

∑

i 6=j ǫi,j(Xi −Xj)
]

+ σjηj

ωjXj + aYj

b+ (Xj − c)Zj






(9)

where i, j ∈ {1, 2, 3}. We set the parameters a = 0.5, b =
0.2, c = 10, ω1 = 1.03, ω2 = 1.01, ω = 0.99 and σj =
3.5 for all j and ηj is standard Gaussian noise. Parameters



ǫi,j control the amount of coupling from the ith to the jth

oscillator and are set such that ǫ12 = ǫ21 = ǫ13 = ǫ31 = ǫ
implying a bidirectional coupling. We also set ǫ23 = ǫ32 = 0,

so that there is no direct coupling between the 2nd and 3rd

oscillators.

We used the above equations to produce time series of 10, 000
samples with sampling interval ∆t = 0.02, and then esti-

mated the sample PLV (1), non-parametric partial PLV (3)

and parametric partial PLV (8) between each pair of oscilla-

tors. By repeating the above procedure 1000 times, we com-

puted the distribution of the above PLV measures. The cor-

responding box plots are shown in Fig. 1(a) for the coupling

between ξ2 and ξ3. Given that the true coupling is zero be-

tween ξ2 and ξ3, the parametric partial PLV is not only the

Fig. 1. (a) Estimated coupling between the 2nd and 3rd

Roessler oscillators. For each boxplot, the central mark is

the median, the edges of the box are the 25-th and 75-th per-

centiles, and the whiskers extend to the most extreme data

points not considered outliers. The true coupling between is

zero. (b) Q-Q plot of ranked Mahalanobis distance r2i ver-

sus the expected corresponding value of χ2
3 for the Roessler

oscillators.

(a) (b)

Fig. 2. ROC analysis of the Roessler oscillators (a) ROC

curves for ǫ = 0.2 (b) Area under ROC curves for different

values of ǫ (legend as (a)).

least biased, but also has the smallest variance.

To evaluate whether the signals X1, X2, and X3 are

jointly Gaussian, we used an extension of a univariate graph-

ical procedure (Q-Q plot of a Gaussian distribution) to the

multivariate case [11]. The Mahalanobis distance:

r2i = (Xi − X̄)TS−1(Xi − X̄) (10)

where X =
[

X1 X2 X3

]T
, will be distributed approx-

imately as a chi-square distribution with 3 degress of free-

dom if the Roessler oscillators are jointly Gaussian. Multi-

variate normality is rejected if the Q-Q plot of the ordered

Mahalanobis distances versus the corresponding chi-square

quantile is significantly non-linear. Fig.1(b) shows that the

Roessler oscillators can deviate significantly from multivari-

ate normality, depending on the selected parameter ǫ. Despite

the deviation from normality, the parametric partial PLV mea-

sure is able to detect the zero direct connection between 2nd

and 3rd. The parametric partial PLV performs similarly to the

non-parametric one when there is significant deviation from

normality as shown in the second row of Fig.1.

We also performed Receiver Operating Characteristic

(ROC) analysis to compare the accuracy of methods in de-

tecting coupled versus non-coupled nodes. For the same

Roessler system described above, we computed estimates of

PLV between ξ2 and ξ3 (ǫ23 = 0; non-coupled) and ξ1 and ξ2
or ξ1 and ξ3 (ǫ > 0; coupled). For each threshold value, we

computed the false positive and true positive rates, producing

the ROC curve given in Fig. 2(a). We then measured the area

under the ROC curves for different values of ǫ, as shown in

Fig. 2(b). Both plots indicate the non-parametric partial PLV

has better performance than the other two methods.

3.2. Local field potentials from a macaque monkey

We performed a similar synchronization analysis to investi-

gate oscillatory interactions of local field potential (LFP) time

series, sampled at 200Hz, from a macaque monkey implanted

with transcortical bipolar electrodes at 15 sites in the right

hemisphere (Fig. 3) while the monkey performed a GO, NO-

GO visual pattern discrimination task [12]. In this work, we

used only 313 GO trials and focused on 120 msec and 265

Fig. 3. Right hemisphere of monkey GE, showing positions

of 15 cortical recording sites (from [12]).



msec after stimulus presentation in the frequency range of

[10 − 15] Hz. Fig. 4 shows the Q-Q plot of ranked Maha-

lanobis distances versus χ2
15 quantiles indicating that the data

is approximately Gaussian at time instants 120 msec (early

stimulus) and 265 msec (response onset) .

We then calculated channel-to-channel synchrony and re-

peated the procedure over 500 bootstrap samples of the data

to estimate the variance of the PLV estimates. Figure 5 (a-

c) shows the mean bootstrapped PLVs. The synchronization

network from the bivariate sample PLV is quite different from

the partial PLV ones. The synchronization networks from the

two partial PLV measures are surprisingly similar, however

the standard deviation of the parametric model is somewhat

smaller than the non-parametric estimate (Fig. 5(d)).

(a) at 120 msec (b) at 265 msec

Fig. 4. Q-Q plot of ranked Mahalanobis distance versus the

corresponding quantile of χ2
15 for macaque LFP data.

(a) Sample PLV (b) Parametric partial PLV

(c) Non-parametric partial PLV (d) Std nonparametric-Std parametric

Fig. 5. (a-c) Bootstrap mean of the PLV measures. (d) Differ-

ence of bootstrap standard deviation of non-parametric minus

parametric partial PLV.

4. CONCLUSION

The use of multivariate phase synchrony measures is a valu-

able approach to detecting interactions in dynamic networks

with multiple nodes. We have shown the qualitative differ-

ence between bivariate and multivariate approaches both in

simulations with Roessler oscillators and macaque monkey

LFP data. The parametric partial PLV measure outperformed

the non-parametric one in detecting non-coupled nodes when

the data was approximately Gaussian (Fig. 1, top). Both mea-

sures performed similarly when the data was non-Gaussian

(Fig. 1, bottom). ROC analysis further demonstrated that the

parametric partial PLV is better able to distinguish direct and

indirect coupled Roessler oscillators.

Since the parametric partial PLV is a non-linear function

of partial coherence, does not constitute a novel interaction

measure. Rather, it provides a new insight into phase syn-

chronization in multivariate networks. When the time series

are approximately Gaussian, which is often the case in exper-

imental data, partial coherence and partial PLV contain equiv-

alent information about the system dynamics.

5. ACKNOWLEDGEMENTS

We thank Dr. Steven Bresler of Florida Atlantic University

for providing the macaque data used here.

6. REFERENCES

[1] M. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer, and P.A. Tass,
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