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ABSTRACT

Multivariate analysis of structural and functional brain imag-

ing data can be used to produce network models of interaction

or similarity between different brain structures. Graph parti-

tioning methods can then be used to identify distinct subnet-

works that may provide insight into the organization of the hu-

man brain. Although several efficient partitioning algorithms

have been proposed, and their properties studied thoroughly,

there has been limited work addressing the statistical signif-

icance of the resulting partitions. We present a new method

to estimate the statistical significance of a network structure

based on modularity. We derive a numerical approximation of

the distribution of modularity on random graphs, and use this

distribution to calculate a threshold that controls the type I er-

ror rate in partitioning graphs. We demonstrate the technique

in application to brain subnetworks identified from diffusion-

based fiber tracking data and from resting state fMRI data.

Index Terms— community structure, modularity, graph

partitioning, significance testing

1. INTRODUCTION

The study of community structure of graphs has revealed in-

teresting patterns in the structure and function of the human

brain [1] with features that vary across neurological diseases,

aging, and cognitive processes [2, 3]. A large number of

methods have been proposed to identify natural divisions of

networks into groups. Perhaps the most popular is modularity

[4], which compares the network against a null model and fa-

vors within module connections when edges are stronger than

their expected values. Divisions that increase modularity are

preferred because they lead to modules with high community

structure.

Despite the popularity of modularity methods, the statisti-

cal significance of network partitions has received less atten-

tion. Random networks can exhibit high modularity because

of incidental concentration of edges, even though they have

no underlying organizational structure [5]. This is even more
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evident in large networks where the number of possible divi-

sions increases rapidly with the network size [6]. Therefore,

significant divisions of a network should have higher modu-

larity than random graphs [5, 7]. An alternative approach was

proposed in [6] to evaluate the significance of a partition: a

community structure should be robust against small perturba-

tions of the network.

In this paper, we propose a statistical procedure to test the

significance of a community structure based on its modular-

ity value. As a surrogate of modularity, we use the largest

eigenvalue of the difference between the affinity matrices of

the network and its null model. Based on the previous work

on null models [8], we show that the distribution of the largest

eigenvalue can be well approximated with a Gamma distribu-

tion. We derive an empirical formula for the parameters of the

Gamma distribution with respect to the size of the network

and the variance of its edges. Based on this distribution we

compute a p-value for the community structure, which can be

used as a threshold criterion when partitioning a graph. We

demonstrate our method with simulated and real brain net-

works.

2. METHOD

2.1. Modularity and Null Models

Consider an undirected weighted graph with N nodes, adja-

cency matrix A, and connection strength between nodes i and

j denoted as Aij . As an example, the nodes of the network

may represent regions of parcelated cerebral cortex with the

connection strengths equal to the correlation or partial cor-

relation between them as computed from resting state fMRI

data. Alternatively, the connections may reflect the degree of

connectivity between the two cortical regions as determined

by fiber-tracking from diffusion tensor data. The degree vec-

tor k has elements ki =
∑N

j=1 Aij , indicating the sum of

all edge strengths associated with node i. Define the edge

vector x containing all possible edges in A, according to

the mapping Aij = xl, where l = (2N−j)(j−1)
2 + (i − j)

(∀1 ≤ j < i ≤ N ). In [8] we derived the expected network

conditioned on the degree vector k:

E(x|k) = µx|k = µx +ΣxkΣ
−1

k
(k− µk) (1)



with the conditional covariance matrix:

Σx|k = Σx −ΣxkΣk
−1

Σkx (2)

As indicated in [8], the conditional expected network satisfies

the configuration model criteria (same number of nodes and

equal degrees), while at the same time preserving network

topology and allowing negative connections. Furthermore, it

is in general the best linear unbiased estimator given the node

degrees.

Define B to be the difference matrix between the orig-

inal and the expected null network, with elements Bij =
Aij − E(Aij |k) = Aij − E(xl|k) . Modularity Q [4] is

then computed as:

Q =
1

2m

∑

i,j

Bijδ(Ci, Cj) (3)

where Ci indicates group membership of node i, δ(Ci, Cj) = 1
only when node i and j are clustered within the same group,

and m is the total sum of the weights of all edges in the

network. The best bi-partition of the graph that maximizes

modularity can be described by an indicator vector s, having

values 1 and −1 for the two subnetworks, respectively:

ŝ = max
s

Q = max
s

{

s
T
Bs

}

(4)

Spectral graph theory solves equation (4) in the continuous

domain while constraining the norm of s. Maximization

is achieved by selecting the eigenvector corresponding to

the largest eigenvalue λ1 of B. The elements of s are then

discretized to −1, 1 by setting a zero threshold. Because

of this discretization, further fine tuning is necessary to lo-

cally maximize Q, which can be done using, for example,

the Kernighan-Lin algorithm. Given that the final maximum

value of modularity Q is close to λ1, we can use the latter as

a surrogate for modularity.

2.2. Distribution of Largest Eigenvalue

We consider a graph partition statistically significant if modu-

larity Q is substantially higher than the one achieved by parti-

tioning random graphs. Therefore, we seek the distribution of

modularity for random graphs; hypothesis testing would then

proceed by selecting a 5% threshold in the right tail of this

distribution. Instead of using modularity, we use the largest

eigenvalue of B as a surrogate. Here we assume the network

edges follow a jointly Gaussian distribution with mean µ1
and variance σ2

I. Although the largest eigenvalue distribu-

tion of simple Gaussian random networks (GRN) has been

studied, there is no closed form solution for the case of corre-

lated edges caused by conditioning on k. We therefore follow

a Monte Carlo approach.

For a network size N = 20, we generate 100 Gaussian

random networks A for given values of µ and σ2. For each

network, instead of randomly permuting network edges, we

generate 106 random networks A
Random, by sampling from

equations (1,2), and then compute the largest eigenvalue of

B
Random = A

Random − E(ARandom|k). The largest eigenvalue dis-

tribution is shown in Figure 1 for several values of mean µ
and variance σ2, and it is evident that it only depends on the

value of σ2.

Fig. 1. Top: Distribution of the largest eigenvalue of B for

several values of mean µ and fixed σ = 0.8. Bottom: Dis-

tribution of the largest eigenvalue of B for several values of

standard deviation σ.

2.3. Approximation with Gamma Distribution Family

The empirical distribution of the largest eigenvalue in Figure

1 is skewed to the left for all values of σ2. This distribution

can be accurately approximated by a Gamma distribution:

f(x|α, β) =
xα−1e

x
β

βαΓ(α)
(5)

where α determines the shape and β the scale of the distri-

bution. Γ(α) is the Gamma function with parameter α. An

example of the approximation is shown in Figure 2.

Therefore, the empirical distribution of the largest eigen-

value can be well represented by a pair of parameters (α, β).
These parameters are functions of the network size N and

variance of the edges σ2, and in the next section we identify

the form of this functional relationship.

Fig. 2. Monte Carlo distribution of λ1 for σ = 1 and its

best fit with a Gamma distribution. The maximum likeli-

hood estimation of the Gamma distribution parameters was

α̂ = 117.99 and β̂ = 0.06321 with estimator variance

σ2
α̂ = 0.0277 and σ2

β̂
= 8× 10−9



2.4. Fitting with different network sizes

We repeated the above Monte Carlo procedure and estima-

tion of the Gamma distribution parameters (α, β) for differ-

ent values of network size N and edge standard deviation σ.

Figure 3 shows that α does not depend on σ, whereas β lin-

early increases with σ. The network size N does not change

the nature of these relationships.

Fig. 3. Fitted parameters α̂ and β̂ in the Gamma distribution

as a function of standard deviation σ for network size N =
20, N = 30, and N = 40.

Figure 4 plots the value of α and the ratio β/σ for dif-

ferent values of network size N . Simple curve fitting meth-

ods produced the following formula for the parameters of the

Gamma distribution:

α̂(N) = 2.459N1.335 − 16.453 (6)

β̂(N, σ) = σ
(

0.84N−0.87 + 0.0015
)

(7)

Fig. 4. Left: α̂ as a function of network size N . Right: ratio

of β̂ with respect to σ as a function of network size N .

For every bi-partition of a graph, we can determine the

significance of the cut by comparing the largest eigenvalue of

B against the distribution of eigenvalues of BRandom. So rather

than accepting a partition if we find an increase in modular-

ity, instead we test whether the increase is statistically sig-

nificantly above a 5% threshold. The procedure is given in

the following steps. For a network A, estimate edge vari-

ance σ2. Then apply spectral graph partitioning and compute

the largest eigenvalue of matrix B [8]. Use equation (6) and

(7) to estimate the Gamma distribution parameters and then

compare the largest eigenvalue against the Gamma distribu-

tion and accept the partition if it is above the 5% threshold in

the right tail of the distribution.

3. RESULTS

To test whether the above formula holds for all networks irre-

spective of their community structure, we generated a number

of different networks whose edges were i.i.d Gaussian ran-

dom variables with mean 4 and variance 1. For each net-

work we simulated two clusters with variable size N1 ≥ N2,

such that N1 + N2 = N , where N = 20 is the total num-

ber of nodes. This community structure was enforced by ran-

domly allocating the stronger values of the Gaussian distri-

bution as intra-cluster edges and the weaker values as inter-

cluster edges. In all cases, we repeated the procedure in Sec-

tion 2 to generate random graphs A
Random and re-estimate the

parameters of the Gamma distribution. The results are shown

in Figure 5 and are in close agreement with equations (6) and

(7). This result agrees with our expectations; irrespective of

the community structure of the original networks, ARandom is

a randomized network with no community structure to affect

the distribution of the largest eigenvalue.

Fig. 5. Estimation of Gamma distribution parameters when

the original networks used to create A
Random networks have a

community structure of two clusters with N1 and N2 nodes

such that N1 +N2 = 20. For each N1 value, we generated

100 original networks which further produced 104 random

networks each. The Gamma parameters estimated from the

histogram of those random networks are in close agreement

with those predicted by equations (6) and (7).

Figure 6a shows a Gaussian network with mean 1, vari-

ance 4, and a community structure of two 10-node clusters.

To blur its community structure, we randomly permuted a

portion of within and between edges producing the network

on Figure 6b. The black lines in the adjacency matrices rep-

resent the clustering results by modularity-based partition-

ing. The computed modularity values are Qa = 0.098 and

Qb = 0.038, indicating that the original unperturbed network

has the stronger community structure. Our statistical proce-

dure produced p-values pa ≈ 0 and pb = 0.73, indicating

only the first network has a significant community structure.

We applied significance-based modularity partitioning to

the structural brain network reported in [9]. The network con-

sists of 66 nodes representing FreeSurfer parcellated cortical

regions and edges representing the neuronal fiber densities be-

tween pairs of regions. In [8] we reported partition results

of this network, and using the method described above we

confirm that all bi-partitions leading to 5 clusters are signif-

icant. The first bipartition, separating the two hemispheres



(a) (b)

Fig. 6. The bi-partitioning results for two Gaussian networks;

(a) shows a clear network structure while (b) is less structured.

(medial subnetwork goes with the right hemisphere), had p ≈
0, and the subsequent bipartitions were p = 1.33 × 10−6,

p = 2.17×10−9, and p = 8.96×10−5. The structural data re-

veals subnetworks that largely follow the classical lobe-based

partitioning of cerebral cortex.

Fig. 7. Modularity-based partitioning of the structural brain

network in [9]. Each color represents a different subnetwork.

All clusters are statistically significant.

We also investigated subnetwork partitioning using net-

works extracted from resting state fMRI data [10]. The data

consists of 191 subjects from the Beijing data set of the 1000

Functional Connectomes Project in NITRC [11]. The 96

nodes represent ROIs defined on the Harvard-Oxford atlas

and edges indicate the correlation coefficient between fMRI

signals for each pair of ROIs. Correlations were computed

after bandpass filtering in the range 0.005-0.1Hz. We de-

tected 3 clusters: the default mode network, a motor-sensory

subnetwork, and a visual-related subnetwork. All bipartitions

had p-values p ≈ 0. In contrast to the structural subnetworks,

the functional subnetworks involve larger scale interactions

and follow well known functional subdivisions.

Fig. 8. Partition results of a resting state fMRI network. All 3

clusters are significant.

Finally, we partitioned the widely-studied Karate Club

network in [12] into four clusters, as in Figure 9. Only the

first bipartition (separating groups 1,2 against 3,4) is signifi-

cant with p-value p = 2.12× 10−12. This bipartition exactly

predicts the subsequent split of the Karate club into 2 groups.

The remaining two bipartitions are insignificant: p = 0.067

for Groups 1 - 2 and p = 0.486 for Groups 3 - 4.

Fig. 9. Partition of the Karate Club network [12].

4. CONCLUSIONS

Even though graph partition methods are becoming increas-

ingly popular, assessment of the statistical significance of

the resulting partitions has drawn little attention. We believe

this will change in the future in the same way that statistical

thresholding procedures are paramount in analyzing brain

imaging studies.

Using Monte Carlo procedures, we have derived equa-

tions that can control the type I error rate in bipartitions of

graphs. It is therefore no longer necessary to perform compu-

tationally intensive permutations of edges and randomization

of graphs every time a new graph is to be partitioned. The

Gamma distribution provides an excellent fit to the empirical

data so that a parametric approach based on these distributions

should be sufficient for assessing subnetwork significance.
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