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ABSTRACT

Sulcal folds (sulci) on the cortical surface are important land-

marks of interest for investigating brain development and dis-

ease. Accurate and automatic delineation of the sulci is a chal-

lenging problem due to substantial variability in their shapes

across populations. We present a geodesic curvature flow

method for an automatic and accurate delineation of sulcal

curves. We assume as input an atlas brain surface mesh on

which a set of sulcal curves have been delineated. The sulcal

curves are transferred to approximate corresponding locations

on the subject brain using a transformation defined by an au-

tomatic surface based registration method. The locations of

these curves are then refined to follow the true sulcal fundi

more closely using geodesic curvature flow on the cortical

surface. We present a level set based formulation of this flow

on non-flat surfaces which represents the sulcal curves as zero

level sets. We also incorporate a curvature based weighting

that drives the sulcal curves to the bottoms of the sulcal val-

leys in the cortical folds. The resulting PDE is discretized on a

triangulated mesh using finite elements. Finally, we present a

validation by comparing sets of automatically delineated sul-

cal curves with sets of manually delineated sulcal curves and

show that the proposed method is able to find them accurately.

Index Terms— brain imaging, cortical surface, geodesic

curvature flow, sulcal curves, level set

1. INTRODUCTION

Human cerebral cortex is often modeled as a highly convo-

luted sheet of gray matter enclosing the white matter fiber

connections. Sulcal folds or sulci are fissures in the cortical

surface and are commonly used as surrogates for the cytoar-

chitectural boundaries in the brain. Therefore sulcal curves

are frequently used as landmarks for surface registrations.

There is also great interest in analyzing the geometry of these

curves directly for studies of disease propagation, symmetry,

development and group differences (e.g. [1, 2]). The sul-

cal curves required for these studies can be produced using

manual or automatic delineation, with manual delineation

often achieved using interactive software tools [3]. However
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this can be a tedious and subjective task that also requires

substantial knowledge of neuroanatomy. Additionally, intra-

and inter-rater variability is introduced in these curves due

to subjective choices made by the user. This variability is

reduced to some extent using rigorous definitions of a sul-

cal tracing protocol and extensive training as described in

[4, 3]. We previously developed a semiautomatic method us-

ing Dijkstra’s algorithm to find weighted shortest paths on the

cortical surface where the weights depend on curvature [3].

Alternative automatic approaches to sulcal delineation in-

clude active shape-based models [5] where sulci are modeled

by deforming a surface as opposed to the curves. Another

approach involved active shape models [6] where flow of the

curves was induced on a spherical parametric representation.

An alternative approach to this problem is to use auto-

matic surface registration to align curvature or depth [7]. Sul-

cal curves can be delineated on a reference atlas brain sur-

face, which is then aligned with the subject brain surface us-

ing automated registration. The sulci from the atlas are then

transferred to the subject using the point correspondence de-

fined by the surface mapping. While this approach can find

the sulcal location approximately, there is often a significant

residual error [4]. This is because automatic methods align

the whole surface using curvature and do not focus specifi-

cally on the sulcal locations. Also, the variability of the at-

las and subject folds can result in the misalignment of sulcal

curves, thus the transferred sulcal curves may not lie at the

valleys of the subject surfaces. A refinement of these curves

can alleviate this problem. This paper describes a new method

based on geodesic curvature flow on surfaces where the sul-

cal curves are represented as curvature weighted geodesics.

Geodesic curvature flow was described for parametric sur-

faces in [8]. Here we present a level set based formulation

similar to [9, 10] and apply it to the sulcal detection problem.

The sulcal curve evolution is defined in terms of evolution of a

zero level set. The flow is discretized in the surface geometry

using a finite element method.

2. MATERIALS AND METHODS

We assume, as input, an atlas brain surface mesh with man-

ually delineated sulcal landmarks and a subject brain surface

mesh. The goal is to delineate the corresponding sulci on the



subject surface. First, we briefly describe an automated cur-

vature based registration approach that performs alignment

of the atlas surface and the subject surface. The sulci from

the atlas surface are then transferred to the subject surface,

which we refer to as ‘RT sulci’ (Registration Transfered sulci)

henceforth. Then, the RT sulci are adjusted to their correct

locations using geodesic curvature flow. We refer to these

transferred sulci as ‘GCF sulci’.

2.1. Cortical surface registration

We briefly describe our automatic surface registration method,

to be published elsewhere, as the main focus of this paper is

geodesic curvature flow for sulcal detection. Other automated

registration methods could also be used (e.g. FreeSurfer,

BrainVISA or BrainVoyager) to transfer the atlas sulcal

curves to their initial locations on the subject. We describe a

method that establishes one-to-one correspondence between

the atlas surface A and the subject surface S . The method

for surface registration has two stages: (i) for each subject,

parameterize the surface of each cortical hemisphere to a unit

square (ii) find a vector field with respect to this parameteriza-

tion that aligns curvature of the surfaces. In order to generate

such a parameterization, we model the cortical surface as an

elastic sheet and solve the associated linear elastic equilib-

rium equation using the Finite Element Method (FEM) as

described in [11]. We constrain the corpus callosum to lie on

the boundary of the unit square mapped as a uniform speed

curve. Then, an elastic energy minimization yields flat maps

of the two cortical hemisphere surfaces to a plane (Fig. 1). A

multiresolution representation of curvature for the subject and

atlas is calculated. This is then aligned by minimizing a cost

function with elastic energy as a regularizing penalty. The

registration is made more robust by adding 3D coordinate

matching as a mismatch penalty along with the curvature.

This performs reparameterization of the cortical hemisphere

surfaces and establishes a one to one point correspondence

between subject and atlas surfaces. We used the BrainSuite

software [12] to extract the tessellated cortical surface meshes

for the atlas and for each subject from T1-weighted MRI vol-

umes, as well as to interactively trace 26 candidate sulcal

curves on the atlas brain according to the protocol described

in [4]. By using the point correspondence established using

the registration, these curves are then transferred to the sub-

ject surfaces. The objective of the geodesic curvature flow

method presented in the next section is to perform refinement

of these RT sulci to find accurate sulcal curves in the subjects

surface.

2.2. Finite element method

We use an FEM-based level set approach for computing the

curvature flow, as we describe in Sec 2.3. We first describe

how we perform FEM discretization on a triangulated mesh of

the partial derivatives [13]. Let α be any piecewise linear real-

valued scalar function defined over the surface, and let x, y

Fig. 1. Curvature based automatic surface registration

denote local coordinates for triangle i. We can also denote

the local coordinates of the three vertices of the triangle as

(x1, y1), (x2, y2) and (x3, y3) respectively. Since α is linear

on the ith triangle, we can write,

α(x, y) = a
i
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i
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i
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These triangle-wise derivative operators can be assembled

over the entire surface and can be written as Dx and Dy

matrices. The derivative operator matrix is thus denoted by

D = [Dx, Dy]
T .

2.3. Geodesic curvature flow on surfaces

The RT curves are typically in the correct sulcal valley, but are

not exactly at their desired locations at the bottoms of these

valleys. We have found that sulci propagated by automatic

registration generally lie within 3cm of the true sulcal valleys

[4]. Therefore, to reduce the computational load, we calcu-

late a surface patch around the sulcus of interest using front

propagation for 3cm (Fig. 2).



Fig. 2. (a) Initial sulcal curve and signed distance func-

tion; (b) curvature weighting function f shown as color-coded

overlay on the surface patch around that sulcus.

The geodesic curvature flow is performed over this sur-

face patch around the sulcus of interest using a level set for-

mulation. The approach presented here is based on [10], but

in our case we add curvature weighting when computing min-

imizing geodesics. Assume M is a general 2D manifold rep-

resenting the surface patch embedded in R
3 and let Γ be the

sulcal curve on the surface. Let the curve Γ be represented

by the zero level set of a function φ : M → R, i.e., Γ =
{s : φ(s) = 0}. Suppose that c : M → R is the cur-

vature of the surface M. We have found that, for sulcal

tracing, a sigmoid function of the curvature works well as

weights on the paths for sulcal tracing [3]. Therefore, we de-

fine f(s) = 1
1+e−2c(s) as the curvature based weights on the

surfaces. We seek to minimize the weighted length of Γ given

by E(Γ) =
´

Γ:φ=0
fdS, where integration is computed over

the surface at the curve points. Following [10, 8, 9], the Euler-

Lagrange equations for the energy functional minimization of

E(Γ) yield

{
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where we choose φ0 to be a signed distance function from the
initial sulcal curve. The boundary condition is discretized in
a standard way in the finite element formulation and we refer
the reader to [13] for details. Next, we use the divergence
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By using discretization of derivatives in Sec. 2.2 and after

performing implicit-explicit discretization of the time deriva-

tive, we get:
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Finally, after simplification, the curve evolution problem

reduces to solving a linear matrix equation given by:
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This system of equations is solved using a preconditioned

conjugate gradient method with Jacobi preconditioner. The

algorithm was implemented in Matlab. We choose ∆t = .5
and the number of iterations Niter = 20. The algorithm takes

approximately 1 hour per subject hemisphere for the refine-

ment of all the sulci on an 8 core Intel i7 computer. The final

GCF curves were extracted by finding the zero level set of the

function φ after 20 iterations.

3. RESULTS

In order to evaluate the performance of the method, we per-

formed validation on a set of 12 subject brains. We used the

ICBM Single Subject Template as our atlas (http://www.loni.ucla.edu/Atlases/Atlas_Detail.jsp?atlas_id=5).

We applied the BrainSuite software [12] to extract cortical

surface meshes from the subject and atlas MRI data. Brain-

Suite includes a multistage cortical modeling sequence. First

the brain is extracted from the surrounding skull and scalp tis-

sues using a combination of edge detection and mathematical

morphology. Next the intensities of the MRI are corrected for

shading artifacts. Each voxel in the corrected image is then

labeled according to tissue type using a statistical classifier.

A standard atlas with associated structure labels is aligned to

the subject volume, providing a label for cerebellum, cere-

brum, brainstem, and subcortical regions. These labels are

combined with the tissue classification to automatically iden-

tify the cerebral white matter, to fill the ventricular spaces,

and to remove the brainstem and cerebellum. This produces

a volume whose boundary surface represents the outer white-

matter surface of the cerebral cortex. Prior to tessellation, the

topological defects are identified and removed automatically

from the binary volume using a graph based approach. A tes-

sellated isosurface of the resulting mask is then extracted to

produce a genus zero surface. This surface is then expanded

to identify the pial surface, i.e., the boundary between grey

matter and CSF. The surfaces are then split into left and right

hemispheres based on the registered atlas labels.

We delineated sulcal curves using BrainSuite’s interac-

tive delineation tools [3] following a sulcal protocol with 26



Fig. 3. Evolution of the sulcal curve by geodesic curvature

flow for different iterations. The curvature weighting function

f is shown as color-coded overlay

manual vs RT(mm) manual vs GCF(mm)

Cent. sulcus 1.8(L), 2.1(R) 1.4(L), 1.4(R)

Sup. Front. sulcus 2.7(L), 2.7(R) 1.8(L), 1.3(R)

Calc. sulcus 2.3(L), 2.3(R) 2.0(L), 2.1(R)

Sup. Temp. sulcus 4.2(L), 4.1(R) 3.5(L), 3.6(R)

Avg over all 26 sulci 3.6(L), 3.9(R) 2.7(L), 3.3(R)

Table 1. Sulcal errors between manually delineated curves

and automatically generated curves by registration and trans-

fer (RT) and geodesic curvature flow refinement (GCF) mea-

sured by Hausdorff distance metric. The table shows mean

error for cortical delineation of 12 subjects for both left (L)

and right (R) hemispheres.

sulcal curves [4]. These sulci are consistently seen in nor-

mal brains, and are distributed throughout the entire cortical

surface. A thorough description of the sulcal curves with

instructions on how to trace them is available on our web site

(http://neuroimage.usc.edu/CurveProtocol.html). We traced

the curves on the midcortical surface because it provides

better access to the depth of the sulci than the pial surface,

and the valleys of the sulci are more convex than the white

matter surface allowing more stable tracing of the curves.

The same procedure was repeated on the single subject at-

las. Next, we performed the subject to atlas registration

as described in Sec. 2.1 and transferred the curves of the

atlas to the subject brains. The transferred curves were re-

fined using the geodesic curvature flow as discussed in Sec

2.3. The evolution of one sulcal curve in shown in Fig. 3 (see

http://sipi.usc.edu/~ajoshi/GCF_Sulci.html for an animation).

To compare the alignment of transferred curves, as well as

GCF curves, we mapped the 26 protocol curves from all sub-

jects to the target surface. We then quantified their accuracy

using their variance on the subject surface, which is estimated

as follows. We use a distance measure based on the Hausdorff

distance metric:

d(Di, Dj) = 0.5
1

N

∑

p∈Di

min
p∈Di

|p− q|+ 0.5
1

N

∑

p∈Dj

min
q∈Dj

|p− q|

where d(Di, Dj) is the distance between the pointsets on tri-

angle mesh representing curves Di and Dj . This distance is

computed between subject’s manual curve and RT curve, as

well as manual curve and GCF curve.

The results for some of the prominent sulci are presented

in Table 1. It can be seen that the sulcal error is reduced sub-

stantially after geodesic curvature flow. This improvement is

most pronounced in the sulci that are clearly defined by cur-

vature extrema and shortest length paths on the cortex, such

as central sulcus and superior frontal sulcus.

4. CONCLUSION

This paper presents a method for accurate and automatic de-

lineation of sulcal curves on human brain cortex which are

important inputs for cortical shape analysis. We will test this

method further with brains with disorders, but preliminary

results show promising prospects for the method in case of

small temporal lobe lesions. The level set approach and FEM

formulation allowed us to perform geodesic curvature flow

on the surface. We demonstrated the potential benefit of this

method by applying it to a small population of brains and

showed that the GCF curves are significantly more accurate

than the RT curves. A more extensive validation is planned.
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