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ABSTRACT

Insight into brain development and organization can be

gained by computing correlations between structural and func-

tional measures in parcellated cortex. Partial correlations can

often reduce ambiguity in correlation data by identifying those

pairs of regions whose similarity cannot be explained by the

influence of other regions with which they may both interact.

Consequently a graph with edges indicating non-zero partial

correlations may reveal important subnetworks obscured in the

correlation data. Here we describe and investigate PC*, a graph

pruning algorithm for identification of the partial correlation

network in comparison to direct calculation of partial correla-

tions from the inverse of the sample correlation matrix. We

show that PC* is far more robust and illustrate its use in the

study of covariation in cortical thickness in ROIs defined on a

parcellated cortex.

Index Terms— brain networks, human connectome, graph-

ical Gaussian model, partial correlation, PC algorithm

1. INTRODUCTION

Brain imaging technology enables the exploration of brain

anatomy and structural and functional connectivity at increas-

ingly high resolutions. These techniques can be used to inves-

tigate direct connectivity (through diffusion imaging of white

matter tracts) and functional connectivity (through event related

and resting state fMRI). Additional insight into the organization

of the brain can be gained by studying how the morphology

of anatomical structures covary across populations [1] and the

influence of genetic factors on these covariations.

Common to all three modes of investigating large scale in-

teractions (structural connectivity, functional connectivity, mor-

phological covariation) is the need for computational tools to

robustly analyze these direct or indirect measures of connectiv-

ity between brain regions [2].

In this paper we explore methods for computing connectiv-

ity using partial correlations. The partial correlation between

two regions of interest (ROIs) is the component of the correla-

tion between the regions that cannot be explained through cor-

relation with other ROIs to which both regions are connected.

Equivalently, the partial correlation is the correlation coefficient

between signals recorded at the two ROIs after subtracting from
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each the regression on the signals from all other ROIs. The par-

tial correlation therefore naturally admits a graphical network

representation in which the nodes are the ROIs and edges ex-

ist only between pairs of ROIs for which the partial correlation

is nonzero. This network contains connections between ROIs

for which any correlation between the structural or functional

similarity between them cannot be explained through indirect

correlations with other ROIs.

Partial correlation is typically estimated from the concen-

tration matrix (the inverse of the sample covariance matrix [3]),

but this method is suboptimal in statistical power for sparse net-

works and suffers from a large sample size requirement that

increases linearly with the size of the number of ROIs. This

sample size requirement can be a problem when working with

pathological brains for which the patient population is small or

when the number of ROIs (nodes) in the network is large. We

propose a new algorithm based on the PC algorithm [4] for ob-

taining statistical brain networks that similarly improves con-

nectivity testing power and reduces sample size requirements

by leveraging sparsity of the concentration matrix.

We choose cortical gray matter thickness as a morphologi-

cal feature with which to study (indirect) brain connectivity. The

biological basis for cortical thickness correlations is unknown,

but it has been argued that the covariation of the morphological

features, such as gray matter thickness, may result from mu-

tually tropic influences, the contribution of genes or common

experience-related plasticity and extensive learning [2]. Gray

matter thickness has been implicated in many important brain

phenomena, such as aging and Alzheimer’s disease, and stud-

ies have indicated that intercorrelated regions of morphological

features may be a part of a functional, neuroanatomically inter-

connected system [5]. Furthermore, significant correspondence

between anatomical connectivity and functional connectivity of

functional data has been shown [6].

In this study, we use a morphometry-based connection con-

cept with cortical gray matter thickness derived from 645 auto-

matically parcellated cortical volumes to study the underlying

architecture of the brain network. The connectivity matrices

from the concentration method of calculating partial correlation

and a modified version of the PC algorithm are discretized to

adjacency matrices at different sparsity levels and compared in

terms of stability on the thickness data. We believe this is the

first time that a PC-like algorithm has been applied to structural



brain data and show that it outperforms the standard concentra-

tion method.

2. GRAPHICAL MODELS

A graphical model combines a multivariate distribution with

a graphical representation that encodes the conditional inde-

pendence structure between the random variables characterized

by the distribution [3]. The random variables are depicted as

nodes or vertices in a graph, and their conditional dependence

structure is encoded through their edges where a lack of an

edge between two nodes denotes conditional independence. In

this way, graphs are a useful tool for visualizing and investi-

gating conditional independence structure between a collection

of random variables, or the processes they represent. Graphs

with directed edges, such as the directed acyclic graphs used in

Bayesian networks [4], convey a notion of causality, but here

we are not concerned with causality and restrict ourselves to

undirected graphs.

An undirected graph, G = (V,E), is represented by a

set of vertices, V = {V1,V2, . . . ,VP} and a set of edges E,

each represented by by unordered pairs of vertices, where

Vi corresponds to the i-th element of P-length random vector

X = (X1, X2 , . . . , XP), which we assume here to follow a mul-

tivariate distribution PX . {Vi,Vj} ∈ E means that Vi and Vj are

adjacent, denoted Vi ∼G Vj. The edges of the graph convey

information by encoding a subset of the conditional indepen-

dence relationships implied by PX according to the following

properties:

Global Markov Property - Let VA, VB, and VS be disjoint

subsets of V . If VS is a separator of VA and VB in G (all paths

between any vertex in VA and any vertex in VB pass through at

least one vertex in VS), then the random variables corresponding

to set A are conditionally independent from those corresponding

to set B given S [3]. That is, VA ⊥ GVB ∣ VS Ô⇒ XA áPx XB ∣
XS where ⊥G and áPx denote separation in G and conditional

independence with respect to PX respectively.

Faithfulness - If the converse of the global Markov property

is also true such that all conditional independence relationships

are represented by the graph (VA ⊥GVB ∣VS⇐⇒ XA áPx XB ∣ XS),

then PX and G are said to be faithful to one another and G is

termed a perfect map of PX [4].

Faithfulness greatly increases the benefit one gets from the

graph by ensuring that all independence information is encoded

in the graph. In this paper we assume that our thickness data

has a MVN distribution: PX = NP(µ,Σ), for which faithfulness

is guaranteed with probability 1 [7].

3. CONCENTRATION MATRIX THRESHOLDING

To find the graph G associated with data drawn from the MVN

distribution PX , we need to find the set of edges that define the

graph. Because zero partial correlation between two variables

is equivalent to their conditional independence under the MVN

distribution [3], the edges are given by the non-zero partial cor-

relations between each pair of random variables (or nodes in the

graph). The simplest approach is to compute partial correlations

directly from the concentration matrix: ρi j∣rest =
−ki j√
kiik j j

where

ki j denotes element (i, j) of the concentration matrix, K, and

conditioning on “rest” means conditioning on all of the vari-

ables in X except Xi and X j [3]. Thus, ki j = 0⇐⇒Xi áPX
X j ∣ rest,

and the output adjacency matrix is zero when ki j is zero and one

otherwise. As noted above, for the MVN distribution, the cor-

responding graph is faithful to PX with probability 1.

In practice, the true concentration matrix is unknown, but

can be estimated by taking the inverse of the sample covariance

matrix. However, invertibility of the covariance matrix requires

that the number of observations, N, be greater than the number

of variables plus 1: N≥ P+ 1. Satisfying this condition can

be difficult when the number of nodes (ROIs) is large and the

population size is small.

4. PC* ALGORITHM

The PC* algorithm presented in this paper is a variation of part

of the PC algorithm (named after its authors’ first initials; [4])

that optimizes the algorithm’s speed for undirected graphs. To

facilitate the following description of the algorithm, we assume

that all partial correlations are known a priori. The PC* algo-

rithm assumes PX is faithful to some undirected, target graph

G = (V,E) and starts with a completely connected undirected

graph Ĝ = (V, Ê) and prunes its edges to reach G. Edges are

pruned by testing for independence between adjacent vertices

in Ĝ conditioned on sets that seek to separate the vertices in G.

For a graph satisfying the faithfulness property, the separation

of two vertices by a set is equivalent to zero correlation con-

ditioned on that set. Therefore, when zero partial correlation

occurs for any conditioning set, that set is a separator of G, im-

plying that the corresponding edge cannot be in E, and so the

PC* algorithm removes it from Ê. The conditioning set size

starts at 0 and is increased until it is guaranteed that every false

edge ({e ∣ e ∈ Ê, e ∉ E}) has been conditioned on a separator

and in turn removed. The conditioning sets of size m for testing

the edge between arbitrary vertices VA and VB is every subset of

adj(VA,Ĝ)−VB of size m where adj(Vk,G) = {Vl ∣Vl ∼G Vk} (the

set of immediate neighbors of VA in G). Thus, as m increases,

if {VA,VB} ∉ E, one of the conditioning sets is guaranteed to

separate VA and VB in G. Of course, in practice the partial cor-

relations are not known a priori, but conditional independence

can be determined using their estimates to perform hypothesis

tests. In particular we transform the correlation coefficients to

pivotal Student’s t-scores [8].

The advantage of PC*’s conditioning scheme relates to the

estimates of the partial correlations and is two-fold. 1.) It is

more accurate to condition on smaller separating subsets when

dealing with realizations of random variables because extra

conditioning variables increase the variance of the estimated

partial correlations. 2.) For each variable removed from a

conditioning subset, one less sample is required. Whereas the

concentration method requires at least P samples for mean-

zero data, the PC algorithm requires only the cardinality of

the separator plus 2, which can be substantially less for sparse



graphs.

Following Li and Wang [9], we incorporate the Benjamini-

Hochberg procedure [10] for controlling the fase discovery rate

(FDR) into PC*. Also, whereas the original PC algorithm infers

directed acyclic graphs under the assumption that the underly-

ing distribution is faithful to such a graph and when testing an

edge must condition on the neighbors of both corresponding

vertices, PC* assumes faithfulness to an undirected graph and

need only condition on the neighbors of one of the vertices to

infer an undirected graph in approximately half the time. Algo-

rithm 1 gives pseudocode for PC*.

Algorithm 1 PC* Algorithm

Require: the target false discovery rate, q, and an N×P data matrix, X, comprised of N observations ∼ NP(µ,Σ) faithful

to a CIG G = (V,E).
Ensure: the estimate of the CIG, Ĝ = (V, Ê)

1: Ĝ = (V, Ê)← complete graph of P vertices

2: p_max (matrix storing the maximum estimated p-value for each possible edge)← −1

3: m← 0

4: repeat

5: for each edge e = {Vi ,Vj} ∈ Ê do

6: if ∣adj(Vi , Ĝ)∣ ≤ ∣adj(Vj , Ĝ)∣ then

7: neighbors← adj(Vi , Ĝ)
8: else

9: neighbors← adj(Vj , Ĝ)

10: end if

11: for each conditioning set S ⊆ neighbors/{Vi ,Vj} such that ∣S∣ = m while e ∈ Ê do

12: Calculate ρi j∣S from X and transform to a t-score to get p-value pi j∣S .

13: if pi j∣S > p_max for edge {Vi ,Vj} then

14: p_max for edge {Vi ,Vj}← pi j∣S
15: if All edges have been tested at least once (p_max ≥ 0 for all edges) then

16: p_edges_max← the p-values from p_max of only the edges that have not been removed from

Ĝ

17: rem_edges← FDR_BH(p_edges_max,q) (perform Benjamini-Hochberg procedure to deter-

mine edges to remove.)

18: Ê ← Ê − rem_edges

19: end if

20: end if

21: end for

22: end for

23: m← m+1

24: until ∣adj(Vi , Ĝ)/Vi ∣ < m for all Vi ∈ V

5. DATA COLLECTION AND PREPROCESSING

Our empirical data consisted of 3D structural brain MRI scans

of 668 normal, right handed subjects (age range: 22-25 years).

The scans were collected using a 4 Tesla Bruker Medspec whole

body scanner (Bruker Medical, Ettlingen, Germany) at the Cen-

ter for Magnetic Resonance (University of Queensland, Aus-

tralia). Three-dimensional T1-weighted images were acquired

with a magnetization prepared rapid gradient echo (MP-RAGE)

sequence to resolve anatomy at high resolution. Acquisition pa-

rameters were: inversion time (TI) /repetition time (TR) /echo

time (TE) = 1500 / 2500 / 3.83 msec; flip angle = 15 degree;

slice thickness = 0.9mm with a 256×256×256 acquisition ma-

trix. BrainSuite’s automated processing pipeline [11, 12] was

used for automatic skull stripping, tissue classification, surface

extraction, gray matter thickness estimation and cortical and

subcortical parcellation of the data. Figure 1 shows the lateral

and medial views of the template’s left cortical surface after be-

ing parcellated and color coded into the 25 ROIs used in this

paper.

For each subject, the multiple gray matter thickness mea-

surements in each of the parcellated cortical regions were av-

eraged to form a summary statistic for each region. The log

transform of cortical thickness data was taken such that the re-

sulting data approximately follows the MVN distribution [13].

Fig. 1: Lateral and medial views of the 25 parcellated cortical re-

gions per hemisphere displayed on the template’s left hemisphere

Sample Size = 645 Sample Size = 161

Method SE AEV(Std) SE AEV(Std)

Concentration 83 0.059(0.069) 24 0.068(0.048)

PC* 111 0.042(0.068) 54 0.049(0.063)

Table 1: The number of stable edges (SE), average edge variance

(AEV) taken over all possible edges, and edge variance standard de-

viation (Std) also taken over all possible edges for each method and

sample size.

Any subjects with a log-transformed thickness outside 3 stan-

dard deviations with respect to a parcellated region were re-

jected, resulting in a final 645 subject by 50 region data matrix.

6. SAMPLING STABILITY

Bootstrapping was performed for both the concentration-matrix

and the PC* method to estimate the edge variances and occur-

rence probabilities based on the thickness dataset’s empirical

distribution [14]. Bootstrapping was run twice, 500 trials in

each run: once randomly sampling 645 subjects at a time to

estimate the stability for the entire dataset and a second time

randomly sampling 161 subjects at a time to illustrate stability

when fewer samples are available. For each trial, PC*’s FDR

was set to 15% and the concentration method’s threshold was

chosen to match the number of edges given by PC*. An edge

was deemed stable if it occurred for at least 70% of the boot-

strap trials, and Table 1 summarizes the results. For sample

size = 645, Figure 2 shows the stable network for both methods

formed solely from stable edges.

In another comparison of method stability under the empiri-

cal distribution, we started by running both methods on the full-

sample dataset with parameters such that each method found

159 edges (the number of edges found by PC* with FDR =

15% on the full dataset) and took the resulting graphs as ground

truths for their respective methods. For 15 trials, the graphs

were regenerated on resampled datasets of various sizes, and

for each method, the Dice coefficients were calculated between

these graphs and their corresponding ground truth graph. (The

Dice coefficient between a true edge set E and a method’s esti-

mated edge set Ê is dice(E, Ê) =
2 ∣E∩ Ê ∣
∣E ∣ + ∣ Ê ∣ and ranges between

0 when the two sets have no edges in common and 1 when

E = Ê.) Tuning PC*’s FDR to achieve the target 159 edges

proved overly difficult for the 3 smallest sample sizes (20, 15,

and 10) which failed to meet the target by 41.1, 55.5, and 100

edges on average respectively. The mean Dice coefficient for

each method is plotted below as a function of sample size in

Figure 3.



(a) Concentration, top view (b) PC*, top view

(c) Concentration, lateral view of

left hemisphere

(d) PC*, lateral view of left

hemisphere

(e) Concentration, lateral view of

right hemisphere

(f) PC*, lateral view of right

hemisphere

Fig. 2: 3 views of the stable, bootstrapped graphs for both meth-

ods with sample size = 645. Edge darkness and thickness increase

with edge stability. In the top view, left and right hemispheres in

the figures correspond to anatomical left and right hemispheres re-

spectively. In lateral views only intrahemispheric connections are

shown.

Fig. 3: A comparison of each method’s consistency with their full-

sample result under the thickness dataset’s empirical distribution for

various sample sizes. Similarity is measured by Dice coefficient over

15 trials for each sample size. Note: the concentration method’s

curve is undefined for sample sizes less than 51.

7. DISCUSSION

The bootstrap results show that PC* is significantly more stable

than the standard concentration method, particularly as the sam-

ple size decreases. Table 1 reports that PC* finds significantly

more stable edges and has less edge variance than the concen-

tration method. For example, for sample size = 161, PC* finds

more than twice as many stable edges and has approximately

72% of the average edge variance as the concentration method.

Furthermore, Figure 3 shows that the graphs returned by PC*

are much more consistent than those returned by the concentra-

tion method. At a sample size of 51, PC* has a Dice coefficient

approximately equal to the Dice coefficient for the concentra-

tion method at a sample size of 200.

The stable PC* and concentration networks shown in Figure

2 are consistent with previous findings and largely similar with

some notable differences. The long range interhemispheric con-

nections between homologous regions present in both networks

are expected and lend credibility to the results. The intrahemi-

spheric connections are largely identical between the two meth-

ods with a few exceptions and the caveat that in general they are

stronger in the PC* network. Curiously, the extra stable edges

found by the PC* method largely manifest as long range, inter-

hemispheric connections to non-homologous regions, of which

the concentration network has comparatively very few.
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