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ABSTRACT
The estimation and analysis of kinetic parameters in dynamic
PET is frequently confounded by noise and partial volume
effects. We propose a new constrained model of dynamic
PET to address these limitations. The proposed formulation
incorporates an explicit partial volume model in which each
image voxel is represented as a mixture of different pure tis-
sue types with distinct temporal dynamics. A two stage al-
gorithm is proposed to solve the resulting problem. In the
first stage, a sparse signal processing method is applied to
estimate the rate parameters for the different tissue compart-
ments from the noisy PET time series. In the second stage, tis-
sue fractions and the linear parameters of different time activ-
ity curves (TACs) are estimated using a combination of spar-
sity, spatial-regularity, and fractional mixture constraints. A
block coordinate descent (BCD) algorithm is combined with
a manifold search to robustly estimate these parameters. The
method is evaluated with both simulated and experimental dy-
namic PET data.

Index Terms— Dynamic PET, Mixture Modeling, Spar-
sity, Kinetic Parameter Estimation

1. INTRODUCTION

Dynamic PET is a powerful technique that provides informa-
tion about molecular processes in the human body. Pharma-
cokinetic modeling is commonly used in PET to investigate
the physiological processes involved in tracer uptake, andes-
timated kinetic parameters can play an important role in dis-
ease diagnosis and treatment evaluation. It is common to es-
timate kinetic parameters by fitting PET images of the time-
varying tracer density to an appropriate model.

Conventional methods for kinetic parameter estimation
[1, 2] make the assumption that tracer kinetics are homo-
geneous within a voxel or a region of interest. However,
tissue heterogeneity and partial volume effects inevitably
cause this assumption to be violated. Highly heterogeneous
tumors are considered more aggressive with a higher propen-
sity for metastasis or invasion [3]. Therefore quantification
of tumor heterogeneity could prove to be a useful metric for
treatment assessment or a predictive indicator for treatment
failure [4]. In addition, tumor heterogeneity could potentially
be exploited for biologically optimized treatment planning
in radiation therapy. Because of the significance of tumor
heterogeneity in cancer management, the application of con-
ventional homogeneous tissue models is rather limited.

To overcome these limitations, mixture models [5, 6] have
been proposed that model the time activity curve (TAC) from

each voxel as a linear combination of several TACs represent-
ing the tracer dynamics of pure tissues. Since mixture mod-
els often use an overcomplete parameterization, solutionsare
frequently not unique unless additional constraints are incor-
porated. In [7, 8], basis pursuit and sparse Bayesian learn-
ing approaches were proposed to sparsely estimate tissue ki-
netic parameters, under the assumption that the number of
distinct tissue types contributing to any given voxel is rela-
tively small. However, these methods operate voxel-by-voxel,
without incorporating the prior information that PET tracer
kinetics should be spatially-correlated and smoothly varying.
In addition, these methods were only used to derive summary
statistics of the ensemble TAC behavior in each voxel, without
attempting to accurately resolve the kinetic parameters and
volume fractions of each contributing tissue.

Our approach attempts to overcome the drawbacks of these
previous approaches by combining accurate kinetic modeling,
joint-sparsity modeling [9], and spatial regularity constraints.
By using joint sparsity, we can leverage the fact that tissue
TACs for the same tissue type are relatively consistent over
large regions, which improves the SNR for kinetic parameter
estimation. By using anℓ0 sparsity constraint, we can ro-
bustly recover the tissue volume fractions in the presence of
significant image noise. And our method enables estimation
of the complete set of kinetic parameters without requiring
linearization or use of the Patlak model.

2. METHOD

2.1. Mixture Model

We assume an image model comprised ofQ distinct tissue
types andN voxels. Assuming that we know the plasma input
function Cp(t), the time activity curveTACq(t) for the qth

tissue can be written as [10]

TACq(t) = (cqe−λdt + dqe−θqt)∗Cp(t), (1)

wherecq, dq andθq are unknown tissue parameters,λd is the
known tracer decay constant, and∗ denotes convolution.

For each voxel, the measured TAC is expressed as the linear
combination of these tissue TACs:

TAC j(t) =
Q−1

∑
q=1

TACq(t)Aq j +Cp(t)AQ j, (2)

wherej is the voxel index and theAq j are linear mixing coef-
ficients that represent the fractions of different types of tissues



present in the voxel. Substituting (1) into (2), we have

TAC j(t) = (
Q−1

∑
q=1

cqAq j)e
−λd t ∗Cp(t)

+
Q−1

∑
q=1

dqAq je
−θqt ∗Cp(t)+AQ jCp(t).

(3)

In equation (3),Q, cq, dq, Aq j, andθq are unknowns to be estimated,
under the constraints that

θq > λd , cq > 0 , dq > 0 , Aq j ≥ 0 , ∑
q

Aq j ≤ 1, (4)

thatAq j should be spatially smooth for eachq, that there is at most
one fractional tissue compartment that is not metabolically active
(e.g., necrosis), and that non-active tissue compartmentsare present
in only a small number of voxels (i.e.,∑q Aq j 6= 1 in only a sparse
set of voxels).

The joint estimation of all these parameters is complicatedbe-
cause of nonlinearity, the fact that the model complexity changes
significantly for different Q, the bilinearity ofAq j with both cq and
dq, and the constraints that need to be satisfied. As a result, wepro-
pose a two stage method to separate the estimation ofQ and theθq
from the remaining variables. In the first stage, we use a sparsity-
constrained dictionary approach to simultaneously estimate Q and
θq. In the second stage we use a block coordinate descent (BCD)
algorithm together with a manifold search to robustly estimate the
tissue fractions and the linear tissue TAC parameters.

2.2. Stage 1: Dictionary-Based Estimation ofQ and θq

By a change of variables, (3) can be rewritten as

TAC j(t)=B0 je
−λdt∗Cp(t)

+
Q−1

∑
q=1

Bq je
−θqt∗Cp(t)+BQ jCp(t)

(5)

where we have usedB0 j = ∑Q−1
q=1 cqAq j and Bq j = dqAq j for q =

1, . . . ,Q − 1, andBQ j = AQ j.
This change of variables complicates the form of the constraints

in (4). However, while these constraints will play important roles in
estimatingcq, dq, andAq j, they are not as essential for estimatingQ
andθq. As a result, we neglect these constraints onB for this first
stage to ensure that the estimation problem is tractable. Estimation
of Q is still nonconvex and nonlinear with respect to theθq. To
avoid this, we use a discretized dictionary-based approachinspired
by [7, 8]. In particular, we express (3) using the overcomplete series
representation

TAC j(t) =
Nb

∑
q=0

Bq jψq(t), (6)

whereNb ≫ Q, and with

ψ0(t)
de f
= Cp(t), ψ1(t)

de f
= e−λd t ∗Cp(t),

andψn(t)
de f
= e−θnt ∗Cp(t), 2 < n < Nb.

(7)

The set ofNb −1 different values ofθn are selected from the phys-
iologically meaningful range. From our original model (3),we ex-
pect thatBq j in (5) will have joint-sparse characteristics, i.e., that the
number ofq values for whichany Bq j 6= 0 will be very small (and
equal toQ +1). Given the set of non-zeroBq j, it is straightforward
to retrieve the corresponding rate parameters.

In practice, dynamic PET time series are often reconstructed at

a finite numberI of time frames, with each frame corresponding to
the average tracer behavior over a given time interval. To model this
process, we introduce new quantities

Yi j =

∫ te
i

ts
i

TAC j(t)dt

te
i − ts

i
, Ψiq =

∫ te
i

ts
i

ψq(t)dt

te
i − ts

i
(8)

wherets
i andte

i are the sequences of start and end frame times, with
which the measured data at theith time frame in thejth voxel is
modeled as

Yi j ≈
Nb

∑
q=0

ΨiqBq j (9)

for eachi, which we can simultaneously express in matrix form for
all voxels and all time points in matrix form as

Y = ΨB, with Y ∈ R
I×N , Ψ∈ R

I×(Nb+1), andB ∈ R
(Nb+1)×N .

(10)
Although there will not be a unique least-squares solution for B

in the typical case whereNb + 1 > I, we can use joint-sparsity in-
formation to make the problem well posed and to include the prior
information thatQ should be relatively small. We define therow-ℓ0
quasi-norm ofB as the number of non-zero rows which is a mea-
sure of joint sparsity [9]. Since the first two rows ofB are always
present, we impose a joint-sparsity constraint only on a submatrix
of B with the first two rows removed, which we denote byB2:Nb,:.
The resulting sparse estimation problem can be posed in regularized
form as

min
B

= ‖Y−ΨB‖2
Fro +κ‖B2:Nb,:‖row-ℓ0 (11)

whereκ is a regularization parameter.
Since therow-ℓ0 quasi-norm is nonconvex, it is common to apply

convex relaxation methods [9]. Our preliminary experiencewith this
model suggests that convex relaxation approaches are not well suited
to this problem, due to the significant temporal coherence between
the differentψq. However, we have found much better success if we
directly optimize (11) using combinatorial methods. Despite being
NP-hard, direct optimization of (11), which can ensure global opti-
mality for this subproblem, is not time consuming if we leverage the
prior information that the true value ofQ should be small, and has
proven to be very robust to noise. Our results always useQ < 5.

2.3. Stage 2: Estimation ofcq, dq and Aq j

Solving (11) provides us with estimated̂Q and θ̂q, and with these
parameters fixed, we return to solving (3) for the remaining parame-
ters. Defining

c = [c1,c2, . . . ,cQ̂−1] andD = diag{d1,d2, . . . ,dQ̂−1}, (12)

our model can be expressed in matrix form as

Y ≈ Ψ̂

(

c 0
0 1
D 0

)

A

= Ψ̂FA,

(13)

whereA ∈ R
Q×N is the matrix ofAq j, F ∈ R

(Q̂+1)×Q̂ is given by

F =

(

c 0
0 1
D 0

)

, (14)

and we form the matrix̂Ψ as the submatrix of the columns fromΨ
corresponding the non-zero rows ofB̂.

There are 2(Q̂−1) unknown parameters (cq,dq) in F andNQ̂ un-
known parameters inA. In addition, without use of the constraints in



(4), the least squares fit of these parameters would not be unique be-
cause of bilinearity . We need additional prior informationto solve
for F̂ andÂ. In addition to (4), we also apply:

1. Sparsity-enforcingℓ1 regularization on
(

1−∑q Aq j
)

to im-
pose the prior information that most voxels are completely
filled with metabolically active tissues. This constraint re-
moves the bilinear scale ambiguity betweenF andA.

2. Quadratic smoothness regularization of the tissue fractions
Aq j, to impose the prior information that tissue contributions
will be vary smoothly standard PET images.

Combining these two constraints, we define our cost functionas:

cost(F,A) = ||Y− Ψ̂FA||2Fro +β
Q̂

∑
q

N

∑
j

∑
l∈Nbr( j)

φ(Aq j −Aql)

+γ
N

∑
j
|1−

Q̂

∑
q=1

Aq j| (15)

where Nbr( j) denotes the set of neighboring voxels for voxel j,
φ(x) = x2, andγ andβ are regularization parameters.

The optimal solution to (15) is:

[F̂, Â] = argmin
F∈ΩF ,A∈ΩA

cost(F,A) (16)

whereΩF = {F : F =

(

c 0
0 1
D 0

)

,D = diag(d),cq > 0,dq > 0},

andΩA = {A : Aq j ≥ 0,∑q Aq j ≤ 1}.
To find the optimal solution, we alternate between estimating F

andA using a BCD approach. Although our regularization frame-
work eliminates potential bilinear scale ambiguity between F andA,
the bilinear nature of the problem prevents convergence of our al-
ternating algorithm when the current estimates ofF andA lie in a
solution valley whereY ≈ Ψ̂FA but

(

1−∑q Aq j
)

is not optimally
sparse. This is because the alternating BCD method does not allow
for simultaneous update ofA andF. To overcome this problem, we
introduce an additional manifold search into our alternating descent
algorithm, to resolve problems of scale ambiguity in this region of
the cost function. A sketch of the full algorithm is given below:

1. At themth iteration, fixF to be equal to the estimate from the
previous iteration̂Fm−1 and solve

Âm = argmin
A∈ΩA

cost(F̂m−1,A)

= ||(Y− Ψ̂F̂m−1A)||2Fro

+β
Q̂

∑
q=1

N

∑
j=1

∑
l∈N( j)

φ(Aq j −Aql)+γ
N

∑
j
|1−

Q̂

∑
q=1

Aq j|

(17)

using an alternating direction method of multipliers (ADMM)
algorithm [11].

2. For fixedÂm fixed,we solve

F̂m = argmin
F∈ΩF

cost(F, Âm) = ||Y− Ψ̂FÂm||
2
Fro (18)

using a nonnegative least squares method.
3. We introduce an auxiliary vectorρ ∈ R

Q̂−1 and perform a
manifold search to resolve potential scale ambiguity between
F̂m andÂm. DefiningΛρ = diag{1,ρ} we note that̂FmÂm =
(

F̂mΛ−1
ρ

)

(

ΛρÂm
)

for any strictly positive choices for the el-

ements ofρ. This implies that we can shift the scaling be-
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Fig. 1. True and estimated tissue fractions

tween F̂m and Âm without modifying the data consistency
term of (15), while avoiding being trapped in a suboptimal
stationary point of the BCD algorithm. Thus, we calculate

ρm = argmin
ρ∈Ωρ

cost(F̂mΛ−1
ρ ,ΛρÂm) (19)

with Ωρ = {ρ : ρq ≥ 0;ρqÂm,q j ≤ 1,∀ j;1−∑Q̂−1
q ρqÂm,q j −

Âm,Q̂ j ≥ 0,∀ j}
This is a small scale quadratic programming problem and is
solved using a standard interior point method.

4. SetF̂m = F̂mΛ−1
ρ andÂm = ΛρF̂m.

5. Iterate steps 1-4 until convergence.

3. RESULTS

3.1. Dynamic simulation

We simulated a dynamic image sequence representing a ROI con-
taining a donut shaped tumor with a necrotic center embeddedin a
square 64x64 voxel background of normal tissue. Images of the true
fractionsA are shown in the top left portion of Fig. 1. We simulated
noisy TACs with SNR = 50, and applied our proposed method with
κ = 1e−2, β = 1.2e−5, andγ= 1.3e−7. The estimated tissue fraction
images are shown in the top right portion of Fig. 1, and the estimated
tissue TACs are shown in Fig. 2. The estimated images match the
original tissue fraction images quite closely.

3.2. Real mouse data

A one-hour dynamic FDG PET mouse scan was performed using a
Siemens Inveon PET scanner. Dynamic list mode data was binned
into 30 inhomogeneous time frames, and images were generated us-
ing MAP reconstruction [12]. Our two stage mixture model was
applied to a torso ROI (see Fig. 3). Our proposed method was ap-
plied withκ = 1e−2, β = 3.3e−5, andγ= 9.3e−7. Results are shown
in Figs. 3 4.

The proposed method extracted three types of tissues. “Tissue
1” indicates tissues with accumulated FDG uptake (myocardium
and kidneys); “Tissue 2” correspond to normal abdominal or-
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Fig. 3. (Left) The last frame of the dynamic PET time series.
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sue TACs.

gans;“blood” seems to correspond to organs with rich blood vessels
or major blood vessels themselves. Although we don’t have ground
truth validation, the estimated tissue distribution is physiologically
reasonable.

4. CONCLUSION

We investigated partial volume model kinetic parameter estimation
for dynamic PET. Our proposed algorithm successfully estimates tis-
sue kinetic parameters and tissue fractions for real and realistic data
with relatively high noise. The estimated tissue fractionscould be
used as a measure of tumor heterogeneity to reflect heterogeneity of
ongoing pathophysiological processes that can in turn be used for
tumor staging, treatment assessment and optimization.
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