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ABSTRACT each voxel as a linear combination of several TACs represent

The estimation and analysis of kinetic parameters in dynamiind the tracer dynamics of pure tissues. Since mixture mod-
PET is frequently confounded by noise and partial volumee!s often use an overcomplete parameterization, solutions
effects. We propose a new constrained model of dynamitréguently not unique unless additional constraints aterin
PET to address these limitations. The proposed formulatioRorated. In [7, 8], basis pursuit and sparse Bayesian learn-
incorporates an explicit partial volume model in which eaching approaches were proposed to sparsely estimate tissue ki
image voxel is represented as a mixture of different pure tishetic parameters, under the assumption that the number of
sue types with distinct temporal dynamics. A two stage aldistinct tissue types contributing to any given voxel isarel
gorithm is proposed to solve the resulting problem. in theively small. However, these methods operate voxel-byeox
first stage, a sparse signal processing method is applied Y§thout incorporating the prior information that PET trace
estimate the rate parameters for the different tissue ctmpakinetics should be spatially-correlated and smoothly vayy
ments from the noisy PET time series. In the second stage, ti¥ addition, these methods were only used to derive summary
sue fractions and the linear parameters of different timig-ac ~ Statistics of the ensemble TAC behavior in each voxel, witho

ity curves (TACs) are estimated using a combination of sparattempting to accurately resolve the kinetic parameteds an
sity, spatial-regularity, and fractional mixture congta. A volume fractions of each contributing tissue.

block coordinate descent (BCD) algorithm is combined with Our approach attempts to overcome the drawbacks of these
a manifold search to robustly estimate these parameters. TRrevious approaches by combining accurate kinetic moglelin

method is evaluated with both simulated and experimental dyoint-sparsity modeling [9], and spatial regularity caastts.
namic PET data. By using joint sparsity, we can leverage the fact that tissue

, ) ) TACs for the same tissue type are relatively consistent over
Index Terms— Dynamic PET, Mixture Modeling, Spar- |arge regions, which improves the SNR for kinetic parameter

sity, Kinetic Parameter Estimation estimation. By using ariy sparsity constraint, we can ro-
bustly recover the tissue volume fractions in the preseffice o
1. INTRODUCTION significant image noise. And our method enables estimation

of the complete set of kinetic parameters without requiring
Dynamic PET is a powerful technique that provides informadinearization or use of the Patlak model.
tion about molecular processes in the human body. Pharma-
cokinetic modeling is commonly used in PET to investigate
the physiological processes involved in tracer uptake gmad 2. METHOD
timated kinetic parameters can play an important role in dis ,
ease diagnosis and treatment evaluation. It is common to e2-1. Mixture Model
timate kinetic parameters by fitting PET images of the time

varying tracer density to an appropriate model. : -
Conventional methods for kinetic parameter estimatior > andN voxels. Assuming that we knov(\q/ the plasmatwput
[1, 2] make the assumption that tracer kinetics are homaunction Cp(t), the time activity curveTACA(t) for the g
tissue can be written as [10]

geneous within a voxel or a region of interest. However,
tissue heterogeneity and partial volume effects inewtabl
cause this assumption to be violated. Highly heterogeneous
tumors are considered more aggressive with a higher propens. d. ando K : oksis th
sity for metastasis or invasion [3]. Therefore quantificati ' ¢'€Ca: Gq ar(; g areé unknown t(|issue parametl §.Is the
of tumor heterogeneity could prove to be a useful metric fo"2WN tra(r:]er e?a% constant, agn enotes convo lét'on'h i
treatment assessment or a predictive indicator for treattme _Or €ach voxel, the measured TAC is expressed as the linear
failure [4]. In addition, tumor heterogeneity could poiatly ~ compination of these tissue TACs:
be exploited for biologically optimized treatment planmin 0-1
in radiation therapy. Because of the significance of tumor TAC(t) = Z TACH(t)Aqj + Cp(t)Aqgj, 2)
heterogeneity in cancer management, the application of con =1
ventional homogeneous tissue models is rather limited.

To overcome these limitations, mixture models [5, 6] havewherej is the voxel index and th&; are linear mixing coef-
been proposed that model the time activity curve (TAC) fronficients that represent the fractions of different typesssites

We assume an image model comprisedoflistinct tissue

TACH(t) = (Cqe ' + dgeBt) x Cp(t), (1)



present in the voxel. Substituting (1) into (2), we have

Q-1
TACI()= (3 coaj)e ™ +Co(t)
o1 ®
+ 3 daAgje * Colt) +AQiCp(t).
q:

In equation (3)Q, ¢y, dg, Agj, andBq are unknowns to be estimated,
under the constraints that

B8g>Ad,Cq>0,dg>0,Aqj 20, % Agy <1, Q)
q

thatAqj should be spatially smooth for eaghthat there is at most
one fractional tissue compartment that is not metabolicaditive
(e.g., necrosis), and that non-active tissue compartnagatpresent
in only a small number of voxels (i.€5,qAqj # 1 in only a sparse
set of voxels).

The joint estimation of all these parameters is complicdted
cause of nonlinearity, the fact that the model complexitgraes
significantly for different Q, the bilinearity ofy; with bothcy and
dg, and the constraints that need to be satisfied. As a resultrove
pose a two stage method to separate the estimati@hasfd thedq
from the remaining variables. In the first stage, we use asgtgar
constrained dictionary approach to simultaneously esér@aand
6g.
a?gorithm together with a manifold search to robustly eatinthe
tissue fractions and the linear tissue TAC parameters.

2.2. Stage 1: Dictionary-Based Estimation o and 6

By a change of variables, (3) can be rewritten as
TAC;(t) =Boje ™' +Cp(t)

T ey ®)
+ z Bgje " +Cp(t)+BgjCp(t)
g=1

where we have useBp; = qugll Cgfqj and Byj = dgAqj for q =
1,...,Q — 1, andBgj = Agj.

This change of variables complicates the form of the coimta
in (4). However, while these constraints will play impottasles in
estimatingcq, dg, andAqj, they are not as essential for estimatipg
andBq. As a result, we neglect these constraintsBofor this first
stage to ensure that the estimation problem is tractablém&ison
of Q is still nonconvex and nonlinear with respect to e To
avoid this, we use a discretized dictionary-based approegired
by [7, 8]. In particular, we express (3) using the overcongpberies
representation

Np
TAC;(t) = § BgjWq(t), (6)
i(t) qZO qjWal(t)
whereN, > Q, and with
Wo() = Co(t), ) ' e o), -

andyn(t) 9t gbnt *Cp(t), 2< n< Np.

The set o\, — 1 different values 0B, are selected from the phys-
iologically meaningful range. From our original model (8)¢ ex-
pect thaiBy; in (5) will have joint-sparse characteristics, i.e., that t
number ofq values for whichany Bqj # O will be very small (and
equal toQ+1). Given the set of non-zefgy;, it is straightforward
to retrieve the corresponding rate parameters.

In practice, dynamic PET time series are often reconstduate

In the second stage we use a block coordinate descent (BC}),

a finite numbel of time frames, with each frame corresponding to
the average tracer behavior over a given time interval. Tdahthis
process, we introduce new quantities

I (et

-t

e
Jis TAC;(t)dt
=5 Yiq (8)
wheret® andtf are the sequences of start and end frame times, with
which the measured data at tith time frame in thejth voxel is

modeled as
Np

Yij~ ) WigBq;
4=0

for eachi, which we can simultaneously express in matrix form for
all voxels and all time points in matrix form as

9)

Y =wB, with Y e RN @ e RNt andB e RMNo+ XN,
(10)

Although there will not be a unique least-squares solutarBf
in the typical case wherl, +1 > |, we can use joint-sparsity in-
formation to make the problem well posed and to include thar pr
information thatQ should be relatively small. We define thaw-/g
quasi-norm ofB as the number of non-zero rows which is a mea-
sure of joint sparsity [9]. Since the first two rows Bfare always
present, we impose a joint-sparsity constraint only on ansubx
of B with the first two rows removed, which we denote By, :.

e resulting sparse estimation problem can be posed itarzed
form as

min =Y — WB|Zro+ KBz lron-s, (11)
wherek is a regularization parameter.

Since theow-{y quasi-norm is nonconvey, it is common to apply
convex relaxation methods [9]. Our preliminary experiendé this
model suggests that convex relaxation approaches are fisuited
to this problem, due to the significant temporal coherendedzn
the differenty)g. However, we have found much better success if we
directly optimize (11) using combinatorial methods. Déssyieing
NP-hard, direct optimization of (11), which can ensure glaipti-
mality for this subproblem, is not time consuming if we |leage the
prior information that the true value @ should be small, and has
proven to be very robust to noise. Our results alwaysQise5.

2.3. Stage 2: Estimation o, dy and Ag;

Solving (11) provides us with estimaté€@land8g, and with these
parameters fixed, we return to solving (3) for the remainiagme-
ters. Defining

c=[c1,Cp,... ,céfl} andD = diag{d;,dy,... 7dQ,1}, (12)
our model can be expressed in matrix form as
[/ c 0
Y=¥Y[ 0 1 JA
D O (13)

= FaA,

whereA € RN s the matrix ofAqj, F € R(Q+D*Q is given by

c O
F:(O 1), (14)
D O

and we form the matriX¥ as the submatrix of the columns frd
corresponding the non-zero rowstf .

There are 2Q — 1) unknown parametersd, dy) in F andNQ un-
known parameters iA. In addition, without use of the constraints in



(4), the least squares fit of these parameters would not logi@hie-
cause of bilinearity . We need additional prior informattorsolve

for F andA. In addition to (4), we also apply:

1. Sparsny-enforcmg?l regularization on(

Y qAqj) to im-

pose the prior information that most voxels are completely

filled with metabolically active tissues. This constraigt r
moves the bilinear scale ambiguity betwdeandA.

. Quadratic smoothness regularization of the tissueifrast
Ayj, to impose the prior information that tissue contributions
will be vary smoothly standard PET images.

Combining these two constraints, we define our cost funain

S oA —Ag)

. QN
cost(F,A) = [|Y —WFA[E o +BY Y
g ] leNbr(j)

N Q
+YY 1= 5 Agl (15)

] a=1
where Nbr(j) denotes the set of neighboring voxels for voxel j,

@(x) = x2, andy andp are regularization parameters.
The optimal solution to (15) is:

[F,A]= argmin cost(F,A) (16)
FeQr,AcQp
c O
whereQg = {F: F = ( 0 1 >7D_diag(d)7cq>07dq>0},
D O
andQa = {A 1 Agj > 0,5 qAqj <

To find the optlmal solutlon we alternate between estingafin

andA using a BCD approach. Although our regularization frame-

work eliminates potential bilinear scale ambiguity betwEeandA,
the bilinear nature of the problem prevents convergenceunfab
ternating algorithm when the current estimates-aind A lie in a
solution valley whereY =~ YFA but (1—34Aq;j) is not optimally
sparse. This is because the alternating BCD method doedlowt a
for simultaneous update &f andF. To overcome this problem, we
introduce an additional manifold search into our altentiescent
algorithm, to resolve problems of scale ambiguity in thigioa of
the cost function. A sketch of the full algorithm is given dst

1. Atthemth iteration, fixF to be equal to the estimate from the

previous |terat|0rFm,1 and solve

Am = argmincost(Fy_1,A)
AeQa
= [|(Y = PFm-1A)|[Ero
Q N

2 2 2 ®Aq-

4=1=11eNTj)

17

+B AQJ|

HM,o,

N
+yZ\1
]

using an alternating direction method of multipliers (ADNIM
algorithm [11].

2. For fixedAn, fixed,we solve
Fm = argmincost (F,Am) = ||Y — WFAp|Z,,  (18)
FeQr
using a nonnegative least squares method.
3. We introduce an auxiliary vectgr € R9-1 and perform a

manifold search to resolve potential scale ambiguity betwe
Fm andAm. Defining/\p = diag{1, p} we note thaFnAm =
<|3mA,§ 1) (AoAm) for any strictly positive choices for the el-
ements ofp. This implies that we can shift the scaling be-
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Fig. 1. True and estimated tissue fractions

tween Eny, and A, without modifying the data consistency
term of (15), while avoiding being trapped in a suboptimal
stationary point of the BCD algorithm. Thus, we calculate

pm = argmincost (FmAy, ApAm) (19)
peQ,
with Qp = {p: pg > 0;pgAmqj < L,Vj;1— 5§ *PqAmqj —

Angj = 0.Vi}
Thls is a small scale quadratic programming problem and is
solved usmg a standard interior point method.

4. SetFn = Fn/Ayt andAm = ApFm.

5. lterate steps 1 4 until convergence

3. RESULTS

3.1. Dynamic simulation

We simulated a dynamic image sequence representing a ROI con
taining a donut shaped tumor with a necrotic center embeidad
square 64x64 voxel background of normal tissue. Imageseaftie
fractionsA are shown in the top left portion of Fig. 1. We simulated
noisy TACs with SNR = 50, and applied our proposed method with
K=1e2 B=12e5 andy=1.3e"’. The estimated tissue fraction
images are shown in the top right portion of Fig. 1, and thiereged
tissue TACs are shown in Fig. 2. The estimated images math th
original tissue fraction images quite closely.

3.2. Real mouse data

A one-hour dynamic FDG PET mouse scan was performed using a
Siemens Inveon PET scanner. Dynamic list mode data was dinne
into 30 inhomogeneous time frames, and images were gedarste
ing MAP reconstruction [12]. Our two stage mixture model was
applied to a torso ROI (see Fig. 3). Our proposed method was ap
plied withk = 162, B =3.3e" 2, andy = 9.3e 7. Results are shown
in Figs. 3 4.

The proposed method extracted three types of tissues. udiss
1” indicates tissues with accumulated FDG uptake (myocandi
and kidneys); “Tissue 2" correspond to normal abdominal or-
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Fig. 3. (Left) The last frame of the dynamic PET time series.
The red square indicates the torso ROI. (Right) Estimaged ti

sue TACs.

gans;"“blood” seems to correspond to organs with rich bloegbels
or major blood vessels themselves. Although we don’t haver
truth validation, the estimated tissue distribution is giblogically
reasonable.

4. CONCLUSION

We investigated partial volume model kinetic parameteinegton
for dynamic PET. Our proposed algorithm successfully estiamtis-
sue kinetic parameters and tissue fractions for real aritiealata
with relatively high noise. The estimated tissue fractionsld be
used as a measure of tumor heterogeneity to reflect heterivgen
ongoing pathophysiological processes that can in turn lkd fsr
tumor staging, treatment assessment and optimization.
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