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ABSTRACT al. [1] also found that SUV values correlate with factors
such as dose extravasations, attenuation parameters, partial

We investigate the potential of using dual-time-point PETvolume effect, and plasma glucose level in blood as well as
data to perform Patlak modeling. If successful this approacierative updates in reconstruction. Wiyaporn et al [2
could be used for whole-body dynamic PET in which weshowed that SUV values increase with the number of OSEM
compute voxel-wise estimates of Patlak parameters usirigerations and are also affected by tumor size.
two frames of data for each bed position. Our approach To overcome some of these limitations several
directly uses list-mode arrival time for each event taresearchers have investigated the use of two or more frames
compute the Patlak image. We evaluate performance of tle# data at each body position. Alkhawaldeh et al. [3] found
method in comparison to fractional changes in SUV valuethat dual-time-point PET can improve diagnostic accuracy
computed from the same two frames of data. The area undelative to standard single frame SUV, increasing sensitivity
ROC curves is used as a figure of merit to assess the relatiged specificity for malignant lung nodules, especially for
performance of these two approaches in differentiatingmall lung lesions that have low SUVs. Prieto et a). [4
tumor from background. We calculate ROC curves using (ishowed that dual-time-point PET can improve sensitivity for
variance estimates computed from the Cramer-Rao bouride identification and volume delineation of high-grade
for a simplified 1D version of the problem and (ii) 4D brain tumors compared with standard PET studies. Imbriaco
Monte Carlo simulations of tumors with a range of sizes in &t al. [5] investigated a group of patients with suspected
uniform background. Both the simulation and Cramer-Ratreast malignancy and found higher accuracy and sensitivity
analysis suggest that our dual-time-point Patlak estimatiotihan single-time-point PET. Hu et al. [6] reported similar
method can achieve superior differentiation of tumor frontonclusions for mediastinal nodal staging, finding that
background in small tumors compared to using fractionaspecificity, accuracy, and positive predictive value of dual-
changes in SUV computed from the same dual-time-poirttme-point scans were better than those of single-time-point.

data. Typically the above studies look at fractional changes in
SUV (%DSUV) from one time frame to the next. Here we

Index Terms— Patlak, dynamic PET, lesion detection investigate the question of whether Patlak parameters
extracted from the same data may provide better

1. INTRODUCTION differentiation between tissues with differential uptake than

do %DSUV values.

To accommodate the full length of a patient, whole-body
PET studies are collected in several frames, one at each of 2.METHOD
multiple bed positions. Since dynamic PET methods
typically require continuous acquisition they have not bee®.1 Patlak Estimation from two Frame List Mode Data:
used in whole-body studies. Here we explore the potentidlhe Patlak graphical model applies to kinetic data beyond
for dynamic imaging from multiframe data of the type thattime ¢ > T* at which changes are effectively due to
can be acquired in a whole body scanning protocol. irreversible trapping in a single compartmebét n(t) be

The standardized uptake value (SUV) is computed as thtee tracer time activity curve (TACwith input function
mean uptake in a single frame in a region of interesf(t). We can write the Patlak equation &
normalized by dose and patient weight. This semi-
guantitative measure is used in cancer staging and in ¢
following response to therapy. The impact of SUV as a n(t) = Kf C(v)dt +qC(t)
biomarker is limited by its use of a single frame of data so 0

that it does not reflect the underlying dynamics of tracef norex is the net influx rate, anglis the intercept of the

uptake. Variations in protocols among clinical sites and thﬁatlak model. We can therefore model the rate function at

complex relationship between dose, uptake and body weight . . . S
further limits its use as a quantitative biomarker. Masa-Ah e\foxel J gfter stgady statez 7" as a linear combination of
two basis functions:
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Consequently the rate function in sinogram space at line of

response (LOR) i can be written as:
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To find the FIM we need to integrate this matrix over the
probability density function for the arrival tineg, for each
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where the exponential teraxcounts for radioactive decay A (ag) (f 4@ dT') (ffk 4@ dr?
of the tracer, ang;; is the probability of an event at voxel | G _: D! (p, — k)! k <p,
being detected at detector pair i. oler ﬂt(f)dfp(pl)
Assuming we have continuous list mode data over the.
interval [T*, T] and the arrival times in the list mode data . -1/ ¢, Pa+p1_k
follow an inhomogeneous Poisson model, then the (f Ai (T)dT) (ftk li(T)dT)
continuous time log-likelihood function of event arrival Ai(@y) (k—p, — D! Py + p1 — K)!
times is given by: @ le>p,
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wherea;, denotes the arrival time of thétlk photon at
detector pair,ix; is the number of events detected in LOR
andn,,

collect data only over two subintervdls, t,] and[ts, t,],
the log likelihood is modified as follows:
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under the condition that there agg arrivals in first frame
time [t; t,] andp, arrivals in the second frame;[t,] with
respective probabilitieB(p;) andP (p,).

3.RESULTS

is the total number of LORSs. In the case where we

3.1 Cramer-Rao Analysis: since the difference between
%DSUV and Patlak analysis lies largely in the handling of
the dynamic rather than the spatial information, we can
obtain insight into the problem through consideration of a
simplified 1D problem corresponding to a single image
voxel from which we directly observe Poisson counts
generated according to the dynamic TA(Lt) .
computed CRLBs for the Patlak slope parameter and
%DSUV for this 1D problem &m a two compartmental
model

A
t
with parameters chosen to reflect (a) tumor
where then;, are constrained to events detected only in thelynamics, (b) normal tissue dynamics. Assuming the Patlak
interval [t; t,] or [t;t,]. We useL(W) as a cost function parameter estimator is unbiased and approximately Gaussian
from which we compute a maximum likelihood estimate ofwe can determine the distribution of Patlak values for cases
the Patlak parameteet each voxel. As we have described(a) and (b). The ROC curve for detection of tumor vs.
earlier [7], optimization can be performed using a 4Dbackground can then be determined directly from these
incremental gradient method [8]. distributions. Similarly, we assume that SUV values are
Gaussian with a variance equal to the mean number of
2.2 The Cramer-Rao Lower Bound (CRLB): we can use counts in each frame. The %DSUV will then have a
the CRLB computed from the log likelihood function to distribution formed by a ratio of Gaussians, and again we
explore lower bounds on the performance of this techniquean compute the ROC curve for cases (a) and (b). An
The bounds are found from the inverse of the Fisheexample of the distributions obtained for the two cases with
information matrix (FIM) defined as the parameter values listed in Table 1 is shown in Fig. 1
with corresponding ROC curves in Fig. 2. These examples
correspond to relatively low count scenarios; however over
a full range of count rates we find that the area under the
ROC curve for the Patlak method is consistently higher than
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that for the %DSUV. With this result we then proceeded to generated a total of 100 Monte Carlo trials, each with the
larger scale study using 3D PET data which is more readilyame phantom.
investigated by Monte Carlo simulation.
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Fig. 1. Distribution of Patlak (upper) and %DSUV (lower) values (“tumor”) of different sizes.
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Fig. 2. Cramer-Rao based ROC curves for patlak (upper) and
%DSUV (lower). 3.3 Patlak Estimation: We used the modified 4D
_ incremental gradient (4DIG) algorithm [7] to reconstruct
Region K1 k2 k3 k4 images of Patlak slope and intercept. For each of the 100
mi/min/g | mi/min/g | ml/min/g | ml/min/g trials we computed the average slope parameter for each of
BG 0.5333 0.9800 0.0120 0 5 tumor ROIs and 5 corresponding background ROIs with
Tumor 0.1980 0.2280 0.0350 0

sizes chosen to match those of the tumor ROIs. By
comparing the means and s.d. of tumor ROIs to matched
background ROIs we computed ROC curves for the
differentiability of the tumor relative to background as a

$linction of lesion size. The mean of the Patlak slope images

S'fzfé ZIiZB;mr;(Z;IZtﬁrgzn Qulmbe; Slf \r,'vngs:gé) rwgihlallir:mal ver the 100 trials is shown in Fig. 5 and the mean and s.d.
0 sihograms angles of view by adial lines O, oach RO is listed in Table 2. The areas under the ROC

Chametor 31 4mm was centered i the scanner and contanies are in Table.3
5 cylinders (“tumors”) of diameter 1.0, 1.8 2.6, 3.4, and
4.2mm as shown in Fig. 3. We simulated time activity
curves for tumors and background using the parameters in
Table 1 and the blood input function shown in Fig. 4. The
time activity curves (TACs) for each sinogram element were
computed by forward projection through a system matrix
generated for the scanner described above. Each of these
TACs represents the mean of the data for each LOR at each
point in time. The TACs were then treated as the rate
function of an inhomogeneous Poisson process from which

we generated pseudorandom list mode events (LOR aily 5 one transaxial slice of the mean of the estimated Patlak
arrival times). In the results presented here we thegope images estimated from two frame list mode data for each of
windowed the data to retain only those events correspondinge 100 Monte Carlo trials.

to two five minute frames starting at 40min and 80min. We

Table 1. kinetic parameters used for background and tumor

3.2 Data Simulation: For these studies we simulated a
small scale 3D PET system (diameter: 148.4mm, detect




Patlak %DSUV
ROI Tumor BG Tumor BG
1 0.0106t8.35 e-4 0.0064t6.51 e-4 0.0809+0.1300 - 0.093%0.1400
2 0.019Gt9.58 e-4 0.0065%4.73 e-4 0.1513t0.0720 - 0.0904:0.0926
3 0.022%+7.77 e-4 0.006%3.87 e-4 0.152A0.0380 - 0.08810.0624
4 0.0262+5.22 e-4 0.0064t2.93 e-4 0.1539+0.0265 - 0.0898-0.0425
5 0.0264t4.59 e-4 0.0065:2.30 e-4 0.1573:0.0216 - 0.09010.0338
True value 0.0263 0.0065 0.1640 - 0.0903

Table 2. Mean and standard deviation of estimated Patlak slope and %DSUV fealGeéamor regions v.s. BG regions of the same size
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