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ABSTRACT 

 
We investigate the potential of using dual-time-point PET 
data to perform Patlak modeling. If successful this approach 
could be used for whole-body dynamic PET in which we 
compute voxel-wise estimates of Patlak parameters using 
two frames of data for each bed position. Our approach 
directly uses list-mode arrival time for each event to 
compute the Patlak image. We evaluate performance of the 
method in comparison to fractional changes in SUV values 
computed from the same two frames of data. The area under 
ROC curves is used as a figure of merit to assess the relative 
performance of these two approaches in differentiating 
tumor from background. We calculate ROC curves using (i) 
variance estimates computed from the Cramer-Rao bound 
for a simplified 1D version of the problem and (ii) 4D 
Monte Carlo simulations of tumors with a range of sizes in a 
uniform background. Both the simulation and Cramer-Rao 
analysis suggest that our dual-time-point Patlak estimation 
method can achieve superior differentiation of tumor from 
background in small tumors compared to using fractional 
changes in SUV computed from the same dual-time-point 
data. 
 
Index Terms— Patlak, dynamic PET, lesion detection 
 

1. INTRODUCTION 
 
To accommodate the full length of a patient, whole-body 
PET studies are collected in several frames, one at each of 
multiple bed positions. Since dynamic PET methods 
typically require continuous acquisition they have not been 
used in whole-body studies. Here we explore the potential 
for dynamic imaging from multiframe data of the type that 
can be acquired in a whole body scanning protocol.  
      The standardized uptake value (SUV) is computed as the 
mean uptake in a single frame in a region of interest 
normalized by dose and patient weight. This semi-
quantitative measure is used in cancer staging and in 
following response to therapy. The impact of SUV as a 
biomarker is limited by its use of a single frame of data so 
that it does not reflect the underlying dynamics of tracer 
uptake. Variations in protocols among clinical sites and the 
complex relationship between dose, uptake and body weight 
further limits its use as a quantitative biomarker. Masa-Ah et 

al. [1] also found that SUV values correlate with factors 
such as dose extravasations, attenuation parameters, partial 
volume effect, and plasma glucose level in blood as well as 
iterative updates in reconstruction. Wiyaporn et al. [2] 
showed that SUV values increase with the number of OSEM 
iterations and are also affected by tumor size. 
      To overcome some of these limitations several 
researchers have investigated the use of two or more frames 
of data at each body position. Alkhawaldeh et al. [3] found 
that dual-time-point PET can improve diagnostic accuracy 
relative to standard single frame SUV, increasing sensitivity 
and specificity for malignant lung nodules, especially for 
small lung lesions that have low SUVs. Prieto et al. [4] 
showed that dual-time-point PET can improve sensitivity for 
the identification and volume delineation of high-grade 
brain tumors compared with standard PET studies. Imbriaco 
et al. [5] investigated a group of patients with suspected 
breast malignancy and found higher accuracy and sensitivity 
than single-time-point PET.  Hu et al. [6] reported similar 
conclusions for mediastinal nodal staging, finding that 
specificity, accuracy, and positive predictive value of dual-
time-point scans were better than those of single-time-point. 
      Typically the above studies look at fractional changes in 
SUV (%DSUV) from one time frame to the next. Here we 
investigate the question of whether Patlak parameters 
extracted from the same data may provide better 
differentiation between tissues with differential uptake than 
do %DSUV values. 
 

2. METHOD 
 
2.1 Patlak Estimation from two Frame List Mode Data:  
The Patlak graphical model applies to kinetic data beyond 
time ݐ ൒ כܶ  at which changes are effectively due to 
irreversible trapping in a single compartment. Let ߟሺݐሻ be 
the tracer time activity curve (TAC) with input function ܥሺݐሻ. We can write the Patlak equation [2] as: 
ሻݐሺߟ  ൌ ߢ න ሺ߬ሻ݀߬ܥ ൅ ሻ௧ݐሺܥݍ

଴  

 
where ߢ is the net influx rate, and ݍ is the intercept of the 
Patlak model. We can therefore model the rate function at 
voxel j after steady state ݐ ൒  as a linear combination of כܶ
two basis functions:  



ሻݐ௝ሺߟ ൌ ෍ ௝߱௟ܤ௟ሺݐሻଶ
௟ୀଵ  

௝߱ଵ ൌ ௝ߢ ǡ ௝߱ଶ ൌ ௝ݍ ǡ ሻݐଵሺܤ ൌ න ሺ߬ሻ݀߬௧ܥ
଴ ǡ ሻݐଶሺܤ ൌ  ሻݐሺܥ

 
Consequently the rate function in sinogram space at line of 
response (LOR) i can be written as: 
ሻݐ௜ሺߣ  ൌ ݁ି௧Ȁఛ ෍ ෍ ௜௝݌ ௝߱௟ܤ௟ሺݐሻଶ
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where the exponential term accounts for radioactive decay 
of the tracer, and ݌௜௝ is the probability of an event at voxel j 
being detected at detector pair i. 

  Assuming we have continuous list mode data over the 
interval ሾܶכǡ ܶሿ and the arrival times in the list mode data 
follow an inhomogeneous Poisson model, then the 
continuous time log-likelihood function of event arrival 
times is given by: 

ሺܹሻܮ  ൌ െ ෍ ෍ ௜ሺܽ௜௞ሻ௫೔ߣ݃݋݈
௞ୀଵ
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where ܽ ௜௞  denotes the arrival time of the k’th photon at 
detector pair i, ݔ௜ is the number of events detected in LOR i, 
and ݊ ௣ is the total number of LORs. In the case where we 
collect data only over two subintervals ሾݐଵǡ ଷǡݐଶሿ and ሾݐ  ,ସሿݐ
the log likelihood is modified as follows: 
ሺܹሻܮ  ൌ െ ෍ ෍ ௜ሺܽ௜௞ሻ௫೔ߣ݃݋݈
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where the ܽ௜௞ are constrained to events detected only in the 
interval [ݐଵ ݐଶ] or [ݐଷ ݐସ]. We use ܮሺܹሻ as a cost function 
from which we compute a maximum likelihood estimate of 
the Patlak parameters at each voxel. As we have described 
earlier [7], optimization can be performed using a 4D 
incremental gradient method [8]. 
 
2.2 The Cramer-Rao Lower Bound (CRLB): we can use 
the CRLB computed from the log likelihood function to 
explore lower bounds on the performance of this technique. 
The bounds are found from the inverse of the Fisher 
information matrix (FIM) defined as 
௠௝ǡ௡௟ܨ  ൌ െܧ ቈ  ଶሺܹሻ߲߱௠௝߲߱௡௟቉ܮ߲
 

Where each element in this matrix of second order 
derivatives is given by: 
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To find the FIM we need to integrate this matrix over the 
probability density function for the arrival time ܽ௜௞ for each 
photon: σ σ ௞݂ሺܽ௜௞ȁ݌ଵǡ ଵሻஶ௣మୀଵஶ௣భୀଵ݌ଶሻ ܲሺ݌ ܲሺ݌ଶሻ where  
 ௞݂ሺܽ௜௞ȁ݌ଵǡ ଶሻ݌
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under the condition that there are  ݌ଵ arrivals in first frame 
time [ݐଵ ݐଶ] and ݌ଶ arrivals in the second frame [ݐଷ ݐସ] with 
respective probabilities ܲሺ݌ଵሻ and ܲ ሺ݌ଶሻǤ  

 
3. RESULTS 

 
3.1 Cramer-Rao Analysis: since the difference between 
%DSUV and Patlak analysis lies largely in the handling of 
the dynamic rather than the spatial information, we can 
obtain insight into the problem through consideration of a 
simplified 1D problem corresponding to a single image 
voxel from which we directly observe Poisson counts 
generated according to the dynamic TAC ߟሺݐሻ . We 
computed CRLBs for the Patlak slope parameter and 
%DSUV for this 1D problem from a two compartmental 
model with parameters chosen to reflect (a) tumor 
dynamics, (b) normal tissue dynamics. Assuming the Patlak 
parameter estimator is unbiased and approximately Gaussian 
we can determine the distribution of Patlak values for cases 
(a) and (b). The ROC curve for detection of tumor vs. 
background can then be determined directly from these 
distributions. Similarly, we assume that SUV values are 
Gaussian with a variance equal to the mean number of 
counts in each frame. The %DSUV will then have a 
distribution formed by a ratio of Gaussians, and again we 
can compute the ROC curve for cases (a) and (b).  An 
example of the distributions obtained for the two cases with 
the parameter values listed in Table 1 is shown in Fig. 1, 
with corresponding ROC curves in Fig. 2. These examples 
correspond to relatively low count scenarios; however over 
a full range of count rates we find that the area under the 
ROC curve for the Patlak method is consistently higher than 



that for the %DSUV. With this result we then proceeded to a 
larger scale study using 3D PET data which is more readily 
investigated by Monte Carlo simulation.  

                
Fig. 1. Distribution of Patlak (upper) and %DSUV (lower) values 
for tumor and background (BG).  

                 
Fig. 2. Cramer-Rao based ROC curves for patlak (upper) and 
%DSUV (lower). 
 

Region      K1 
 ml/min/g 

      k2 
 ml/min/g 

      k3 
 ml/min/g 

      k4 
 ml/min/g 

  BG 
Tumor 

  0.5333 
  0.1980 

  0.9800 
  0.2280 

  0.0120 
  0.0350 

      0 
      0 

Table 1. kinetic parameters used for background and tumor 
 
3.2 Data Simulation: For these studies we simulated a 
small scale 3D PET system (diameter: 148.4mm, detector 
size: 2.423mmൈ2.423mm; number of rings: 4) with a total 
of 13 sinograms with 84 angles of view by 96 radial lines of 
response (LORs). A uniform cylindrical phantom of 
diameter 31.4mm was centered in the scanner and contained 
5 cylinders (“tumors”) of diameter 1.0, 1.8, 2.6, 3.4, and 
4.2mm as shown in Fig. 3. We simulated time activity 
curves for tumors and background using the parameters in 
Table 1 and the blood input function shown in Fig. 4. The 
time activity curves (TACs) for each sinogram element were 
computed by forward projection through a system matrix 
generated for the scanner described above. Each of these 
TACs represents the mean of the data for each LOR at each 
point in time. The TACs were then treated as the rate 
function of an inhomogeneous Poisson process from which 
we generated pseudorandom list mode events (LOR and 
arrival times).  In the results presented here we then 
windowed the data to retain only those events corresponding 
to two five minute frames starting at 40min and 80min. We 

generated a total of 100 Monte Carlo trials, each with the 
same phantom.  

           
Fig. 3. Uniform cylinder (“background”) with 5 cylinders 
(“tumor”) of different sizes. 
 

     
Fig. 4. Simulated time-activity-curves for tumor, background and 
the blood input function. 
 
3.3 Patlak Estimation: We used the modified 4D 
incremental gradient (4DIG) algorithm [7] to reconstruct 
images of Patlak slope and intercept. For each of the 100 
trials we computed the average slope parameter for each of 
5 tumor ROIs and 5 corresponding background ROIs with 
sizes chosen to match those of the tumor ROIs. By 
comparing the means and s.d. of tumor ROIs to matched 
background ROIs we computed ROC curves for the 
differentiability of the tumor relative to background as a 
function of lesion size.  The mean of the Patlak slope images 
over the 100 trials is shown in Fig. 5 and the mean and s.d. 
for each ROI is listed in Table 2. The areas under the ROC 
curves are in Table 3.  

           
Fig. 5. One transaxial slice of the mean of the estimated Patlak 
slope images estimated from two frame list mode data for each of 
the 100 Monte Carlo trials.  
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                                    Patlak                                  %DSUV 
          ROI              Tumor               BG             Tumor                 BG 
            1 
            2 
            3 
            4 
            5 

    0.0106േ8.35 e-4 
    0.0190േ9.58 e-4 
    0.0229േ7.77 e-4 
    0.0262േ5.22 e-4 
    0.0264േ4.59 e-4 

    0.0064േ6.51 e-4 
    0.0065േ4.73 e-4 
    0.0065േ3.87 e-4 
    0.0064േ2.93 e-4 
    0.0065േ2.30 e-4 

     0.0809േ0.1300 
     0.1513േ0.0720 
     0.1527േ0.0380 
     0.1539േ0.0265 
     0.1570േ0.0216 

    - 0.0935േ0.1400 
    - 0.0904േ0.0926 
    - 0.0881േ0.0624 
    - 0.0898േ0.0425 
    - 0.0901േ0.0338 

    True value             0.0263            0.0065             0.1640            - 0.0903 
Table 2. Mean and standard deviation of estimated Patlak slope and %DSUV values for 5 tumor regions v.s. BG regions of the same size 

3.4 %DSUV Calculation: We used the same two frame 
data to reconstruct two static PET images using MAP 
estimation. To make a fair comparison, we adjusted the 
smoothing parameters so that the resolution of the static 
reconstructed image approximately matched that of the 
Patlak slope image. We then calculated the SUV values for 
each of the ROIs for both frames and %DSUV = (SUV2-
SUV1)/SUV1. Repeating the process for the 100 trials we 
then computed mean and s.d. of %DSUV for each ROI, 
listed in Table 2. As with the Patlak images, we then use 
these statistics to compute ROC curves and the area under 
each curve, as listed in Table 3. 
 

  ROC 
area 

    Tumor 1  
     vs BG1 

     Tumor 2  
      vs BG2 

     Tumor 3 
      vs BG3 

  Patlak 
%DSUV 

     0.9998 
     0.8471 

       1.00 
      0.9781 

       1.00 
       1.00 

Table 3. ROC areas of Patlak and %DSUV for 5 tumor regions v.s. 
BG regions of the same size 
 

4. DISCUSSION AND CONCLUSION 
 
Our results indicate that for the two smaller tumors, the 
areas under the ROC curve are lower for percentage SUV 
than for Patlak estimation. For the larger tumors, both show 
perfect detection results (unit area under the ROC curve). 
These results are dependent on the specific choice of rate 
parameters and count rate, however so far we have seen 
performance consistent with that reported above when we 
varied these parameters. The Cramer-Rao analysis reveals 
similar behavior, albeit in a simplified setting. The 
advantage of the Cramer-Rao approach is that we can 
explore a much wider range of parameters than in a full 
scale 4D Monte Carlo simulation. We can therefore use the 
Monte Carlo results to guide parameter selection (e.g. start 
and end times for each of the frames) prior to performing 
more realistic Monte Carlo studies.  In both the simulations 
and Monte Carlo studies we have attempted to perform a 
fair comparison in the sense that Patlak and percentage SUV 
values are both estimated from the same underlying 
dynamic processes. Consequently, while these first 
simulations are relatively simple, these results provide 
encouraging support for exploring performance of dual-
time-point Patlak analysis, relative to fractional SUV, in 
more realistic simulations and real experimental and clinical 
data.  
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