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ABSTRACT

We present a fully four-dimensional, globally convergent, in-
cremental gradient algorithm to estimate the continuous-time tracer
density from list mode positron emission tomography (PET) data.
The rate function in each voxel is modeled as an inhomogeneous
Poisson process whose rate function can be reconstructed using
a cubic B-spline basis. The rate functions are then estimated by
maximizing the objective function formed by the sum of the like-
lihood of arrival times and spatial and temporal smoothness penal-
ties. We first provide a computable bound for the norms of the op-
timal temporal basis function coefficients, and based on this bound
we construct an incremental gradient algorithm that converges to
the solution. Fully four-dimensional simulations demonstrate the
convergence of the algorithm for a high count dataset on a 4-ring
scanner.

1. INTRODUCTION

Dynamic PET imaging usually involves a sequence of contiguous
acquisitions which are then independently reconstructed to form a
set of images which can be visualized and used to estimate phys-
iological parameters [1]. This approach involves selection of the
set of acquisition times, where one must choose between collect-
ing longer scans with good counting statistics but poor temporal
resolution, or shorter scans that are noisy but preserve temporal
resolution. Direct reconstruction from list mode data can avoid
this trade-off since list mode data extremely high temporal reso-
lution with full spatial resolution by storing event arrival times in
addition to sinogram data. One of the difficulties in dynamic im-
age reconstruction directly from list mode data is the large number
of image parameters that need to be reconstructed. Furthermore,
unlike static PET, reconstruction speed depends on the number of
counts in the scan, which can be on the order of hundreds of mil-
lions. Therefore there is a need for fast and convergent algorithms
that can take full advantage of the high spatial and temporal reso-
lution in list mode data and reconstruct dynamic images with high
spatio-temporal resolution. In this paper we present such an algo-
rithm.

Snyder [2] developed a list mode expectation maximization -
maximum likelihood (EM-ML) method for estimation of dynamic
PET images using inhomogeneous Poisson processes. Our statis-
tical model is similar to Snyder’s approach but we work with rate
functions formed as a linear combination of known basis func-
tions. This allows a better representation of the dynamic activity
seen in experimental data that is not well modeled by more restric-
tive physiological models. Barrett et al. [3] and Reader et. al. [4]
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also describe list mode maximum likelihood methods but for the
estimation of a temporally stationary image.

In our previous work on image reconstruction from list mode
data [5], we presented a penalized maximum likelihood (ML) ap-
proach for the estimation of time-activity curves. However, that
method was intrinsically three-dimensional ( ����� and � ) and the
planes along the axial dimension had to be reconstructed sepa-
rately. Oblique sinogram data could not be used in the reconstruc-
tion unless it was rebinned into direct sinogram planes. The algo-
rithm presented in this paper is fully four-dimensional and can use
the entire sinogram data without any need for rebinning. Recently,
Ahn and Fessler presented a convergent incremental gradient al-
gorithm for penalized ML static PET reconstructions [10]. The in-
cremental gradient methods are similar to the well known OSEM
algorithm but differ in the fact that they are provably convergent
under reasonable conditions. In this paper we extend this algo-
rithm for dynamic reconstructions and present a globally conver-
gent, penalized ML dynamic PET image reconstruction algorithm.

2. METHODS

2.1. Statistical Modeling using Inhomogeneous Poisson Pro-
cesses

We model the positron emissions in each voxel in the volume as an
inhomogeneous Poisson process [5]. We denote the rate function
at voxel � by �	��
��� and parameterize it using a set of temporal basis
functions so that:

�	��
����������� � ����� 
��� � �	��
������� �!� (1)

With this formulation, the detection process at detector pair "
is also an inhomogeneous Poisson process with rate function:#!$ 
���%��� � ��&�' $ �	� � & � & 
��� (2)

where ' $ � is the probability of an event at voxel � being detected
at detector pair " . The continuous time log-likelihood function of
event arrival times is then given by:

( 
 w )�+*-,� $/.10 2	3�4 .10658769 : *<;� & .=0 *6>�� .=0 ' $ �?� � & � & 
�@ $ 4 BAC *?,� $D.=0 : *<;� & .=0 
 *E>�� .10 ' $ �-� � & GFIHJ � & 
���BK<� A (3)
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where @ $ 4 is the arrival time of the
�����

photon pair,
� ��� �����	����� $

at the " �
� detector pair. We use a spatial smoothing function equiv-
alent to the pair-wise quadratic penalty used previously in Bayesian
estimation of static PET images [6]. Our temporal roughness penalty
is in the form of integrated squared curvature. When cubic B-
splines are used as temporal basis functions, both of these penalties
become quadratic in the control vertices, resulting in the following
objective function:

� 
�� %� C *?,� $D.=0 2	3�4 .=0<58769 #!$ 
�@ $ 4 � *?,� $/.=0 FIHJ #!$ 
���BK<�
�� ���� H � ���� ���� H � � (4)

where
�

and
�

are the second derivative matrices of the quadratic
spatial and temporal penalties and w is the large vector contain-
ing all control vertices at all voxels. Our dynamic PET penalized
ML control vertex estimates are then given as the solution of the
following optimization problem:

����� @������ �"!#%$'& � 
��  (5)

where ( �*)	�,+.- * ;& .=0 � � & � & 
����� � � � � �0/ .
2.2. The Incremental Gradient Algorithm

Our dynamic incremental gradient algorithm has the following up-
date equation:

� * 1 2 �4365�7 � * 1 2�8 0 :9 * ; 
�� * 1 2�8
0 .<>= 2 
�� * 1 2?8 0 A@ (6)

where B denotes the iteration number, C denotes the subiteration
number, = 2 denotes the C ��� subobjective function, 9 * denotes
the stepsize and DFE*) w + - * ;& .=0 � � & � & 
�����HGI=KJ�� @ML
L6� �.N?� �0/ for
some small GPO�� . The elements of the diagonal matrix 7 ; 
 w A@ � � 1 � �E K � � 
 w  are given according to the following rule:

K � � 
 w %� QRRS RRT
U�VXWYZVAW C 0[M\�] �%� �6^ 0[M\_ 8 U VAW` Y VAW 0[M\�] � � � ]a\_cb UKVAW` YZVAW C \F] �%� �6^ C 0[ \

We chose ' � � Ed- *'e$/.=0 ' $ �If HJ � & 
���BK<� motivated by the EM
algorithm in static PET and by observing that the sensitivity of the" ��� detector pair to activity due to the N ��� basis function over the
entire scan duration is given by ' $ � f HJ � & 
���BK<� in our dynamic
PET problem.

It can be shown that this update equation guarantees that all
iterates lie inside the set g (defined below) if the initial estimate
is inside g but it does not necessarily guarantee that all iterates lie
inside ( . The projection of the resulting estimate into the interior
of the constraint set (i.e. D ) ensures that all iterates lie inside (
and does not affect the convergence proof because the stepsize falls
below G when the iteration number is large enough, making the
projection operation unnecessary.

2.3. Convergence Proof

2.3.1. Existence, Uniqueness and Differentiability

Since
� 
 w  is continuous and coercive, the level set hiEj) w k(l+ � 
 w  ] � 
nm o/ is closed and bounded (i.e. compact). The

compactness of p and the fact that it is non-empty (has at least
one element which is the vector of all ones) guarantees the exis-
tence of a vector w such that

� 
 w  �q�"!�r w $s& � 
 w  due to the
Theorem of Weierstrass [11, Prop. A.8 (3)].

� 
 w  can be shown
to be strictly convex if either ��O � or �tO � holds and u H�v mxw� �which means that the solution is unique. We also note that

� 
 w 
is not differentiable over the set y �z) w +sL $ 4 
 w  � �{/ ; however
as in [10], it can be replaced with another objective function that
is differentiable over the entire feasible set ( and has the same
global minimum as

� 
 w  .
The convergence proof relies heavily on the determination of

a bounded region in which the solution is guaranteed to lie. We
determine this region in the next subsection.

2.3.2. Computable Bound on Optimal Control Vertices

It can be shown that ( is a convex cone and that the objective
function

� 
��  is convex and differentiable. Therefore the second
part of the lemma [8] (p. 227), which states that | � 
�� �~} � � %� �
where | � denotes the Fr �� chet derivative and w � denotes the opti-
mal solution, can be applied. Applying the lemma we get:

�� $/.=0 * >�� .10 * ;� & .=0 ' $ � � �� & F�HJ � & 
���BK<� C �� $/.=0 � $
�� � H � � � �� � H � � � � � (7)

Since � � H � � � ��� , � � H � � � � � due to the positive defi-
niteness of

�
and
�

, we have:

�� $/.10 F�HJ � �$ 
���BK<� ] �� $D.=0 � $ (8)

where � �$ 
����EF- � - & ' $ �	� �� & � & 
��� denote the reconstructed rate
functions at the detectors (i.e. forward projections of reconstructed
rate functions). Since the sum of � positive terms on the left hand
side of (8) is less than or equal to the sum of the � positive terms
on the right hand side, we have:

� �"!$ F HJ � �$ 
���BK<� ] �����$ � $ (9)

which can be simplified and expressed in terms of the integrals of
reconstructed rate functions

# �� 
��� :
F HJ # �� 
���BK<� ] ����� $ � $� �"! $ � 1 Y 3 V~�. J ' $ � ��� (10)

Using the lemma in [9] (p. 155), which provides a bound to
the norms of the control vertices of a B-spline in terms of its max-
imum, and noting that the integrals of reconstructed rate functions
are the maxima of the higher order B-splines corresponding to their
running integrals, we can convert (10) to a bound on the norms of
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the control vertices of the integrals of the reconstructed rate func-
tions:

+ � �� & + ] � 4 b 0 1 � ����� $ � $� �"! $ � 1 Y 3 V �. J ' $ � (11)

where
� 4 b 0 1 � is a constant that is independent of knot locations

(i.e. only a function of the order of the B-splines). The control
vertices of the integral of a B-spline basis )�� � & / are related to the
control vertices of this B-spline basis of order

�
, �)� & , as follows

[9]:

� � & �H� � & 8 0  � � � 
�� & b 4 C � & �� � � N (12)

which implies:

+ � �� & + ] ��� � ����� & + � �� & +� �"! & 
�� & b 4 C � &  ��� �nN (13)

Combined with (11) we arrive at the computable bound on the
norms of the optimal control vertices:

+ � �� & + ] � � � 4 b 0 1 � 
������ $ � $ 7 � � ! $ � 1 Y	3 V~�. J ' $ �	@ 7 � �"! & 
�� & b�� C � & A@ E	� (14)

For cubic B-splines,
� ��
 and

�� 1 � � [ �[ [9]. We also
define \ ��� �� where �tO � is a small positive number (e.g.
� = .001*V). This gives the strict inequality + � � & � + ^ \ and is
helpful in the proof of Lemma 4 in the next subsection. We also
define two useful sets:

gFE*) w + C \�] � � & ]a\ � ��� �nN / (15)

� E*) w + * ;� & .=0 � � & � & 
������� � C \�] � � & ]4\ � � � �nNE� �0/ (16)

where g is the bounded set which will include the solution in its
interior and

� � (�� g is the bounded, convex set where the
solution is guaranteed to lie.

2.3.3. Convergence

In this subsection we outline the global convergence proof of our
dynamic incremental gradient algorithm. The following lemma,
for which we omit the proof, shows that if the initial estimate is
inside the feasible set, then the remaining points generated by the
algorithm are also guaranteed to remain inside the feasible set:

Lemma 1 Suppose that � * 1 2 is a sequence generated by the up-
date equation with � J k��{B � � . Then there exists 9 J O � such
that if � ^ 9 * ^ 9 J � �cB , then � * 1 2 k��{B � � � B � C .

The next lemma, whose proof in [10] applies directly to our
dynamic PET problem, shows that under certain conditions im-
posed on the stepsize, the images generated by the algorithm con-
verge to a limit point in

�
which satisfies

� 
 w � .< � 
 w � ��	� . In
particular, we have the following:

Lemma 2 Suppose that ) w * / is a sequence generated by (24)
with 9 * O � such that - �* . J 9 * ��� and - �* . J 9 `*

^
� . If

w * 1 2 k � �cB � C then ) � 
 w * o/ converges in � and there exists
a limit point w � k � J'= ) w * / such that

� 
 w � .< � 
 w � %��� .

We now show that as the number of iterations tend towards in-
finity, the difference between the images in consecutive iterations
go to zero:

Lemma 3 Suppose that ) w * / is a sequence generated by (24)
with 9 * O�� such that 5 �"� * � � 9 * � � � If w * 1 2 k �

for all n,
m, then 5 �"� * � � 
 w * 1 2 C w * �� � for all m.

The proof of this lemma is based on the boundedness of
� 
 w <>= 2 
 w  on

�
for all C and 9 * approaching 0. An immediate

corollary obtained by setting C ��� is:

5 �"�* � � 
 w * b 0 C w * �� � (17)

Our final lemma shows that the limit point w � in Lemma 2 is
a maximizer of

� 
 w  over
�

if all iterates lie inside
�

. In other
words, it shows that

� 
 w � .< � 
 w �  ��� implies < � 
 w �  �
� . Although, this property holds by inspection for points at the
interior of the constraint set, it can be shown that it also holds at
the boundary.

Lemma 4 The limit point w � in Lemma 2 such that
� 
 w � .< � 
 w � ��� is a maximizer of

� 
 w  over
�

if w * 1 2 k � �cB � C .

Combining these lemmas, we have:5 �"�* � � w * 1 2 � @���� � �"!#%$'& � 
�� �� C (18)

which proves the global convergence of the algorithm.

3. SIMULATIONS

We simulated a 4-ring scanner with the same geometry as the mi-
croPET R4 small animal scanner. The reconstructed image volume
was � � �"! � �#�$!�%

and the sinogram dimensions were
� 
 !'&#("! �*)

after rebinning the data with a span of 3. The time activity curve
(TAC) at each voxel was simulated as a scaled version of the TAC
shown in Figure 2. All 7 image planes had identical activity distri-
butions. We used 11 B-splines with equally spaced knots as our
temporal basis functions. We used repeated knots (4 knots for
cubic B-splines) at both end-points so that the reconstructed rate
functions were not restricted to be continuous or differentiable at
the end points. Our current implementation of the algorithm uses
a non-negativity penalty in place of the projection operation which
is computationally intensive due to the objective function calcula-
tions in the line searches. In the future, we will replace the non-
negativity penalty with an efficient projection operation.

We reconstructed a 120M count dataset using 12 subsets and
a stepsize function of 9 * � � � + � 
�B,� � a� � +  . Only the sinogram
data was divided into subsets and the arrival times corresponding
to those subsets were used in computing the gradients. The objec-
tive function values as a function of subiteration number are shown
in Figure 1.

Figure 2 shows the true and reconstructed TACs at the center
of the left cylinder in the central plane (i.e. voxel (64,43) of the
fourth plane). The reconstructed TAC is in very good agreement
with the true TAC. Figure 3 shows the true and reconstructed cen-
tral plane images for the fourth control vertex together with the
corresponding central transaxial profiles after 15 iterations. The
algorithm shows good contrast recovery in both cylinders.
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Fig. 1. Cost function values versus subiterations. The stars de-
note the cost function values at the end of each full iteration (12
subiterations).
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Fig. 2. The true TAC at voxel (64,43) in the fourth plane com-
pared against the TAC reconstructed with our fully 4D dynamic
incremental gradient algorithm.

4. CONCLUSIONS

We have proved the convergence of a fast fully four-dimensional
dynamic image reconstruction algorithm. We also demonstrated
its convergence by reconstructing a dynamic dataset from a simu-
lated 4-ring scanner. In addition to its convergence properties, the
algorithm is straightforward to implement because it only requires
the computation of the gradient from a subset of the data and a
projection onto the interior of the constraint set. Since the algo-
rithm operates directly on list mode data, it can take advantage of
the full spatio-temporal content of list mode data and reconstruct
dynamic images with high spatio-temporal resolution. Since both
gradient computation and projection (via line search) operations
can be parallelized, the algorithm lends itself to multithreaded and
distributed implementations. Such implementations can reduce the
reconstruction times for real datasets to clinically acceptable lev-
els.
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