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Abstract

 

We describe inverse methods for using the magnetoen-
cephalogram (MEG) to image neural current sources associ-
ated with functional activation in the cerebral cortex. A
Bayesian formulation is presented that is based on a Gibbs
prior which reflects the sparse, focal nature of neural activa-
tion. The model includes a dynamic component so that we can
utilize the full spatio-temporal data record to reconstruct a
sequence of images reflecting changes in the current source
amplitudes during activation. The model consists of the prod-
uct of a binary field, representing the areas of activation in the
cerebral cortex, and a time series at each site which represents
the dynamic changes in the source amplitudes at the active
sites. Our estimation methods are based on the optimization of
three different functions of the posterior density. Each of these
methods requires the estimation of a binary field which we
compute using a mean field annealing method. We demonstrate
and compare our methods in application to computer generated
and experimental phantom data.

 

I.  I

 

NTRODUCTION

The primary advantage of MEG over other modalities that
can image functional activation, such as fMRI and PET, is the
ability to follow changes in neural activity on a millisecond
time scale. Here we address the problem of producing 

 

dynamic

 

images of neural activity using a Bayesian formulation that is
based on an extension of the model we described in [9] for
imaging with a single time-slice of data.

Physiological models for the MEG assume primary sources
are constrained to the cortex with current flow oriented normal
to the local surface [8]. By tessellating the cortex with  dis-
joint regions and representing the sources in each region at
time  by an equivalent constrained current dipole oriented
normal to the surface with amplitude , the problem can be
expressed in terms of a linear model. The linear forward model
relating the  time samples  for  sources 

 and the  recording measurements   can be
written,
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N

t
yi t( )

L t j j 1…L=,{ } N Y
NxL( ) M B MxL( )

B GY N+=

 

The 

 

i

 

’th row of the  system matrix  may be viewed as
a discrete projection of the lead field (sensitivity) of the 

 

i

 

’th
sensor. The 

 

j

 

’th column of  specifies the gain vector for the

 

j

 

’th constrained dipole component. The  matrix  repre-
sents noise generated within the sensors and by unwanted elec-
tromagnetic sources, and errors resulting from model
mismatch.

Most MEG imaging approaches that have been described to
date have been based on weighted minimum 

 

l

 

P

 

-norm formula-
tions, e.g. [10]. While methods of this type, or at least regular-
ized versions of them, can perform well in other less ill-posed
problems, the limitation of the number of spatial measurements
to at best a few hundred and the inherent ill-posedness of the
quasi-static inverse problem, result in very poor performance
for these methods.

In order to produce a reasonable source image from MEG
data, it is essential to introduce a substantial degree of prior
information to the problem. For this reason, we propose an
alternative approach based on a Bayesian formulation [9]. It is
well known that the distribution of functional activation within
the cerebral cortex is highly localized [1]. Consequently, we
would not expect to see MEG source images showing very
large areas of activation, but rather the source images should be
sparse and focal. This information is incorporated into the
Bayesian formulation using a prior that includes an indicator
process, in the form of a binary Gibbs field, that represents the
specific sites that are active; the Gibbs energy is chosen to
ensure that, with high probability, these fields are sparse and
focal. The model for the source image is completed by combin-
ing the binary field with a time series at each active site that
represents the time varying amplitudes of the current sources.

Once the posterior density for the source image is specified,
we choose a cost function to optimize which gives us a point
estimate of the source image. The first cost function we investi-
gated was the joint maximum 

 

a posteriori 

 

(MAP) estimator
with respect to both the binary indicator field and the amplitude
of the current sources. By integrating over all possible source
amplitudes, we can form the binary marginal density with
respect to the indicator process only. Our second method forms
a (marginalized) MAP estimate over this marginalized poste-
rior density. Our third approach minimizes the expected num-
ber of incorrectly identified active sites in the indicator process.
This result can be found using the maximizer of posterior mar-
ginals (MPM) estimate [6]. We describe each of these methods
below, apply them to simulated and experimental phantom
data.
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II.  T

 

HE

 

 B

 

AYESIAN

 

 F

 

ORMULATION

We described a Bayesian formulation of the MEG imaging
problem in a prior publication [9]. Here we extend this formu-
lation to include a dynamic component. Our expectation that
primary current sources are sparse and focal is naturally intro-
duced into the inverse problem using a Bayesian paradigm in
which the source is modeled as a random field. Since sources
are sparse, a large majority of source pixels will have zero
amplitude over the entire time series.   We therefore use a
binary indicator process 

 

x 

 

to model whether each source dipole
is 

 

on

 

 (

 

x

 

i

 

 =1) or 

 

off 

 

(

 

x

 

i

 

 =0). Active sites are assumed to have a
temporally white Gaussian amplitude,  over the 

 

L 

 

time
samples

 

.

 

 We can write the source image matrix  as,

(2)

where  is a diagonal matrix. Assuming indepen-
dence of the indicator and amplitude processes, the posterior
probability for 

 

x

 

 and  given the MEG data matrix  is,

. (3)

The joint probability  uses a Markov Random Field
(MRF) model for which sparse focal sources have a higher
probability of occurring than more distributed sources. We
define 

 

p

 

(

 

x

 

) to be a Gibbs distribution,

(4)

where 

 

K

 

 is a proportionality constant, 

 

L

 

 is the number of time
samples, and the energy function  is given by,

(5)

where the parameters 

 

α

 

i 

 

>

 

 0 and 

 

β

 

i

 

>

 

 0

 

 

 

determine the relative
weights of the sparseness and clustering terms. The potential
function  is defined in terms of each pixel
and its neighboring pixels  as,

. (6)

where  is the absolute distance between pixels 

 

i

 

 and 

 

j

 

. The
clustering term is small if neighboring pixels are of the same
binary magnitude. The exponential parameter 

 

Q

 

 determines the
strength of the clustering. As 

 

Q

 

 increases, the size of the clus-
ters tends to increase. 

The source amplitude process, 

 

Z

 

, is assumed to be a set of
zero mean, temporally white, Gaussian random variables with
spatial covariance . The data is assumed to be corrupted by
zero mean, additive Gaussian noise with covariance .
Using these definitions, we can write the posterior density as,

(7)

where  is the posterior partition function and  is
the overall posterior energy function,

. (8)
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III.  OPTIMIZATION TECHNIQUES

We investigate three cost functions based on the posterior
energy defined in the previous section. Optimization of the cost
function gives us an estimate of the current density.

A.  The Joint MAP Estimate
The joint MAP estimate is found by maximizing over the

log-posterior for both x and Z, or equivalently,

. (9)

Optimizing jointly over continuous and discrete variables as is
proposed in (9) is difficult. We note, however, that the energy
function  is quadratic in Z. We can derive a closed
form expression for the optimal  as a function of any particu-
lar indicator process x,

. (10)

Setting the derivative of (8) to zero and solving yields,

. (11)

Substituting  into  results in,

(12)

which is a Gibbs energy function for the density , a
function of x only. We discuss minimization of a function of a
binary field in Section IV.

B.  Marginal MAP Estimation
An alternative solution can be found by considering only

the locations of the sources. In this case we can remove the
source amplitudes by marginalization of the posterior. To pre-
pare for the marginalization, we rearrange (8) as:

(13)

where the new variables are defined as,

(14)

(15)

. (16)

To find the marginalized posterior, we integrate over all :

. (17)

After removing terms from the integrand that are independent
of , we see that the integral is simply equal to the partition
function of a temporally white Gaussian random process with
spatial covariance Q. We take the log of the partition function

 and substitute this for the integral to get a
Gibbs distribution with marginal energy function,

. (18)
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This is the energy function of the marginal posterior distribu-
tion, and the marginal MAP estimate is given by:

. (19)

As with the joint MAP estimate, this requires minimization
with respect to a binary field, as described in Section IV. 

C.  Marginal MPM Estimation
We can disregard the MAP approach entirely and attempt to

find the best estimate of the set of pixel sites that are active dur-
ing a specific response in the sense of minimizing the number
of incorrectly identified active and inactive sites. The appropri-
ate cost for this problem for a particular realization x is: 

(20)

where  is the estimated pixel indicator value. The optimal
Bayesian estimator  with respect to the cost functional e is
defined as the global minimizer of the expected value  over
all possible x given the data B:

. (21)

If the posterior marginal distributions for every element of
the field are known, the optimal Bayesian estimator with
respect to any positive definite cost function may be found by
independently minimizing the marginal expected cost for each
element [6]. The optimal estimate of x with respect to the posi-
tive definite cost functional e can therefore be found by mini-
mizing independently the marginal expected cost for each
binary element. i.e.,

. (22)

Equivalently, if  is the mean of the marginalized posterior
, then the MPM solution is given by:

. (23)

Therefore, we find the MPM estimate by first finding the mar-
ginalized posterior mean field of the binary process, and then
compare this mean to a threshold of  for each site.

IV.  MEAN FIELD ANNEALING

Coordinate-wise optimization with respect to a collection of
binary variables using, for example, iterated conditional modes
(ICM), tends to produce rapid convergence to an undesirable
local minimum. Here we use, instead, a continuation method
based on mean field annealing(MFA) [2]. We visit each pixel in
turn using the following update strategy:

(24)
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where the conditional expectation is computed with respect to
the modified joint probability,

 . (25)

The temperature parameter T is slowly reduced as the iterations
proceed. As  the iteration will converge to a binary solu-
tion which is a local minimum of . This energy should
be set to (12) for MAP estimation or (18) for marginalized
MAP. If we use the same procedure, but iterate with constant
temperature , we typically converge to a fixed point
which represents the mean of a mean field approximation [3]
of the original Gibbs distribution. We use this technique to
compute an approximate solution to the marginal MPM prob-
lem.

V.  SIMULATIONS

We have conducted extensive simulations based on a simpli-
fied 2D source model with a 1D array of 80 sensors. All dipolar
sources are constrained to the annular segment of the x-y plane
shown in Fig. 1. The distance between source locations was set
to 1.5 mm providing an isotropically sampled image grid of
1,098 pixels. All dipoles were constrained in orientation per-
pendicular to the x-y plane. The source images were chosen

using stochastic sampling from  and  with Q = 2.5,
αi = 0.200, βi = 0.050, and σi

2 = 10 nAm i =1...N.   The first
three parameters were chosen using the number of clusters and
cluster size as the metric in a Markov chain Monte Carlo
study [4]. We chose values of αi, βi, and Q which produce an
average of 2-3 clusters with an area of 0.3 cm2 for each cluster.
The fourth parameter, the standard deviation of the dipole
moments, reflects the typical activity seen in an evoked
response study [5]. The true solution is shown in Fig. 2. We set
Cn to ν2⋅I  where ν2 is the added noise variance which we
assume known.

The simulation results for our three methods are shown in
Fig. 3. The percent residual error (% R.E.) is shown above each
image. For the binary solutions of marginal MAP and marginal
MPM, we used (11) to find  and calculated % R.E. with that

Figure 1.  Reconstruction region for 2D simulations. 1,098
pixels, 80 sensors.
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amplitude process. The % R.E. for the true solution was 1.055
for data with SNR of 20 dB and 14.492 for data with SNR of 8
dB. The three solutions had a better fit than the true solution
and achieved it with smaller clusters (lower energy). Note how-
ever that in this example all three methods gave very similar
results, and placed three clusters of sources close to the correct
locations for the three clusters in the true solution.

Figure 2.  True solution. (a) Time series image, individual
plots shown magnified. 8 active sites, 10-point time-series.
(b) The same image in binary form with active sites shown
as black rectangles.

Figure 3.  2D simulation results shown with SNR of 20 dB
and 8 dB. (a) Joint MAP estimate. (b) Marginal MAP esti-
mate. (c) Marginal MPM estimate. Percent residual error
(%R.E.) is shown above each image.

(a) (b)

active sources

Joint MAP (1.012% Res. Err.)

range −5.874:6.312

Binary Marginal MAP

Binary Marginal MPM

Joint MAP (14.008% Res. Err.)

range −10.085:9.854

Binary Marginal MAP

Binary Marginal MPM

SNR 20 dB (%R.E. = 1.009)

SNR 20 dB (%R.E. = 1.040)

SNR 8 dB (%R.E. = 14.008)

SNR 8 dB (%R.E. = 13.950)

SNR 8 dB (%R.E. = 13.946)

(a)

(b)

(c)

SNR 20 dB (%R.E. = 1.012)

VI.  PHANTOM EXPERIMENTS

We have applied the same techniques used in Section V to
experimental phantom data collected with a Neuromag-122
system [5] using the 26 dipole phantom supplied by the manu-
facturer. The Neuromag-122 system employs 61 dual-channel
planar first-order gradiometer units in a helmet-shaped config-
uration at a radius of 10-11 cm, measuring the magnetic field
gradient in two orthogonal tangential directions, for a total of
122 individual sensor measurements.

The phantom consists of two half circles with a 7 cm radius
in the x-z plane and y-z plane, with dipoles in fixed positions in
these planes oriented tangential to the outer edge. The image
grid consisted of 768 locations spaced 4 mm apart on these two
half circles, with an inner radius of 3 cm and an outer radius of
7 cm. Fig. 4 shows a picture of the phantom and the reconstruc-
tion region used in our phantom experiments.

We used the same parameters in the reconstruction as we
did in Section V. These parameters reflect what we expect to
see in real data. Since this phantom only activates individual
dipoles, it is impossible to generate clustered sources. This
phantom is therefore inadequate in testing the clustering prop-
erties of our methods. The true solution was generated by acti-
vating three dipoles and recording measurements of the
magnetic field gradient for 20 time samples. The true solution
is shown in Fig. 5. 

The phantom data was scaled to reflect a reasonable evoked
field response. We then added data collected in the same sys-
tem from a passive human subject (100 averages, eyes closed,
and no external stimulus present). This background was added
to the phantom data to obtain a SNR of 15 dB and 7 dB.

Figure 4.  (a) The phantom. (b) Reconstruction region sur-
rounded by the Neuromag-122 sensors.

Figure 5.  True image showing time series of 3 active dipoles
magnified. 50-point time-series.
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The results for the phantom experiment are shown in Fig. 6.
The % R.E. for the true solution was 3.430 for SNR 15 dB and
19.979 for SNR of 7 dB. The reconstruction in every case
found a three-dipole solution which better fit the data than the
true solution. These reconstructions would therefore be pre-
ferred over the true solution by our optimization methods.
However, all reconstructions are again close to the original
source distribution.

VII.  DISCUSSION AND CONCLUSIONS

In the simulations and phantom studies we have conducted,
our Bayesian methods generally found results which closely
resembled the true solution. All reconstructions closely fit the
data and exhibited the sparse clustered property that we expect.
We note that in most cases all three of the methods described
give similar performance in terms of localization accuracy.
Since the computation cost varies considerably, with marginal
MPM requiring the least computation time, the results provide
support for using this approach over the more time consuming
methods. We note however, that the two MAP methods are not
guaranteed to give a global maximum and that the marginal-
ized MPM method is based on a mean field approximation.
Consequently it remains to be seen whether the similarity

Figure 6.  Results of phantom experiments. (a) Joint MAP
estimate. (b) Marginal MAP estimate. (c) Marginal MPM
estimate. Percent residual error (%R.E.) is shown above
each image.

SNR 15 dB (%R.E. = 3.017)

SNR 15 dB (%R.E. = 3.017)

SNR 15 dB (%R.E. = 3.017)

SNR 10 dB (%R.E. = 18.825)

SNR 10 dB (%R.E. = 13.825)

SNR 8 dB (%R.E. = 18.825)

between the three solutions is due to the true nature of the pos-
terior density or whether the high degree of similarity may be
partially attributed to the approximations and numerical opti-
mization techniques that we used. In the future, we will per-
form more exhaustive quantitative comparisons of these
methods. 

The results that we have presented assume sources are con-
strained to 2D planes. In the future, the methods described here
will be applied to sources constrained to a realistic cortical sur-
face. Furthermore, since EEG and MEG are complimentary
modalities, we plan to combine these in an attempt to maxi-
mize localization accuracy.

Other viable methods exist for source localization that were
not discussed here, such as non-linear multiple dipole
techniques [7]. We plan to compare our methods to these tech-
niques. Eventually, we hope to determine realistic limits on the
ability of MEG and EEG to usefully image neural activity.

We would like to thank Dr. Jeffrey Lewine of the New Mexico Insti-
tute of Neuroimaging, Albuquerque, for providing access to the Neu-
romag-122 system and data. We also thank Dr. Cheryl Aine for her
pre-stimulus data.
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