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Introduction

The widespread availability of high-resolution anatomi-
cal information has placed a greater emphasis on accurate
electroencephalography and magnetoencephalography
(collectively, E/MEG) modeling. A more accurate repre-
sentation of the cortex, inner skull surface, outer skull sur-
face, and scalp should lead to a more accurate forward
model and hence improve inverse modeling efforts. We
examine a few topics in this paper that highlight some of
the problems of forward modeling, then discuss the
impacts these results have on the inverse problem.

We begin by assuming a perfect head model, that of the
sphere, then show the lower bounds on localization accu-
racy of dipoles within this perfect forward model. For more
realistic anatomy, the boundary element method (BEM) is
a common numerical technique for solving the boundary
integral equations. For a three-layer BEM, the computa-
tional requirements can be too intensive for many inverse
techniques, so we examine a few simplifications. We quan-
tify errors in generating this forward model by defining a
regularized percentage error metric. We then apply this
metric to a single layer boundary element solution, a mul-
tiple sphere approach, and the common single sphere
model. We conclude with an MEG localization demonstra-
tion on a novel experimental human phantom, using both
BEM and multiple spheres.

Methods

Cramer-Rao Lower Bounds

Even if we know our forward head and source model pre-
cisely, noise prevents us from exactly determining the loca-
tion of a dipole. Our inverse estimation process will make
some error in locating the dipole, an error often character-
ized by its mean (bias) and variance. No unbiased estima-
tor can have a lower error variance than that established by
the Cramer-Rao lower bound (CRLB). In [1], we presented
this formal analysis of dipole localization error, for both
EEG and MEG, assuming that the forward model was per-
fectly known. The CRLBs were generated for the cases of
one and two dipoles and for varying densities of sensor
array patterns. The MEG sensors were assumed in [1] to be
magnetometers. In this paper, we present the CRLBs for
the case of axial versus planar gradiometers, both as a dem-
onstration of the flexibility of the CRLB in performing sys-
tem analyses, as well as establishing some fundamental
error bounds useful for inverse problem discussions.

Regularized Percentage Error

We define the regularized percentage (RP) error as fol-
lows. We assume that a particular head model approach has
generated a gain matrix designated as  for a particular
dipole location. We assume a competing head model has
generated a similar gain matrix  for the same dipole loca-
tion. For a particular dipole moment , the forward field
observed at  sensors would be  or ; see
[2] for a more complete review of this gain matrix model.
Our problem is to quantify the difference between the two
observed patterns in a meaningful manner. We might cal-
culate the sum squared error between the two vectors,
denoted as ; however, this error quantity is gener-
ally more useful if scaled by the field magnitude,

. Similar error metrics have been widely used
by other E/MEG researchers in evaluating head models. In
each of these instances, the error has been scaled by the
field value in order to achieve a figure of merit; however,
these measures do not address the problem of field values
too small to be of concern. For instance, a radial dipole
inside a perfect sphere has zero external magnetic field,
and in a realistic head shape, the external field can be
expected to be quite small. In these instances, the error
measures above will yield widely varying figures of merit,
yet in the inverse problem these small field difference will
be almost surely dominated by noise. Thus the differences
between these models should be of no consequence, and
the figure of merit should be adjusted accordingly. A sec-
ond problem with these error definitions is that they apply
only to the specific dipole orientation  used to generate
the forward fields represented by  and .

A more meaningful calculation would be the best and
worst error over all possible dipole orientations, with
respect to an anticipated noise level. Conceptually, we first
simply modify the existing error functions to account for
an anticipated noise variance , i.e., our metric might be

. Thus small total field values  are
“regularized” by . Second, we relax the dependence of
the analysis on the dipole moment by computing the error

, where  is the dipole orientation that mini-
mizes this error for a particular . Accounting for the scale
factor and noise regularizer, we can then, in a manner anal-
ogous to our MUSIC presentation in [2], maximize or min-
imize over all  using ageneralized eigenanalysis,
succinctly expressed and readily calculated in MATLAB
as

(1)

which we denote as theregularized percentage error,
where  is the number of sensors, and  is a projection
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operator for the subspace orthogonal to . The signal to
noise ratio  is the ratio of the square of the dipole
intensity to the variance of the noise at each sensor, as we
defined in [1]. The key property of this metric is that it
directly reflects localization ability since we can use it to
find theworst errorover all possible dipole orientations
and locations in the head. Furthermore, the metric includes
the effects of noise. We will use this in our evaluation of
head models described below.

Boundary Elements and Multiple Sphere Head Models

The routine use of boundary element method (BEM)
models is limited by their high computational cost (up to
three orders of magnitude greater than that of the spherical
model). Models based on a single set of concentric spheres,
however, do not well represent the shape of the human
head or the impact of the associated volume currents. A
compromise between these can be realized by locally vary-
ing the centers and radii of the spherical model to match
the local curvature of the head. Intuitively, as in [3], such a
model could be fitted by observing the local curvature of
the scalp and skull surfaces and generating a least-square
fit of a sphere to this local surface. We have developed a
modified form of this locally fitted sphere method. Each
sensor is assigned its own best fitting sphere, but the
least-squares fit is weighted using the lead fields that such
a sensor would produce in a spherical model. The spherical
lead fields are calculated at the scalp or skull surfaces, then
the sphere center iteratively adjusted until the weighted
least-squares error between the spherical model and the
anatomical surface is minimized. We refer to this approach
as theweighted multi-sphere (WMS) head model [4].

We performed a preliminary computer evaluation using
the regularized percentage (RP) error. We extracted a
three-layer BEM model from an MRI, as well as a
smoothed representation of the cortical surface. A full
three-layer BEM numerical computation was used as the
“gold standard” against which to test the other techniques.
In Fig. 1, we show the RP error for the WMS (b) and the
single sphere (c) versus the three-layer BEM. The image
intensities shown on each of the rendered cortical surfaces
show theworst case RP error (according to scale on right)
over all possible dipole orientations at each point on the
cortical surface. We also present the RP error for a
one-layer BEM, which uses only the inner skull surface.
As also supported by the observations in [5], the one-layer
BEM model (a) is quite adequate for MEG, and this study
suggests that the WMS head model will also be adequate,
yet several orders of magnitude faster to compute.

The WMS head model is easily adapted to other special-
ized shapes, such as presented in [6]. The novelty of our
approach is the iterative calculation of the lead fields to use
as the weighting factor in the spherical fitting. Our applica-
tion of the RP error focuses the design issue on the portions
of the forward model relevant to inverse fitting and allows
rapid calculation of thousands of dipole locations, at each
location automatically extracting the best and worst dipole
orientations.

Experimental Phantom

To generate realistic data sets for both EEG and MEG, we
recently completed the construction and preliminary test-
ing of a human skull phantom [7]. The sources are 32 coax-
ial wires entering through the base of the skull, and a
source connector is attached to the driver electronics, also
custom built for this phantom. Forty layers of NaCl-doped
modeling latex were applied to the upper 2/3 of the skull to
resemble a scalp layer and EEG electrodes attached, as
shown in Fig. 2. A conductive gelatin was formed by dop-
ing a mixture with NaCl. The human skull was then
immersed in hot solution of the gelatin, ensuring that the
diploic space of the skull was thoroughly impregnated. The
result is a homogeneous “brain” mass, in which the coaxial
sources inject current through the tips and return the cur-
rent through the shields. The ground of each source was
optically isolated (greater than 100 dB separation between
dipoles), ensuring that the sources appeared to both EEG
and MEG as current dipole sources. Each dipole is inde-
pendently programmable through a PC interface. Careful
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Fig. 1: From [4], the regularized percentage (RP) error
between a full three-layer MEG BEM model and (a) a
one-layer (inner skull) BEM model; (b) our proposed
WMS model; and (c) the conventional single sphere
model. The study was for a simulated 127 magnetometer
system, a 10 nA-m dipole source and zero-mean Gaussian
noise with a 10 fT standard deviation. We observe the sig-
nificant error of the single sphere (c) in modeling the for-
ward regions of the head, while the WMS head model (b)
only generates errors of a few percent in this region.
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restrictions to non-ferrous materials made this phantom
compatible with the MEG sensor array. As shown in Fig. 2,
the CT images were rendered and the images closely
examined to extract the precise position of both the EEG
electrodes and the coaxial current sources.

Results

Axial versus Planar Gradiometers

Fig. 3 presents the Cramer-Rao lower bounds, as dis-
cussed in [1], comparing the theoretical lower bound on
error performance of a simulated axial gradiometer array
with that of a planar gradiometer array. To hold constant
the other parameters of consideration, both arrays were
simulated on a 30 mm spaced grid on a 120 mm virtual
sphere. The error analysis was performed for regions at
least 20 mm from the array, i.e. at radii less than 100 mm.
The isocontour lines represent regions within a perfect
spherical head model that yield the same error perfor-
mance, here expressed as the scalar standard deviation in
mm for estimating a single dipole’s location. The bottom
figure in Fig. 3 is the difference between the two systems.
Very near the surface, the performances are nearly identi-
cal, with less than 1 mm difference in standard deviations
from radii of 70 mm to 100 mm. At increasing depths, we
see the axial system outperforming the planar, but over a
wide range of depths this difference may not be
significant.

Phantom Dipole Localization

We extracted the inner skull, outer skull, and scalp sur-
faces from the CTs of the phantom and tessellated them for
forward modeling in a BEM code. We present here prelim-
inary results of our single-shell MEG BEM head model
and analysis of our proposed WMS head model. Fig. 4
shows the scalar distance error between the dipoles as
located in our CT images and the dipoles as found in single
dipole fits of MEG data acquired in the Neuromag-122.
The dashed lines show most of the errors were within

6 mm. To account for possible registration errors, we per-
formed a global translation and rotation to the solution set,
yielding a small improvement in the errors, as indicated by
the solid lines in Fig. 4. We are in the process of re-regis-
tering all of the data, but this first look is very encouraging,
since our CT images had a 2 mm axial slice thickness, and
this initial BEM search was quantized to 2 mm. Fig. 5
illustrates the same processing, but using the WMS model
at a fraction of the computational time of the BEM. The

Fig. 2: Surface render-
ing from CT of experi-
mental phantom. The 64
EEG electrodes were
embedded in the conduct-
ing latex scalp. The 32
dipolar sources can be
seen in both the cutaway

and the CT slice. The
diploic space was
also filled with the
conducting gelatin,
yielding a realistic
resemblance to some
of the human experi-
mental uncertainties. Gelatin “Brain”
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Fig. 3: Cramer-Rao Lower Bounds, for 152 sensor
sites, all units are std. dev. in mm. The variations in the
isocontours near the surface arise from the spatial sam-
pling of the array. The noise is considered to be spatially
and temporally white with a standard deviation of 10 fT,
and the dipole intensity was held constant at 10 nA-m.
The CRLB variances scale inversely proportional to the
SNR, where SNR is defined below (1).
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same probable registration error was again noted, and we
see that the mis-location errors are comparable to the BEM
and quite small. Two of the 32 dipoles were omitted as out-
liers from this first look.

The SNR in this phantom study was approximately four
times that of the simulation study presented in Fig. 3,
therefore halving the CRLB standard deviations. Most of
the dipole sources were about 50-70 mm from the array. If
we ignore the head modeling errors of the phantom, we see
that our localization errors are consistent with the bounds
of Fig. 3.

Discussion

The WMS head model represents a markedly faster com-
putational technique for calculating the forward model.
The RP analysis suggests the differences are minor com-
pared to the noise we might anticipate under experimental
conditions, and the phantom localization results support
this alternative forward model technique. We are presently
applying the same approaches to EEG models.

In this brief paper, we have emphasized results with a sin-
gle dipole model. As we showed in [1], however, the

CRLBs can rapidly increase for two or more dipoles placed
as close as a few centimeters. We suggest that this funda-
mental localization error has far greater consequences on
inverse procedures than the sensor differences and forward
modeling errors we have presented here.

The relatively recent and rapidly widespread application
of function magnetic resonance imaging (fMRI) for func-
tional brain imaging studies has placed greater emphasis
on the utility of electrophysiological data as a complement
to hemodynamic data. A common suggestion is to con-
strain the E/MEG data with the locations found in fMRI, in
order to extract the exquisite temporal resolution the
E/MEG data represent. Our CT-based phantom anatomical
images are allowing us to test such “fusion” assumptions
under experimental conditions more controlled than fMRI.
Even in the simple example of this paper, we already
observe registration issues in combining anatomical infor-
mation. The fMRI and E/MEG fusion of human data will
be even more complicated, because the location of hemo-
dynamic foci may not necessarily correspond with those of
electrophysiological foci, and sources may be “silent” in
either modality, thus altering the temporal data modeling.
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Fig. 4: Histogram of the localization errors of 30 single
dipole sources in the human skull phantom, using a single
layer BEM. We observe that 15 of the re-registered
dipoles were within 2 mm of their corresponding CT loca-
tions.
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Fig. 5: Histogram of the localization errors of same
dipoles as in Fig. 4, using instead a WMS approximation
for the forward model, and again re-registering. The
WMS model is calculated at a fraction of the computa-
tional cost of the BEM, with nearly the same localization
performance.


