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Abstract
For patients with partial epilepsy, automatic spike detection techniques applied
to interictal MEG data often discover several potentially epileptogenic brain
regions. An important determination in treatment planning is which of these
detected regions are most likely to be the primary sources of epileptogenic
activity. Analysis of the patterns of propagation activity between the detected
regions may allow for detection of these primary epileptic foci. We describe the
use of hidden Markov models (HMM) for estimation of the propagation patterns
between several spiking regions from interictal MEG data. Analysis of the
estimated transition probability matrix allows us to make inferences regarding
the propagation pattern of the abnormal activity and determine the most likely
region of its origin. The proposed HMM paradigm allows for a simple
incorporation of the spike detector specificity and sensitivity characteristics.
We develop bounds on performance for the case of perfect detection. We also
apply the technique to simulated data sets in order to study the robustness of
the method to the non-ideal specificity–sensitivity characteristics of the event
detectors and compare results with the lower bounds. Our study demonstrates
robustness of the proposed technique to event detection errors. We conclude
with an example of the application of this method to a single patient.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Epilepsy is a family of brain disorders characterized by seizures that result in disturbances of
perception, behaviour and consciousness. Using electro- or magnetoencephalography (EEG

0031-9155/05/143447+23$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3447

http://dx.doi.org/10.1088/0031-9155/50/14/017
mailto:leahy@sipi.usc.edu
http://stacks.iop.org/pb/50/3447


3448 A Ossadtchi et al

or MEG, or collectively EMEG), it is possible to record interictal activity, or spikes, during
the intervals between seizures, i.e. the interictal periods. It is believed that these spikes
originate from the same brain foci as do the seizures (Diekmann et al 1998). Spike onset
focus determination using EMEG data and source localization methods can be an important
component in the presurgical evaluation of patients for whom pharmacotherapy has not been
successful in controlling seizures, and may reduce the need for invasive diagnostic procedures,
such as depth recordings.

Recent work has demonstrated that the problem of epileptogenic zone detection from
extracranial recordings is more complex than was thought originally. Manual analysis of
interictal data sets (spike identification followed by dipole fitting) (Diekmann et al 1998)
often yields several dipole clusters within the brain. Automatic spike detection techniques
(Ossadtchi et al 2004, Kobayashi et al 2002) for the analysis of interictal MEG/EEG data
sets also yield several potentially epileptogenic regions in the brains of patients with partial
epilepsy.

The presence of multiple epileptogenic zones may be explained by propagation of the
interictal activity between different parts of the brain. In a study of five patients with temporal
lobe epilepsy, Sutherling and Barth (1989) found propagation of interictal activity between
deep and superficial cortex areas of the temporal lobe. Propagation times were estimated
to be on the order of 30–35 ms, consistent with axonal conduction velocities. Another
study (Baumgatner et al 1995) reported propagation of interictal activity between mesiobasal
temporal lobe and lateral temporal neocortex areas. In Kobayashi et al (1999), interictal
spikes of slightly different latencies were observed as independent components with distinct
topographies, consistent with propagation of interictal activity between different areas of the
brain. These studies lead to the conclusion that propagation analysis can be an important
component in identifying the primary epileptogenic focus from interictal activity. Bourien
et al (2004) have found that taking propagation patterns into consideration significantly
improves the surgical outcome and reduces the likelihood of surgery-induced deficit.

Patterns of propagation activity can be established based on the analysis of either ictal or
interictal recordings. Ictal activity has been studied using imaging (PET and fMRI), as well
as electrophysiological methods, both invasive (electrocorticography and depth recordings)
and non-invasive (EMEG), applying functional connectivity measures, such as coherence
and phase synchrony for propagation detection. Early efforts using fMRI and PET data were
based on linear coherence measures and employed canonical variates analysis (CVA) (Strother
et al 1996) and partial least squares (PLS) (McIntosh et al 1996) approaches. However, the
temporal resolution of the underlying imaging modalities (fMRI and PET) only allows the
detection of coupling on the time scale of seconds, significantly slower than the observed
electrophysiological time scale. In addition, CV and PLS techniques can only detect a linear
coupling and are limited to assessing pairwise interactions.

Other functional connectivity measures that overcome some of these limitations have
been applied to the analysis of experimental invasive recordings. For example, multichannel
coherence (MC) measures can be employed to detect the amount of causal interaction between
different brain regions, as shown in Duckrow and Spencer (1998). A more general approach
is based on multichannel autoregressive models (MAR) (Kaminski and Blinowska 1991,
Franaszczuk and Bergey 1999), or vector autoregressive models (VAR) (Kay 1988), which may
be used to represent the entire pattern of interaction between several regions simultaneously.
A successful application of the MAR model to depth electrode signals recorded from several
parts of a rat’s brain at rest and during motion is reported in Kaminski and Blinowska (1991).
The approach is based on the estimation and interpretation of model parameters and reveals a
significant increase of signal propagation between the cerebellum and the motor cortex during
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motion as compared to the rest stage. A similar technique was used in Franaszczuk and
Bergey (1999) for the measurement of synchronization in ictal signals recorded by an array
of electrodes implanted in the patient’s brain (ICEEG). Increased synchrony was detected
between the electrodes close to the epileptogenic focus during the preictal and ictal stages.
This is in agreement with previous single channel studies showing a decrease of EEG signal
complexity during these stages. This technique can be used to assess seizure spread patterns
based on the depth electrode recordings of seizure onset.

Linear model-based methods for synchrony detection will generally work well only with
electrophysiological data dominated by locally stationary signals (e.g., α-rhythm, γ -rhythm,
sustained ictal activity). The variance of a linear model parameter estimate is inversely
proportional to the length of the data set, which makes it difficult to use these linear methods for
the detection of interictal events propagation, since the events have a relatively brief duration,
typically between 70 and 200 ms. Also, surface conduction effects complicate linear model-
based methods applied to non-invasive signals. Constrained beamforming techniques only
alleviate but do not solve the problem, due to non-zero spatial extent of the beam. Statistical
significance testing should be used when linear methods are employed for synchrony and
propagation detection in non-invasively obtained data (Nunez et al 1999).

An alternative promising approach to the analysis of depth electrode data is described
in Bourien et al (2004). This method does not depend on linear measures, but instead
uses data mining technique to search for statistically significant reproducible sequences of
activations detected by a set of depth electrodes. The approach has been applied to detection
of the propagation patterns associated with two different types of events: interictal spikes and
transient bursts of fast activity. The technique is capable of finding physiologically plausible
propagation networks based on the intracranial recordings. However, the specificity and
sensitivity of event detection from non-invasively recorded data like EMEG are significantly
lower than they are using intracranial depth electrode recordings. It would be desirable for
propagation methods using extracranial data to incorporate non-ideal sensitivity and specificity
explicitly.

Probabilistic models appear to offer an appropriate framework for coping with the inherent
uncertainties in inferences from EMEG data. Probabilistic models have been used extensively
for modelling the activity of neuronal assemblies on the micro level. Phenomenological
spiking neuron models have a long tradition in theoretical neuroscience and are reviewed in
Tuckwell (1988). Typically, probabilistic models of neuronal activity and propagation are
concerned with simulation of chemical processes taking place inside a neuron. A model of
spike propagation in neuronal networks with a small number of neurons was described in
Kudela et al (1999). In Moradi (2004), Markov Models were used to simulate propagation
of the neuronal excitation through a network of neurons with random excitatory connections.
Markov Models were shown to adequately model propagation and survival of synchronous
spiking in cortical neuronal networks. However, little work has been done on the application
of such methods to the detection of neuronal activity propagation on the macroscopic level.

In the current work, we propose to use hidden Markov models (HMM) (Rabiner and
Juang 1986) to infer propagation patterns between several potential epileptogenic regions,
after the regions have been identified by automatic methods (Ossadtchi et al 2004) obtained
from the analysis of interictal MEG data. As we will show, the HMM provides a framework
for explicit modelling of propagation between the regions on the macroscopic level. HMMs
also allow incorporation of specificity–sensitivity characteristics of the spike detection method
by estimating state emission probability functions. We demonstrate that an analysis of the
transition probability matrix allows us to draw conclusions regarding patterns of interictal
activity propagation and to estimate physiological parameters of the interictal activity.
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Figure 1. Simple two-cluster interaction Markov model. The number of foci is Nf = 2, the
number of states is Ns = 2Nf + 1 = 5 and the number of allowed transitions is Nt = 11.

In our presentation, we follow the inductive approach and first outline a two-focus model
of interictal activity propagation based on the ideal spike detector assumption. We demonstrate
that analysis of the transition probability matrix permits one to draw conclusions regarding
patterns of interictal activity propagation and to estimate the physiological parameters of the
propagation process. Next, we show how specificity–sensitivity characteristics of the detectors
with discrete output can be incorporated into the model. The last step in the model description
is its generalization for use with multiple foci.

Within the model identification section of the paper, we review the expectation–
maximization (EM) and Baum–Welch algorithms used for identification of the transition
probability matrix of our model. We then address issues of accuracy and robustness of the
propagation detection procedure and report the results of both theoretical analysis and Monte
Carlo simulations. We conclude with an example of the application of this method to a
single patient. In a second paper, we will more thoroughly compare and interpret the results
of applying the procedure to clinical MEG data collection from subjects with intractable
multifocal epilepsy.

2. Markov model for interictal activity propagation

In the following, the propagation model describes the probability that an interictal spike
directly results in the emission of another spike elsewhere. The observation model reflects the
reality that we observe only a sequence of spikes and not the propagation state directly. We
first describe a simple two-focus model and then generalize to an arbitrary number of foci.

2.1. Propagation model

We assume that time is indexed discretely as t = 0, 1, . . . , T − 1 at fs samples per second,
such that the total passage of time τ is τ = T/fs s or that correspondingly the total number
of samples available is T = τfs . Interictal activity as a function of time between Nf = 2
foci is modelled by means of a Markov model shown in figure 1. At a time instance t when
a spike is detected in the kth focus, the model is in the emission state Ek . In the next time
instance t + 1 the model transitions with probability 1 into a corresponding propagation state
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Table 1. Structure of the probability transition matrix P for the two-focus model. Asterisks
indicate transitions corresponding to remaining in the same emitting state or to propagating from
one focus to the other.

S(t + 1)

S(t) I P1 E1 P2 E2

I p(I |I ) 0 p(E1|I ) 0 p(E2|I )

P1 p(I |P1) p(P1|P1)
∗ 0 0 p(E2|P1)

∗

E1 0 1 0 0 0
P2 p(I |P2) 0 p(E1|P2)

∗ p(P2|P2)
∗ 0

E2 0 0 0 1 0

Pk . The model then remains in this propagation state for some elapsed time interval before
either returning to an idle state I or triggering the emission of a spike in the other focus. Our
goal is to extract information about propagation between these pair of foci.

At every time instance, our model is therefore in one and only one of the following
Ns = 2Nf + 1 = 5 states:

• two emission states (E1 and E2),
• two propagation states (P1 and P2),
• one idle state (I).

We denote the sequence of states as a function of time as S ≡ {S(t)}, where S(t) = s, and
s ∈ {I, P1, P2, E1, E2}. This model of propagation activity does not allow two spikes to occur
simultaneously or at two consecutive time instances. For sufficiently high sampling rates of
the analysed data, this property of the model is in agreement with the fact that 10–30 ms is
required to generate an excitatory synaptic potential from the second population of neurons
(Gloor 1985).

To further specify the Markov model, we need to introduce a probability transition matrix
P with elements {p(B|A)} defined as p(B|A) ≡ Prob(S(t) = B|S(t − 1) = A), i.e. the
conditional probability of being in state B given we were in state A. Theoretically, a Markov
model with five states would yield N2

s = 25 possible transitions, but physiological plausibility
restricts the model to Nt = 11 allowed transitions, indicated by the arrows in figure 1.
Absence of an arrow between a pair of states in a given direction indicates a banned state
transition. Formally, restricted transitions are indicated by setting the corresponding elements
of the transition probability matrix to 0. The P matrix corresponding to the directed graph in
figure 1 is shown in table 1.

At time t, the probability of being in state s, s ∈ {I, P1, P2, E1, E2}, is denoted by the
state probability vector π(t), whose individual elements πi(t) represent the corresponding
probability of being in that particular state. The probability in the next time instance is found
using the state transition matrix, π(t + 1) = PT π(t). To initialize the Markov model, we need
only specify the vector π(0) as the initial-state probability. The state probability vector at
time t is therefore π(t) = (PT )tπ(0). Since spikes happen relatively rarely, and the segment
of data that we analyse is more likely to start from the idle state than from an emission state,
we may initially specify π(0) = [1 − 4ε, ε, ε, ε, ε]T , ε � 1.

A parameter of particular interest is the steady-state probability vector η, such that
PT η = η, which can be used for the analysis of a Markov model. We define ηi as the
element in η representing the steady-state transition probability for the ith state in the set
s ∈ {I, P1, P2, E1, E2}. The vector η can be computed as the appropriately normalized
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eigenvector corresponding to the unit eigenvalue of the transposed state transition probability
matrix PT . For the two-focus case the required normalization condition is

∑5
i=1 ηi = 1 such

that the probabilities sum to unity.
With these definitions, the following physiological parameters, which describe interictal

activity, can be computed as functions of the transition probability matrix:

• Elements p(E2|P1) and p(E1|P2) of the transition probability matrix reflect the
probability at any instance that propagation from one focus will trigger an emission
in the other focus.

• Given we are in the first propagation state P1, the probability of propagation to the second
emission state within time window [τ0, τ1] seconds after entering the propagation state
can be computed as

ρ12 = p(E2|P1)(p(P1|P1)
τ0fs − p(P1|P1)

τ1fs )/(1 − p(P1|P1)),

and correspondingly for the reverse direction

ρ21 = p(E1|P2)(p(P2|P2)
τ0fs − p(P2|P2)

τ1fs )/(1 − p(P2|P2)).

• The expected time that either focus remains in its propagation state after emission can be
computed as τ11 = (p(P1|P1)fs)

−1 and τ22 = (p(P2|P2)fs)
−1 s.

• Over the entire observation of T samples, the expected number of cases when a spike
in the first focus is followed by a spike in the second focus can be computed as Q12 =
η(P1)p(E2|P1)T . Correspondingly, for the reverse direction, Q21 = η(P2)p(E1|P2)T .

2.2. Observation model

As discussed in section 1, each focus is assumed to be detected separately by a spike detection
and source localization scheme, such as proposed in Ossadtchi et al (2004). For the two-focus
model, the two detectors are modelled to have binary outputs D1(t) and D2(t), such that an
active level of Dk(t) = 1 indicates emission of a spike from the kth focus at time instance
t; otherwise, Dk(t) = 0. For simplicity in the development, we encode the pair of binary
outputs into single detector D(t) using a discrete representation scheme. According to this
representation, the output of the pair of detectors is now represented by a scalar obtained as
D(t) = 20D1(t) + 21D2(t). Thus, the scalar detector output is D(t) = d, d ∈ {0, 1, 2, 3},
and we can uniquely decode which detector indicated an emission.

Using this scheme, we observe that for a single observation D(t) we cannot uniquely
distinguish the propagation and idle states of the five-state Markov model in figure 1, since
both states yield Dk(t) = 0. The only way to distinguish these states is by an analysis of the
entire set of observations, D ≡ {D(t)}, discussed in the next section. We further note that
the detectors Dk are imperfect, with specificity values νk and sensitivity values µk, k ∈ {1, 2},
defined as

νk = p(Dk(t) = 0 |no spike at time t in the kth focus),

µk = p(Dk(t) = 1|a spike at time t in the kth focus).

In other words, the detectors have a ‘false alarm rate’ (FAR) of (1 − νk) and a ‘probability of
missed detection’ of (1 − µk). Thus, for example, our pair of detectors may simultaneously
declare an emission at time t, such that D(t) = 3, where one or both of the detectors may
have triggered a ‘false alarm,’ even though our state model precludes both foci simultaneously
emitting.

We therefore model the probability of the detector output using a state emission probability
mass function ψs(d) ≡ Prob(d = D(t)|s = S(t)), i.e. the probability of observing the
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Figure 2. Simple N-cluster interaction Markov model. The number of foci is Nf , the number
of states is Ns = 2Nf + 1 and the number of allowed transitions is Nt = 4Nf + 2(Nf !)/
(2!(Nf − 2)!) + 1.

Table 2. For the two-focus model, the probability of detector outputs d ∈ {0, 1, 2, 3}, given the
states s ∈ {I, P1, P2, E1, E2}. Each detector k ∈ 1, 2 has specificity νk and sensitivity µk for
detecting an emission Ek . The scalar detector output d is the encoded sum of the individual binary
detector outputs, d = d1 + 2d2.

Detector output d

State s ψs(0) ψs(1) ψs(2) ψs(3)

I, P1, P2 ν1ν2 (1 − ν1)ν2 ν1(1 − ν2) (1 − ν1)(1 − ν2)

E1 (1 − µ1)ν2 µ1ν2 (1 − µ1)(1 − ν2) µ1(1 − ν2)

E2 ν1(1 − µ2) (1 − ν1)(1 − µ2) ν1µ2 (1 − ν1)µ2

detector output d ∈ {0, 1, 2, 3} given we are in state s ∈ {I, P1, P2, E1, E2}. The state
emission probability mass functions ψs(d) allow us to take into account realistic specificity
νk and sensitivity µk characteristics of the discrete detectors Dk, k ∈ {1, 2}, as shown in
table 2.

2.3. Generalization to multiple foci

The approach for two foci can now be generalized to model activity propagation between an
arbitrary number of foci. In general, in order to model propagation between Nf foci we need

to use a structure shown in figure 2 with Ns = 2Nf +1 hidden states and Nt = 4Nf +2C
Nf

2 +1
allowed transitions, where CN

n stands for number of combinations of N items taken n at a
time, CN

n ≡ N !/(n!(N − n)!). Only one emission Ek can occur in any time instance, where it
then transitions in the next time instance with probability 1 to its propagation state Pk . From
the propagation state, the focus either eventually transitions to the idle state I or transitions
directly to a new emission state.

The state sequence is again denoted as a function of time, S(t) = s, where now
s ∈ {I, P1, . . . , PNf

, E1, . . . , ENf
}. The initial-state probability vector may again be specified

as π(0) = [1 − 2εNf , ε, . . . , ε], ε � 1. The probability transition matrix P is the obvious
multiple-focus extension of the two-focus case, where many probabilities are set to 0 in order
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to prohibit transitions. Vector η, as in the two-focus case, is computed as the appropriately
normalized eigenvector corresponding to the unit eigenvalue of the transposed state transition
probability matrix PT . The normalization condition is

∑2Nf +1
i=1 ηi = 1.

Based on the probability transition matrix, the following set of physiological propagation
parameters can be computed:

• Elements p(El|Pk) of the transition probability matrix reflect the probability at any
instance that propagation in focus k will trigger an emission in focus l.

• Given we are in propagation state Pk , the probability of propagation to the emission
state El within time window [τ0, τ1] seconds after entering the propagation state can be
computed as

ρkl = p(El|Pk)(p(Pk|Pk)
τ0fs − p(Pk|Pk)

τ1fs )/(1 − p(Pk|Pk)). (1)

• The expected time that any focus remains in its propagation state Pk after emission can
be computed as τkk = (p(Pk|Pk)fs)

−1 s.
• Over the entire observation of T samples, the expected number of cases when a

spike in the kth focus is followed by a spike in the lth focus can be computed as
Qkl = η(Pk)p(El|Pk)T .

The propagation model for Nf foci is supported by a set of Nf detectors Dk with binary
outputs Dk(t) = dk, dk ∈ {0, 1}, k = 1, . . . , Nf . The scalar observable output D(t) is
encoded as D(t) = D1(t) + 2D2(t) + · · · + 2(Nf −1)DNf

(t), which takes on the values from
the set D(t) = d, d ∈ {0, . . . , 2Nf − 1}. In order to generalize an expression for the state
emission probability density function ψs(d), we extend our concept of the binary encoding of
d by converting it to a bit sequence comprising Nf bits. We represent the binary encoding of

the output d using binary vector bd , such that d = ∑Nf

k=1 bd
k 2(k−1); in other words, the kth bit

in bd is represented by detector Dk(t). Using this encoding, we can generalize the expression
for ψs(d) in the idle or propagation state as

ψs(d) =
Nf∏
k=1

ν
bd

k

k (1 − νk)
bd

k , s ∈ {
I, P1, . . . , PNf

}
(2)

where bd
k denotes the logical negation of the kth bit.

We next generalize the expression for ψs(d) for the emission states s = {
E1, . . . , ENf

}
.

For convenience, we introduce another binary vector variable bk , where k corresponds to
emission state Ek . The number of bits in this vector is equal to that in the vector bd , but
the encoding scheme is positional, i.e. all bits except for the kth bit of vector bk are 0 and
the kth bit is set to 1. Now let us introduce another vector of bits ∆ for which each bit
is computed as an XOR (exclusive OR) of the corresponding bits of bk and bd . In other
words, 
dk

l = bd
l ⊕ bk

l . Then the expression for the ψs(d) for s = {
E1, . . . , ENf

}
can be

written as

ψs(d) =
Nf∏
l=1

[
µ


dk
l

l (1 − µl)

dk

l

]δlk
[
ν


dk
l

l (1 − νl)

dk

l

]δlk

s ∈ {Ek}, (3)

where δlk is a Kronecker symbol and the overbar again denotes logical negation.
In the above, νl and µl are correspondingly the specificity and sensitivity of the lth

detector. The formulae given above allow the construction of the HMM for the propagation
detection between an arbitrary number of foci.
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3. Parameter estimation

We assume that we have the sequence of observed detector outputs D = {D(t)}, t = 1, . . . , T

from which we wish to infer the state sequence S = {S(t)} and the probability transition
matrix P of the HMM. In order to estimate P, we discuss below the use of the expectation–
maximization (EM) algorithm. We then examine the error variance, interpretation, significance
and applicability of generating these estimates.

3.1. Constrained EM algorithm

We use the EM algorithm as described in (Rabiner and Juang 1993) to estimate the parameters
of our HMM. Each iteration of the algorithm is comprised of two steps. During the nth iteration
within the expectation (E) step, the algorithm computes the auxiliary function Q(Θn,Θn−1)

equal to the expectation of the likelihood function L(Θn|D, S) over all possible values of
the hidden data S, for the observed data D and a set of parameters Θn−1 obtained during the
maximization step of the (n − 1)th iteration of the algorithm. The maximization (M) step
computes new values for the set of parameters Θn which maximize the auxiliary function
Q(Θn,Θn−1). In our application, we define the parameter set to be the state transition matrix
and the initial-state probabilities, Θ as Θ = {P,π(0)}.

For notational convenience, we now introduce the equivalent notation S(t) = i to indicate
the ith element of the possible state set

{
I, P1, . . . , PNf

, E1, . . . , ENf

}
. We specify the state

emission function ψs(d) for the ith state as ψi(d), based on our prior knowledge of the
characteristics of the detectors Dk, k = 1, . . . , Nf , according to equations (2) and (3). As
mentioned previously, we initialize the state probability vector as π0 = [1 − 2εNf , ε, . . . , ε],
and πn

i is the probability for the ith state at the nth iteration. Finally, we initialize the
transition probability matrix P0 with p0

ij = 0 for those transitions that are not allowed,
p0

ij = 1 for the mandatory transitions and p0
ij = εi for the rest of the transitions, where εi

is selected in such a way that
∑

j p0
ij = 1. In the above, we used the compact notation

pn
ij ≡ Prob(j = S(t + 1)|i = S(t)) at the nth iteration.

At the nth iteration of the EM algorithm the following probabilities are introduced to
facilitate computation of the auxiliary function Q:

• αn
j (t) = Prob(d = D(1), . . . , d = D(t), j = S(t)|Θn−1),

• βn
i (t) = Prob(d = D(t + 1), . . . , d = D(T − 1), i = S(t)|Θn−1).

In other words, at the nth iteration of the EM algorithm αn
j (t) represents the joint probability

of observing the current sequence of detector outputs up to time t and the j th state in
s ∈ {

I, P1, . . . , PNf
, E1, . . . , ENf

}
at time t, given the estimate in the previous (n − 1)th

iteration for the parameters in Θ. We refer to αn
j (t) as a forward joint probability. Similarly,

βn
i (t) is the backward joint probability of all of the future observed detector outputs and the

current state.
At the nth iteration, these parameters are initialized as

αn
j (0) = πn

j ψj (D(0)) (4)

βn
i (T − 1) = 1. (5)

We then use the Baum–Welch algorithm to recursively compute the values of αn
j (t) and βn

i (t)

according to the following expressions:

αn
j (t + 1) = ψj(D(t + 1))

Ns∑
i=1

αn
i (t)p

n
ij t = 0, . . . , T − 2 (6)
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βn
i (t) =

Ns∑
j=1

βn
j (t + 1)pn

ijψj (D(t + 1)) t = T − 2, . . . , 0. (7)

Using the backward and forward probabilities the following additional probabilities are
introduced:

• ξn
ij (t) = Prob(i = S(t), j = S(t + 1)|D,Θn−1),

• γ n
i (t) = Prob(i = S(t)|D,Θn−1),

which at the nth iteration are computed using the forward and backward probabilities as

ξn
ij (t) = αn

i (t)p
n
ijψj (D(t + 1))βn

j (t + 1)∑Ns

i=1

∑Ns

j=1 αn
i (t)p

n
ijψj (D(t + 1))βn

j (t + 1)
(8)

and

γ n
i (t) = αn

i (t)β
n
i (t)∑Ns

i=1 αn
i (t)β

n
i (t)

. (9)

Parameter updates are then computed according to the following pair of equations:

πn+1
i = γ n

i (1) (10)

pn+1
ij =

∑T −2
t=0 ξn

ij (t)∑T −1
t=0 γ n

i (t)
. (11)

The recursion is therefore defined by equations (4)–(11). The probability transition matrix
at the nth iteration is formed from the individual probabilities, Pn ≡ [

pn
ij

]
. We terminate the

recursion according to the following criterion:

‖Pn − Pn−1‖F < εN2
s (12)

where ‖‖F denotes the Frobenius norm of the matrix and ε is a small number. Our final
estimates are the probability transition matrix P̂ = Pn and the initial-state probability vector
π̂(0) = πn.

3.2. Theoretical bounds

We now calculate the variance of the estimates of the transition probability matrix P. The
classical way to derive the lower bound for the variance of an unbiased estimate of a parameter
would be to derive the Cramer–Rao lower bound based on the log-likelihood function. The
parameters in the rows of the state transition matrix must sum to unity so that they cannot
be treated as independent variables. This makes direct calculation of the Cramer–Rao bound
rather difficult. An alternative expression for the lower bound can be derived by first finding
a minimum variance unbiased (MVU) estimator for the p(j |i)’s and then computing their
variance (Kay 1993). Here, we will continue the previous section’s indexing scheme for states
s ∈ {

I, P1, . . . , PNf
, E1, . . . , ENf

}
. A MVU estimator for the elements of the transition

probability matrix exists and is obtained by simply counting the transition events from state i
to state j and computing the ratio to the total number of times the system was in state i, i.e.

p̂(j |i) = N(j |i)
N(i)

, (13)

where N(i) is the number of events observed in the ith state and N(j |i) is the number of
transitions observed from the ith state to the j th state. In appendix A.1, using the notion of
sufficient statistics we prove that the estimator (13) is minimum variance and unbiased.
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Figure 3. Comparison of variances of estimates of p(E1|P2). The Monte Carlo simulation estimate
of the Markov chain (◦) using the ratio estimator confirms the theoretical bound (solid line) on the
variance for the non-hidden Markov model, i.e. when the states can be observed directly. The plot
also shows the bias of this estimate (�). Also shown are the variance (∗) and the bias (�) of the
EM estimate for the hidden Markov model.

The minimum variance estimator (13) achieves the lower bound on the variance of the
estimate. In appendix A.2, we show that the variance of the estimator p̂(j |i) = N(j |i)/N(i)

can be computed as

var

{
N(j |i)
N(i)

}
= p(j |i)(1 − p(j |i))

(
1

T ηi

+
1 − ηi

T 2η2
i

)
+ o

(
1

ηiT 3

)
, (14)

where T is the length of the data set and η is the steady-state probability vector.
To compare the standard deviation of the transition probability estimate p̂(E1|P2)EM

obtained by the EM algorithm in the hidden case with the theoretical lower bound (14), we
performed a set of Monte Carlo (MC) simulations. We generated sequences using the Markov
chain structure shown in figure 1 with state emission probability mass functions specified in
table 2. We performed simulations for different values of the transition probability p(E1|P2)

in the interval [0, 0.85] and for the data set length T = 5000. The results of these simulations
are shown in figure 3.

In order to verify the accuracy of the bound in (14), we also show the standard deviation
of the ‘ratio’ estimate p̂(E1|P2)RAT = N(E1|P2)/N(P2) computed from the Monte Carlo
simulated data. This estimate requires that we know the state of the model at each point
in time, which in practice we do not since the propagation and idle states produce identical
observations. The bound coincides well with the standard deviation of the Monte Carlo ratio
estimate. In the same figure, we also plot the biases of the estimates of p(E1|P2) for the ratio
estimate in the non-hidden case and the EM estimate for the hidden case.

The Monte Carlo simulations show that the standard deviation of the estimate p̂(E1|P2)EM

is at most 1.4 times larger than the smallest possible standard deviation delivered by the
p̂(E1|P2)RAT = N(E1|P2)/N(P2) estimator. Also, in reality we expect the propagation time
to be greater than 20 ms resulting in transition probability values less than 0.2 for the sample
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Figure 4. Effects of imperfect detection (PD) on the mean (a) and the standard deviation (b) of
the transition probability estimate, if we instead assume perfect detection. (c) and (d) show that
incorporating the imperfect detector characteristics ψs(d) into the observation model allows us to
obtain approximately unbiased estimates of the transition probability matrix (c), and the standard
deviation (d) shows only a moderate increase.

rate of 250 samples s−1. This allows us to conclude that the EM estimator can be successfully
used for transition probability estimation in the hidden framework.

3.3. Imperfect specificity–sensitivity

In real applications, the detectors Di , i = 1, . . . , Nf , are imperfect, and we have accounted
for realistic specificity–sensitivity characteristics using the probability mass function ψs(d)

shown in table 2. In this section, we explore the consequences of ignoring realistic detection
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Figure 4. (Continued.)

probabilities and simply assuming perfect detection. We show that if we assume perfect
detection, then the actual imperfect specificity–sensitivity characteristics of detectors will
result in increased variance and bias of the estimates.

We report the results of a Monte Carlo study using the HMM structure in figure 1 for both
the case of incorrectly assuming perfect detection and the case of correctly including imperfect
characteristics. In this two-focus simulation, we set the probability of propagation from the
first focus to the second focus to be identically 0, p(E2|P1) = 0 and vary the propagation in the
other direction from p(E1|P2) = 0 to p(E1|P2) = 0.6. For each probability of propagation,
we vary either the probability of detection (PD, or sensitivity) from 60% to perfect, or the
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Figure 5. (a) Effects of non-ideal specificity (non-zero false alarm rate (FAR)) on the mean (a)
and the standard deviation (b) of the transition probability estimate for different specificity values,
where FAR = 1 − specificity. (c) and (d) show the effect of including the actual specificity of the
detectors ψs(d) in the observation model on (c) bias and (d) standard deviation.

probability of false alarm (1 − specificity) from perfect (none) to 10%. Twenty Monte Carlo
trials were performed for each combination of parameters p(E1|P2), p(E2|P1), ν and µ.

We first examine the impact of imperfect detection (PD < 1). Figures 4(a) and (b)
shows the effects of assuming perfect detection in the presence of imperfect sensitivity of
the detectors. We can conclude that as detector sensitivity decreases, the mean of p(E1|P2)

decreases and the estimate acquires a multiplicative bias. The mean of the estimate of
p(E2|P1) remains correctly very close to 0 and is unaffected by the imperfect sensitivity of
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Figure 5. (Continued.)

the detector. As sensitivity decreases, the contrast between estimates of zero and non-zero
transition probability values still remains detectable even for very low (PD = 0.6) values of
detector sensitivity. The standard deviation of the estimate is unaffected by the non-ideal
sensitivity and remains constant for all positive values of the transition probability.

The effects of including the information on non-ideal sensitivity into the algorithm are
shown in figures 4(c) and (d). One can see that the multiplicative bias disappears and the mean
of the estimate p̂(E1|P2) is very close to the true value of p(E1|P2). The cost is a moderate
increase in the standard deviations of the estimate of p(E1|P2).
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Figure 6. Three statistically significant clusters of dipoles detected in the first data set: (a) cluster 1,
(b) cluster 2 and (c) cluster 3. The other three data sets produced comparable results. Also displayed
are overlays and the average spike shape for each cluster.

We next examine the impact of imperfect specificity, i.e. the ‘false alarm rate’ (FAR) is
non-zero. The specificity of ν corresponds to a FAR of 1 − ν and results in (1 − ν)(T − Ns)

false detections, where T is the data set duration (in samples) and Ns is the number of true
spikes. Thus, for Ns = 100 and a total data set duration of T = 4000 samples with a
specificity of ν = 0.9, we will have 0.1(4000 − 100) = 390 false detections. Figures 5(a)
and (b) show the effects of non-ideal specificity of the detectors on the mean and standard
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Figure 6. (Continued.)

deviation of the transition probability estimate. The mean of the estimate of a non-zero-valued
element p(E1|P2) acquires some multiplicative bias. The mean of the estimate of a zero-
valued element p(E2|P1) increases as the FAR grows. The tendency is that, for very high
FAR (several hundred false detections per minute!), the contrast between the estimates of
zero and non-zero transition probability values disappears and propagation detection becomes
impossible. Fortunately, a FAR of several hundred false detections per minute is unrealistically
high.

The results of taking into consideration non-ideal specificity ν of the detectors can be
analysed by comparing figures 5(a) and (b) with (c) and (d), where we now incorporate
the true specificity–sensitivity characteristics. One of the effects of accounting for the
detector specificity is that the contrast between the estimates of non-zero-valued p̂(E1|P2) and
zero-valued p̂(E2|P1) increases which allows for better detection. The undesired consequence
of taking into account the characteristics of the detector is that the standard deviation of the
estimate increases.

We therefore conclude that accounting for imperfect detection allows us to obtain
improved estimates of the transition probability matrix. As we have described in section 2.3,
the detector specificity and sensitivity can be incorporated into the model via modification of
the state emission probability functions according to equations (2) and (3). The inevitable
consequence of introducing this additional uncertainty into the model is the increase of standard
deviation of the estimate.

4. Application to real interictal MEG data

In a second paper under preparation, we more thoroughly investigate the application of this
method to several clinical data sets. Here, we present briefly four independently recorded
data sets from a single patient as an example. Operating on the principles described above,
we applied a prototype version of the propagation analysis software to MEG data obtained
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Figure 7. Propagation pattern represented using matrix Q100 ms for the four independently collected
data sets.

from one patient with multifocal partial epilepsy recorded using a 68-channel CTF MEG
machine. We applied our automatic spike detection technique (Ossadtchi et al 2004) followed
by propagation detection to four independently collected interictal MEG data sets from this
patient.

For each data set, three major clusters were found, as shown in figure 6. The first cluster
was located in the right temporal lobe, the second in the superior frontal lobe and the third
cluster was in the inferior mesial frontal lobe area. In order to assess the propagation of the
interictal activity, we applied our propagation detection method to each of the four data sets
using a three-focus model. The resulting HMM consisted of 7 states and 19 allowed transitions.
For brevity in this example, we did not perform analysis of the detection performance but rather
assumed nearly ideal specificity and sensitivity. To ensure convergence of the EM algorithm,
we assumed a specificity for all three detectors of ν = 0.999 and a sensitivity of µ = 0.999.

In figure 7, we show grey-scale-coded ρ = {ρij } matrices, computed from the estimated
transition probability matrix using (1) for τ0 = 4 ms and τ1 = 100 ms. The (i, j)th element
of the ρ-matrix corresponds to the probability of propagation from the ith focus to the j th
focus within the time window of 96 ms starting at 4 ms after the initial spike, as described in
section 2.3. The four propagation probability matrices computed from the four independent
data sets are shown in figure 7.
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All four matrices indicate a relatively high probability of propagation from cluster 1 (right
lateral temporal lobe) to cluster 3 (right inferior frontal lobe). The propagation occurred
within a plausible time interval of 4 ms and 96 ms following the initial spike cluster 1. The
last two data sets, in addition to propagation from the temporal lobe to the frontal lobe, also
show a significant amount of propagation activity from the frontal lobe back to the temporal
lobe and from the fontal lobe to the superior mesial frontal lobe; however, the intensity of this
propagation is less than that from the temporal to the fontal lobe. A subsequent surgery in
which this portion of the temporal lobe (as well as a portion of the frontal lobe) was removed
has left the patient seizure free for already more than 48 months.

5. Discussion and conclusions

We have described a procedure for the detection of propagation between several brain
regions during interictal activity. Our method employs the HMM framework for modelling the
outputs of the spike detectors tuned to each of several brain regions. We have shown how the
parameters of the HMM transition probability matrix can be translated into the physiological
properties of propagation activity. The identification of the HMM transition probability matrix
has been performed using a constrained version of the classical Baum–Welch EM algorithm.
We have also studied the potential accuracy of the estimates by deriving an analytical expression
for the lower bound on the variance of the transition probability estimates.

The HMM paradigm allows us to model the observation process by including the
specificity–sensitivity characteristics of the detectors used for identification of spike events
in the selected regions. We have performed Monte Carlo simulations in order to investigate
the effects of non-ideal detector characteristics and the amount of improvement that can be
achieved by including the detector properties in the model. The simulations demonstrate the
robustness of the method to the non-ideal specificity and sensitivity characteristics. This is
particularly important since our ultimate goal is to apply these methods to clinically obtained
non-invasive MEG data, and use the resulting analysis as a diagnostic aid.

Our work has employed classical HMMs. One potential problem with the classical
HMM is that the distribution of the time spent in a state is geometric. This contradicts the
intuitively expected unimodal (e.g., χ2) distribution of propagation state duration centred at
a characteristic delay. This problem can be overcome by the use of variable state duration
HM models (Levinson 1986). However, it can be shown that for a fixed training data set
the off-diagonal elements of the classical HMM transition probability matrix will have the
same values as for the variable state duration HMM fitted to the same data. In addition,
the fitting process for the variable state duration HMM is significantly less stable then
fitting the classical HMM. The ultimate goal of propagation analysis is to identify the
primary focus that triggers abnormal activity in other regions, and our simulation studies
are consistent with the conclusion that classical HMMs are sufficient for this purpose. With
simulated data, we have demonstrated that analysis of the transition probability matrix of the
classical HMM allows for a robust determination of the primary focus, even as sensitivity
deteriorates.

By combining the HMM methods described in this paper with the automatic spike
identification and clustering methods described in Ossadtchi et al (2004), we have laid the
algorithmic foundation for a method that can be used automatically to scan large data sets
and classify brain regions to identify candidate epileptogenic zones from extracranial data.
Complex spikes or trains of spikes may be decomposed into their individual components,
and the resulting analysis may yield a decomposition and temporal ordering not apparent
from visual inspection of the data alone. The approach also allows us to include explicitly
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the uncertainties associated with non-ideal detector sensitivity and specificity. The resulting
analysis is suitable for non-parametric statistical significance testing.

In a preliminary study (Ossadtchi et al 2003), and in the brief example here, we
have applied these methods to four independent interictal data sets collected from a patient
with multifocal epilepsy. Three epileptogenic regions were automatically detected and the
propagation detection technique described here was applied. In all four data sets, propagation
from the temporal lobe to the frontal lobe was detected reliably and was clearly dominant. A
more detailed evaluation of the HMM in application to clinical data, including permutation
tests to determine statistical significance, will be presented in a companion paper.
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Appendix. Theoretical estimator and variance of the State transition
probability matrix estimate

For compact expressions, we replace the bracketed indices for the HMM parameters with the
subscripts that index elements in the set s ∈ {I, P1, . . . , PNf

, E1, . . . , ENf
}. As an example,

elements of the transition probability matrix p(s = j |s = i) will be denoted as pij .

A.1. MVU estimator in the non-hidden case

We determine the MVU estimator based on the notion of sufficient statistics. The parameters
to be estimated are the elements pij of the Ns × Ns transition probability matrix P.

We first group the unknown parameters into Ns vectors pi = [
pi1, . . . , piNs

]
, i =

1, . . . Ns . Then, for the kth vector pk the vector T of complete sufficient statistics can be
found based on the Neyman–Fisher factorization theorem as follows:

p(Z; P;π) = exp
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= g(χk, pk) × h(Z). (A.1)

According to the Neyman–Fisher factorization theorem, χk with elements

χkj =
T −2∑
t=0

zk
t z

j
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is a sufficient statistic for estimating the kth vector of transition probabilities pk . The following
transformation turns sufficient statistics vector χk into an unbiased estimator of the vector pk:

p̂k = χk

1T χk

, (A.2)

where 1 is a Ns × 1 vector of ones.
Inspection of equation (A.2) and binary nature of the indicator vectors allow to conclude

that

p̂kj = Nkj

Nk

, (A.3)

which is in agreement with (13), where Nkj ≡ N(j |k), i.e. the number of transitions from
focus k to focus j . To check that equation (13) is indeed an unbiased estimator, we first
specify the expression for the joint PDF p(Nij , Ni) in terms of quantities Nij and Ni . It can
be obtained as a product of the conditional PDF p(Nij |Ni) and marginal PDF p(Ni), i.e.

p(Nij , Ni) = p(Nij |Ni)p(Ni),

p(Nij |Ni) =
(

Ni

Nij

)
p

Nij

ij (1 − pij )
Ni−Nij , (A.4)

p(Ni) =
(

T

Ni

)
π

Ni

i (1 − πi)
T −Ni .

Then we compute the expectation of the Nij/Ni ratio as

E{p̂ij } = E

{
Nij

Ni

}
=

T∑
Ni=1

1

Ni

p(Ni)

Ni∑
Nij =1

Nijp(Nij |Ni) (A.5)

= pij

T∑
Ni=1

p(Ni) = pij , (A.6)

and conclude that the estimator (13) is indeed unbiased.
The PDF (A.1) belongs to the family of vector exponential PDFs as it can be written as

f (Z, pk) = h(Z)C(pi )exp

(
Ns∑
i=1

log pkiχki

)
(A.7)

meaning that the sufficient statistics χk is complete (Kendall and Stuart 1979). The
completeness of the sufficient statistics ensures that the estimator (A.2) is the minimum
variance estimator.

A.2. Variance of the MVU estimator in the non-hidden case

The variance of the transition probability estimator p̂ij = Nij/Ni can be computed as the
following difference:

var

{
Nij

Ni

}
= E

{
N2

ij

N2
i

}
− E2

{
Nij

Ni

}
. (A.8)

var

{
Nij

Ni

}
=

T∑
Ni=1

1

N2
i

p(Ni)

Ni∑
Nij =1

N2
ijp(Nij |Ni) −

T∑
Ni=1

1

Ni

p(Ni)

Ni∑
Nij =1

Nijp(Nij |Ni)

= pij (1 − pij )

T∑
Ni=1

1

Ni

(
T

Ni

)
ηNi (1 − ηi)

T −Ni . (A.9)
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In order to obtain a useful approximation we expand 1/Ni around its mean value of
E{Ni} = T ηi . Then we compute expectation for each term in the expansion and get the
following:

var

{
Nij

Ni

}
= pij (1 − pij )

(
1

T ηi

+
1 − ηi

T 2η2
i

− (1 − ηi)(1 − 2ηi)

T 3η3
i

· · ·
)

. (A.10)

As T is usually large, on the order of 105, keeping only the first two members of the expansion
delivers reasonable accuracy. Thus, we conclude that

var

{
Nij

Ni

}
= pij (1 − pij )

(
1

T ηi

+
1 − ηi

T 2η2
i

)
+ o

(
1

ηiT 3

)
. (A.11)
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