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Abstract. The spherical head model has been used in magnetoencephalography (MEG) as a
simple forward model for calculating the external magnetic fields resulting from neural activity.
For more realistic head shapes, the boundary element method (BEM) or similar numerical methods
are used, but at greatly increased computational cost. We introduce a sensor-weighted overlapping-
sphere (OS) head model for rapid calculation of more realistic head shapes. The volume currents
associated with primary neural activity are used to fit spherical head models for each individual
MEG sensor such that the head is more realistically modelled as a set of overlapping spheres,
rather than a single sphere. To assist in the evaluation of this OS model with BEM and other head
models, we also introduce a novel comparison technique that is based on a generalized eigenvalue
decomposition and accounts for the presence of noise in the MEG data. With this technique we can
examine the worst possible errors for thousands of dipole locations in a realistic brain volume. We
test the traditional single-sphere model, three-shell and single-shell BEM, and the new OS model.
The results show that the OS model has accuracy similar to the BEM but is orders of magnitude
faster to compute.

1. Introduction

For decades the spherical head model has been used in electroencephalography (EEG) and
magnetoencephalography (MEG) as a simple forward model for calculating scalp potentials
and external magnetic fields. Compared with numerical techniques for more realistic head
shapes, the spherical model is extremely fast to compute. Although empirical evidence suggests
that the spherical model is adequate for a number of applications, numerous researchers have
studied more realistic alternative models (Meijset al 1987, Ḧamäläinen and Sarvas 1989,
Cuffin 1990, Fergusonet al 1994). Typically these models approximate the head as a set of
homogeneous layers, each layer separated by boundaries readily extracted from anatomical
magnetic resonance (MR) or x-ray computed tomography (CT) images. These surfaces are
used in a boundary element method (BEM) to solve the ‘forward problem’, i.e. to calculate the
external magnetic fields for known sources. Typical layers used in such an analysis are the scalp,
outer skull surface and inner skull surface. However, the use of BEM methods is limited by their
lengthy computation time, as well as huge computer memory requirements for matrix inversion,
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and the additional complexities of obtaining, storing and extracting the requisite surfaces
from anatomical images. Here we introduce the sensor-weighted overlapping-sphere (OS)
head model which fits the return currents of a realistic head model with multiple overlapping
spheres on a sensor-by-sensor basis. The computational cost of the OS head model is almost
the same as that of the single-sphere model. The theoretical foundations of this OS head model
are laid out below and its performance compared with those of the single-sphere and BEM
models.

A novel error performance measure is also presented to perform an exhaustive head model
comparison for MEG. Typically, two MEG head models are compared using a small number
of dipole locations and preassigned orientations (Hämäläinen and Sarvas 1989, Schlittet al
1994). Although useful, these comparisons provide information about the model performance
in a limited region of the head and only for the preassigned orientations. In this study we
introduce a technique based on the generalized eigenvalue decomposition to test thousands of
dipole locations efficiently. For each dipole location, the generalized eigenvalue decomposition
identifies the dipole orientation in which the two models under comparison differ the most.
Simultaneously, the decomposition also identifies the orientation for the minimum difference.
This provides a nearly exhaustive comparison so that a complete picture of the relative
performance of the head models is obtained.

A widely used metric for the difference between two head models has been the percentage
error, also referred to as the relative difference measure and related terms. However, this
measure does not address the problem of field values that are too small to be of concern
given the anticipated noise power in the measurements. For instance, a very deep source
produces a weak external magnetic field so that a small field difference between two head
models can yield a very large percentage error. An inverse procedure would not detect this
model difference since these weak sensor measurements will be dominated by noise. We
therefore ‘regularize’ the percentage error function to reduce its sensitivity to immeasurable
differences and allow a more useful comparison of head models. When combined with the
generalized eigenvalue decomposition, this regularized percentage error (RPE) identifies dipole
locations and orientations for which the error is substantial compared with expected noise
levels.

2. Methods

2.1. Quasistatic electromagnetic surface integrals

A standard approximate model for the head is a set of connected volumes, typically representing
the scalp, skull and brain. If the conductivities within each of these regions are isotropic
and constant, the electric potentials can be expressed as surface integrals. We assume the
head is modelled by a piecewise homogeneous volume conductorG. We denote the surfaces
between compartments with different conductivity asS1, S2, . . . , Sm. Under the quasistatic
approximation, the electric potentialV (r) on thej th surface can be expressed by the Fredholm
integral of the second kind (Geselowitz 1970):

V (r) = 2σm
σ−i + σ +

i

V∞(r)− 1

2π

m∑
i=1

σ−i − σ +
i

σ−i + σ +
i

∫
Si

V (r′)n(r′) ·
r − r′
‖r − r′‖3 ds ′i r ∈ Si (1)

whereV∞(r) is the electric potential in an infinite homogeneous medium

V∞(r) = 1

4πσm

∫
G

jp(r′) ·
r − r′
‖r − r′‖3 dv′ (2)
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σ−i andσ +
i are the conductivities inside and outside thej th surface,n(r′) ds ′i is a vector element

of surfaceSi oriented along the outward unit norm ofSi , andjp(r′) is the primary current.
Once the potentialV (r) is obtained on all surfaces, the magnetic field can be computed as
(Geselowitz 1967, 1970)

B(r) = B∞(r)− µ0

4π

m∑
i=1

(σ−i − σ +
i )

∫
Si

V (r′)n(r′)× r − r′
‖r − r′‖3 ds ′i (3)

where the corresponding magnetic field in an infinite homogeneous medium is

B∞(r) = µ0

4π

∫
G

jp(r′)× r − r′
‖r − r′‖3 dv′. (4)

B∞(r) is only related to the primary current and is therefore independent of the head geometry.
The second terms on the right-hand side of (1) and (3) represent the return currents which arise
from the ‘fictitious’ or ‘secondary’ current distributionjf (r′) = −(σ−i − σ +

i )V (r
′)n(r′) =

jf (r′)n(r′) on each surface.
For general surface shapes, analytical solutions to (1) and (3) are not possible, and

numerical solutions such as the boundary element method (BEM) have to be pursued. Using
anatomical MR or x-ray CT images, the surfaces are identified, tessellated with small-area
elements, and conductivities assigned to each volume. In this study the ratio of conductivities
of scalp:skull:brain was chosen to be 100:1:100. We refer to this model as a three-shell BEM
model and consider it to be the standard against which we compare other models.

As reviewed in Mosheret al (1999), several methods have been proposed to solve the
boundary element equations. In this study the ‘linear collocation’ method (Schlittet al 1994)
was adopted for solving for the electric potentials, then the formula of Fergusonet al(1994) was
used for calculating the integral in equation (3) to obtain the magnetic fields. Calculating the
three-shell BEM model can be computationally intensive. Noting that the total surface integral
in (3) results mainly from the contribution of the inner skull surface (due to the relatively low
skull conductivity), Ḧamäläinen and Sarvas (1989) suggest a single-shell BEM comprising
just the innermost surface. They present a comparison with the three-shell BEM for about
20–30 dipole locations and preassigned orientations. In section 3 we extend this comparison
to thousands of dipole locations and test for the worst possible error over all possible dipole
orientations.

If the conducting body comprises concentric spheres, Sarvas (1987) has shown that (3)
can be expressed in closed form for a current dipole source inside the sphere. Traditionally,
as an approximation to the real head, a single sphere which best fits the entire head is widely
used in MEG forward calculations. This model is approximately three orders of magnitude
faster to compute than the BEM models. In addition, unlike the BEM, no conductivity profile
is explicitly required in the calculation using the spherical head model. However, although it
has been widely applied, this single sphere head model has been criticized as inadequate for
some regions, for example frontal and frontal-temporal areas (Hämäläinen and Sarvas 1989).
The OS model described below attempts to retain the computational efficiency of the spherical
model while achieving accuracy close to that of the BEM.

2.2. Interpolating the BEM with overlapping spheres

The forward problem must often be solved for thousands of possible source configurations
when solving the inverse problem. Evaluating the BEM forward model can be computationally
infeasible in inverse algorithms that adjust multiple dipole locations in order to minimize a
cost function. One approach to avoiding BEM calculations during the inverse fitting is to
preselect a grid of dipole locations and calculate the forward model only at those locations
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(Huanget al 1998). The forward field for an arbitrary point within the head is then found by
interpolating the forward model from nearby grid points.

The forward problem for the sphere is markedly simpler than the BEM, and a natural
extension of the single-sphere model is to use multiple spheres. One can imagine that
the best fitting sphere for the occipital region of the brain will be different from the best
fitting sphere for the frontal region, as suggested for instance in the figure of Ilmoniemi
et al (1985) showing two such locally fitted spheres. Here, rather than find a single locally
best fitting sphere for all sensors based on the head geometry, we instead fit the spherical
model on a sensor-by-sensor basis using a set of grid points within the brain. The centre
of the sphere for each sensor is chosen to minimize the error with respect to the field
calculated using the three-shell BEM over the entire set of grid points. The forward model
for an arbitrary dipole point is then solved using the simpler sphere solution assigned to that
sensor.

The procedure is the following: (i) for a single MEG sensor, we first calculate the lead field
over thousands of dipole locations using the three-shell BEM model; (ii) make an initial guess
of the best fitting sphere centre (for example the best fitting sphere centre for the entire head),
and calculate the lead field using the Sarvas formula over the same set of dipole locations;
(iii) calculate the cross-correlation between these above two lead fields; (iv) adjust the centre
of the sphere and repeat (ii) and (iii) until the highest cross-correlation is achieved. The result is
a best-fitting sphere for each sensor, yielding a set of overlapping spheres spanning the realistic
head shape as schematically represented in figure 1. This OS model can be effectively used as
the interpolating function for the forward solution generated over the grid of points using the
BEM. The principal drawback of this approach is the need to calculate the BEM solution first
in order to obtain the overlapping spheres.

Figure 1. A schematic plot of the sensor-weighted overlapping-sphere model. The arrow represents
the location and radial orientation of a dipole that was used in our case study.



Head model comparison for magnetoencephalography 427

2.3. Overlapping spheres without the BEM

To solve the forward problem without resorting to a BEM, one can fit a sphere to the local
curvature of the skull in the vicinity of the sensor. Although this approach is quite intuitive,
the difficulty lies in rigorously deciding how much of the skull is ‘local’ to a sensor. At one
extreme, we can define a tiny area on the head just under the MEG sensor to be local. At
the other, we can treat the entire skull as local, which reduces to the traditional single-sphere
model.

We propose a method to obtain the overlapping spheres by fitting the return current
contribution term in (3) using a spherical model. For a given MEG sensor at locationr

with orientationo, we require
m∑
i=1

∫
Sre
i

[(
o(r) · nre(r′)× r − r′re

‖r − r′re‖3
)
jfre(r

′) ds ′i

−
∫
S

sp
i

(
o(r) · nsp(r′)× r − r′sp

‖r − r′sp‖3
)
jfsp(r

′) ds ′i

]
' 0 (5)

where the superscripts ‘re’ and ‘sp’ stand for the realistic head and its spherical approximation
respectively. In other words, we seek a spherical model whose secondary currents are
effectively identical to those of the true surface model. We approach this solution by making
some simplifying assumptions.

The conductivity of the human skull is about two orders of magnitude less than the
conductivities of the other compartments (for example scalp and brain), and the dominant return
current contributions will come from the innermost skull. Therefore, a good approximation
is to assume the skull is totally insulated (Hämäläinen and Sarvas 1989). Using this ‘isolated
skull approach’, we can evaluate the integral on the innermost skull surface only, thus reducing
the complexity of the calculation in (5). The historical utility of the spherical model indicates
that the true potentials are not dramatically different from the spherical potentials, and we
therefore do not expect major differences betweenj

f
re andjfsp. With these approximations in

mind, we can rewrite equation (5) as∫
Sre

innerskull

(
o(r) · nre(r′)× r − r′re

‖r − r′re‖3
− o(r) · nsp(r′)× r − r′sp

‖r − r′sp‖3
)
jfre(r

′) ds ′ ' 0. (6)

To solve this numerically we use a dense surface mesh containingN points to represent
the realistic innermost skull surface, and the same number of points for the fitting sphere. The
least-squares fitting problem is simply to minimize the cost function:

N∑
i=1

∥∥∥∥o · nre(i)× r − r′re(i)
‖r − r′re(i)‖3

− o · nsp(i)× r − r′sp(i)

‖r − r′sp(i)‖3
∥∥∥∥2

(7)

wherer′re(i) andnre(i) are, respectively, the locations and normal orientations of the mesh
points on the innermost skull surface;r′sp(i) andnsp(i) are the corresponding parameters of
the mesh points on the approximating sphere. For a given centre and radius of the sphere,
r′sp(i) is obtained by radially mappingr′re(i) to the surface of the sphere. If we designate
C0 to represent the centre of the fitting sphere andR0 the sphere’s radius, we can substitute
expressions for the spherical parameters in terms of the true surface parameters as

nsp(i) = (r′re(i)−C0)/‖r′re(i)−C0‖ (8)

and

r′sp(i) = R0[(r′re(i)−C0)/‖r′re(i)−C0‖] + C0. (9)
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Therefore, (7) can be rewritten as

N∑
i=1

∥∥∥∥o · nre(i)× r − r′re(i)
‖r − r′re(i)‖3

− o · r
′
re(i)−C0

‖r′re(i)−C0‖

× r −C0

‖r − R0((r′re(i)−C0)/‖r′re(i)−C0‖)−C0‖3
∥∥∥∥2

. (10)

To actually calculate the best fitting sphere for each MEG sensor, we first chose an initial
guess of the sphere centre and radius. We then minimize (10) by iteratively adjusting the
parameters using the simplex method of Nelder and Mead (1965). The procedure is repeated
for each MEG sensor yielding a set of overlapping spheres. Equation (10) is designed for
magnetometer sensors. For axial and planar gradiometers that contain multiple coils, one can
replace each of the mixed-product terms in (10) with corresponding multiple terms associated
with the multiple pick-up coils.

2.4. Regularized percentage error

In order to evaluate the adequacy of the OS and other head models in solving the forward
problem, we introduce an error measurement function designed to highlight application of
these models to the inverse problem. This function addresses two problems we encounter in
comparing head models: (1) random noise contaminating the measurements and (2) arbitrary
dipole orientations.

We begin with a simple vector example, then progress into the design of the array transfer
matrix representing our head model. We assume that the exact head model approach has
generated a ‘gain matrix’A for a given MEG sensor array and dipole location. An approximate
head model generates a similar gain matrixB for the same sensor and dipole configurations.
For a particular dipole momentq, the forward field observed atM sensors isa = Aq or
b = Bq. Ordinarily we might define the percentage error as

‖a− b‖22/‖a‖22 × 100% (11)

where‖ · ‖22 denotes the square of thel2 norm of the vector.
This error function (11) and its variations have been widely used by other MEG and EEG

researchers in evaluating head models (Meijset al 1987, Ḧamäläinen and Sarvas 1989, Cuffin
1990, Schlittet al 1995). In each of these instances, the error was scaled by the field value
in order to achieve a figure of merit. A problem arises when the field values are too small to
be of concern. For example, a radial dipole inside a perfect sphere has zero external magnetic
field, and in a realistic head shape the external field can be expected to be quite small. In these
instances, the error measures above will yield widely varying figures of merit for different
forward models, yet in the inverse problem these small field differences will almost surely be
dominated by noise at the sensors.

In this study we modify the existing error function (11) to account for an anticipated noise
variance. Suppose that the true measurementa is corrupted by a random noise vectorn so
that the expected squared norm of the noisy measurement is‖a‖22 +Mσ 2, i.e.n comprisesM
i.i.d. elements of zero mean andσ 2 variance. In this case, a more appropriate measure of the
normalized error in the data between the true and approximate forward models should include
the noise power as part of the normalization, i.e. we define theregularized percentage error
(RPE) due to the model mismatch as

‖a− b‖22
‖a‖22 +Mσ 2

× 100%= ‖a− b‖22
‖a‖22[1 +M(σ 2/‖a‖22)]

× 100%. (12)
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In other words, by normalizing the error by the expected squared norm of the noisy model,
the percentage error is less sensitive to small errors for sources that produce small signal
power.

The difference between PE and RPE can be found in figure 2, for a typical noise level
for averaged MEG data of 10 fT, for one MEG sensor, i.e.M = 1. The full curves are the

RPEs as functions of the field strength,
√
‖a‖22. The broken curves are the traditional PE

plots. Different levels of errors due to head modelling are plotted. For high field strength,
the two sets of curves merge. This is the situation when the first term in the denominator of
(12) dominates and the second term is negligible. In this case, (12) is essentially the same
as (11). However, for small field strength, significant differences are observed. For example,
if the head modelling error is 1 fT, the PE reaches 100% error for a field strength of 1 fT, but
the RPE is only about 1% in the same situation. Such a significant difference results from
the regularized term that we added in (12). Including the anticipated noise level allows us to
properly handle circumstances in which the external fields are very weak.

Figure 2. Regularized percentage error versus field strength for a 10 fT noise level and for one
MEG sensor. The full curves are the regularized percentage errors as functions of magnetic field
strength. Five different model error levels are plotted. The corresponding broken curves are the
traditional percentage error. The thick horizontal line represents the 5% error line.

We would also like to relax the requirement of specifying the dipole moment, instead
maximizing or minimizing the error over all possible dipole orientations. In this case we
retain the dipole momentq in the expression for the percentage error:

‖(A − B)q‖22
‖Aq‖22

× 100%. (13)

To evaluate (13) we need to specify the dipole momentq. Rather than evaluate this function
for a particular orientation we can instead find the orientation, at a particular dipole location,
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for which this error is maximum, i.e.

max
q

qT (A − B)T (A − B)q

qT AT Aq
. (14)

The solution to this is well known and found as the maximum of the eigenvaluesλ of the
generalized eigenvalue problem (Golub and Van Loan 1984):

(A − B)T (A − B)q = λAT Aq (15)

whereq is the corresponding generalized eigenvector. The maximum generalized eigenvalue
(times 100%) is the maximum percentage error when the moment is oriented in the
direction of the corresponding eigenvector. Correspondingly, the minimum eigenvalue is
equivalent to the minimum percentage error when the dipole is oriented in the direction
of its corresponding eigenvector. All other dipole orientations are bounded by these two
values.

Problems with this measure will arise, however, when the model matrixA has a null space
or a weak component. In these instances, particular orientations ofq will yield measurement
vectorsa with a very small norm, or indeed zero norm. A classic example, as we mentioned
before, is a radially oriented dipole inside a set of concentric spheres, which generates no
external magnetic field. In more realistic head shapes, similarly oriented dipoles yield only
weak external fields. In the inverse problem, these weak fields will be dominated by noise,
and our error measure should reflect this reality. Analogous to the above vector discussion,
we define the RPE as

qT (A − B)T (A − B)q

qT AT Aq +Mσ 2
× 100% (16)

and find the orientation which gives the maximum RPE as

max
q

qT (A − B)T (A − B)q

qT AT Aq +Mσ 2
. (17)

Let q denote the norm ofq and note thatqT [AT A + (Mσ 2/q2)I]q = qT AT Aq +Mσ 2. We can
then rewrite (17) as

max
q

qT (A − B)T (A − B)q

qT [AT A + (Mσ 2/q2)I]q
(18)

where we define the quantityq2/σ 2 to be the signal-to-noise ratio (SNR). Again the solution
is found as the maximum eigenvalue of the generalized eigenvalue problem:

(A − B)T (A − B)q = λ[AT A + (Mσ 2/q2)I]q. (19)

Thisconstrained maximized regularized percentage errorassumes that the dipole moment
q is exactly the same in both models. However, in practice we often find the numerical
models introduce small errors that effectively alter the dipole magnitude or orientation. This is
particularly true in MEG for radially oriented dipoles since the forward calculations involve a
cancelling operation between the contributions from the primary current and the contributions
from the volume currents. In the EEG case, minor differences in the conductivity values
or ratios can also lead to relatively inconsequential differences in dipole magnitude, yet
again distort the error measure. Differences in tessellation often cause numerical shifting
of the dipole orientation when the dipole is close to the inner skull surface (Schlittet al
1994).

We therefore can compare the true and approximate forward models,A and B, for a
particular dipole location, by allowing the moments for the two models to be different. For a
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given dipole momentq applied toA, we can find the dipole momentq̃, that when applied to
B produces the minimum squared error‖Aq − Bq̃‖2, asq̃ = B†Aq, whereB† is the pseudo-
inverse ofB. Substituting this least squares estimate of the optimal dipole momentq̃ into the
RPE expression gives

‖Aq − Bq̃‖22
qT AT Aq +Mσ 2

= ‖Aq − BB†Aq‖2
qT AT Aq +Mσ 2

= qT AT P⊥B Aq

qT [AT A + (Mσ 2/q2)I]q
(20)

whereP⊥B = (I − BB†). The maximum value of theunconstrained maximized regularized
percentage erroris then found as the maximum of (20), or equivalently the maximum
eigenvalue of the generalized eigenvalue problem:

AT P⊥B Aq = λ[AT A + (Mσ 2/q2)I]q (21)

where the moment is the corresponding eigenvector. It is this final form of theunconstrained
maximized regularized percentage errorthat we use to perform the exhaustive comparisons
below, i.e. we solve (21) at a large number of dipole locations for the maximum RPE and the
corresponding dipole orientation.

3. Results

3.1. Simulation set-up

The MEG sensor array that we used in the model comparison contains 127 simulated
magnetometers. The 127 sensors are radially oriented and uniformly distributed on an upper
hemisphere with 12 cm radius. A human subject’s MRI was used as our head volume. The

Figure 3. The simulated MEG sensor array and tessellated scalp surface. The 127 radial oriented
magnetometers are uniformly distributed on a 12 cm hemisphere. The scalp, outer skull and inner
skull surfaces (from an MRI) are each tessellated into 1280 triangles.
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Figure 4. The innermost skull surface of the subject (from MRI) were tessellated into 642 vertices
or 1280 triangles. This tessellated mesh was used in our BEM calculations. Also, the vertices (the
locations and orientations shown in this figure) were also used as collocation points when forming
our sensor-weighted overlapping-sphere model.

surface of the scalp, outer skull and inner skull were extracted from the MRI, and each surface
was tessellated into 1280 small triangles using MRIVIEW (Ranken and George 1993), a
software package developed in the Biophysics Group at the Los Alamos National Laboratory.
Figure 3 shows the 127 simulated MEG sensor with a triangular tessellated scalp surface.
The head coordinate system was determined in the following way: they-axis was chosen
to be the line that joins the right and left periauricular (PA) points, with the positivey-axis
pointing to the left PA. The origin of this coordinate system was chosen to be the intersection
of a line that passed through the nasion and perpendicular to they-axis. The positivex-axis
pointed from the origin to the nasion. Finally, the positivez-axis pointed out through the top
of the head, perpendicular to thex–y plane. The tessellated innermost skull surface with the
normal orientations of the vertices is shown in figure 4. The tessellated scalp and innermost
skull, along with the tessellated outermost skull (not plotted here), were used in our BEM
calculations. The locations and orientations of the vertices on the innermost skull were also
used to calculate our OS model. In addition, the entire brain volume was divided into a dipole
grid containing seven layers of dipoles at different depths for a total of 3294 dipole locations
throughout the head volume.

3.2. Dipole case study

Before presenting the RPE over the head volume, we first present a case study of a single
dipole, in order to highlight the utilities and differences between the various measures of
performance. We selected a dipole in the frontal region of the head (see figure 1), where the
single spherical model is often inaccurate. The standard model matrix was computed by the
BEM for the MEG array described above. The competing design matrix was computed by
the sensor-weighted OS method for the same MEG array. We first computed the percentage
error in the three orthogonal dipole directionsx, y, z, using (11), as listed in table 1. We then
computed the constrained unregularized percentage error using (15) to find the maximum and
minimum errors and the corresponding orientations, also listed in table 1.
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Table 1. Regularized percentage error.

Max RMS of Min RMS of
Technique error (%) field (fT) Orientation error (%) field (fT) Orientation

Cartesian PE 11.24 22.21 [1 0 0] 4.41 31.70 [0 1 0]
Constrained PE 51190.2 0.46 [0.73−0.14 0.67] 1.13 32.70 [0.73−0.01−0.69]
(infinite SNR)
Constrained RPE 9072.95 0.46 [0.73−0.14 0.67] 1.13 32.70 [0.73−0.01−0.69]
(SNR= 100)
Constrained RPE 110.18 0.58 [0.72−0.15 0.67] 1.03 32.69 [0.73−0.01−0.68]
(SNR= 1)
Unconstrained PE 79.46 0.47 [0.73−0.14 0.67] 0.78 7.78 [−0.55 0.11−0.83]
(infinite SNR)
Unconstrained RPE 14.61 0.53 [0.73−0.14 0.67] 0.76 7.42 [−0.56 0.11−0.82]
(SNR= 100)
Unconstrained RPE 3.41 31.09 [−0.04 0.99−0.09] 0.11 2.26 [0.68−0.12 0.72]
(SNR= 1)

Mislocalization (mm)
Bias study 4.7 mm
(noiseless) (BEM forward, OS inverse)
Monte Carlo 2.5 mm± 1.1 mm
(SNR= 1) (OS forward and inverse)
Monte Carlo 5.3 mm± 1.3 mm
(SNR= 1) (BEM forward, OS inverse)

We assumed an SNR of 1, analogous to a 10 nA m dipole moment in the presence of noise
with a 10 fT standard deviation, then recomputed the constrained regularized percentage errors
using (19). We also computed the unconstrained unregularized and regularized percentage
errors using (21), also listed in table 1. By simply orienting the dipole in the Cartesian
directions, we observe a maximum PE of 11% in thex-direction; however, by using the
generalized eigenvalue decomposition, we identify a direction in which the two models differ
by 51 000%. This dipole orientation corresponds to a nominally radial direction (see figure 1),
such that the root-mean-square (RMS) of the external field is quite small, only 0.46 fT for a
10 nA m dipole, as listed in the table. The OS model generates about an 10.6 fT (RMS) field
in this exact same orientation and intensity, leading to the large percentage difference. We
anticipate, however, that the noise at the sensors will be of 10fT standard deviation, which will
dominate sensor measurements, and this PE is unnecessarily magnified. At the same dipole
location, if we simply rotate the dipole to a nominally tangential orientation, we see the two
models have a PE of about 1%.

In the next row of the table, we regularized the percentage error to 10 fT noise variance,
where we now see the dominant error remains nominally in a radial direction. The maximum
percentage error is markedly reduced due to the regularizer; the regularizer has virtually no
effect on the minimum PE, which represents a substantially stronger signal. When we relax
the dipole moment constraint, however, we observe that the errors markedly drop in both
noiseless (SNR= ∞) and noisy (SNR= 1) cases. In the noisy case, the RMS magnetic
field strength is 31.09 fT in the worst direction (neary-orientation) calculated by the BEM
model, with a percentage error of 3.41%. Thus regularizing the unconstrained percentage error
helped identify a dipolar direction for which the error may be considered more substantial in
an inverse calculation.

To relate the RPE to dipole localization error, we computed an unconstrained regularized
percentage error for an SNR of 1 for this dipole location. We first generated the forward BEM
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Figure 5. The largest possible unconstrained RPE between single-shell BEM and three-shell BEM
assuming an SNR of 1. The analysis was done on a grid containing 3297 dipole locations distributed
on seven layers with different depths.

model using the direction identified as having the highest unconstrained RPE. We then used the
OS model in an inverse localization. Since no noise was added to the model, the mislocalization
gives an indication of the bias that the OS model would inject relative to the BEM model. The
mislocalization due to the model error is 4.7 mm, as listed in table 1. Our supposition is that
this bias is comparable to the variance that such a localization would encounter in an inverse
localization with noise. Using the dipole in this case study, we performed a 200 trial Monte
Carlo study, using 10 fT standard deviation noise. The RMS error in the case of the OS model
for both forward and inverse is 2.5 mm, versus an RMS error of 5.3 mm for the case of the
BEM on the forward and the OS model on the inverse. Although the model bias is somewhat
larger than the noise error, this bias was calculated at a location for one of the worst case error
differences between the two models; the increase is nonetheless relatively small and acceptable
in many inverse studies.

By unconstraining the dipole moment and regularizing the percentage error to account for
weak signals, we have identified a dominant dipole direction which yields a 3.4% RPE between
the two models. The bias study reveals that the mislocalization of this dipole is relatively small,
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Figure 6. The largest possible unconstrained RPE between the traditional single-sphere model and
three-shell BEM.

particularly when we take noise error into account. In the next section, we will examine the
model bias throughout the head volume, using the RPE as a guide.

3.3. Exhaustive MEG head model comparisons

We used the unconstrained maximized RPE as a measure to compare several competing head
models, including our proposed OS model. The three-shell BEM model was considered the
standard against which the other models are compared. We assumed a 10 nA m dipole in
the presence of 10 fT standard deviation noise for each MEG channel, for an SNR of 1. The
generalized eigenvalue decomposition was applied to obtain the worst possible error for each
of the 3294 dipole locations throughout the brain volume.

3.3.1. Single-shell BEM model versus three-shell BEM model.Figure 5 shows the maximum
unconstrained RPE for a single-shell BEM assuming the three-shell BEM is the correct model.
The figure is scaled such that black indicates an unconstrained RPE of 5% or greater. The
unconstrained RPE values are plotted for our dipole grid containing 3294 dipoles on seven
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Figure 7. Testing the possibility of matching the performance of three-shell BEM using the sensor-
weighted overlapping-sphere model. Again, the largest possible unconstrained RPE is plotted for
each dipole.

layers with different depths, and the errors are viewed from two different angles. As one can
see from the plot, the unconstrained RPE for almost all the dipole locations is quite small (less
than 0.5%). The largest differences observed are about 3% and located in the deep layers of the
frontal–temporal regions. The results, in general, agree with those obtained by Hämäläinen
and Sarvas (1989), confirming that the single-shell model is a very good approximation to the
three-shell model. We also noticed that the deep dipoles in our analysis show less error than
was shown by Ḧamäläinen and Sarvas (1989). This is presumably because we used the RPE
instead of the PE, such that the regularization term in (12) has an observable effect on sources
that generate weak magnetic fields.

3.3.2. Single-sphere model versus three-shell BEM model.The second comparison is
between the traditional single-sphere model and the three-shell BEM. The centre of the sphere is
chosen to provide the best least squares fit to the inner skull surface. The largest unconstrained
RPE for our seven-layered dipole grid is shown in figure 6. The frontal and frontal–temporal
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Figure 8. The largest possible unconstrained RPE between the sensor-weighted overlapping-sphere
model and the three-shell BEM.

regions show large RPE (>5%). For the occipital and parietal regions, the unconstrained RPE
is about 3% for superficial layers and greater for deeper layers. Small errors are observed for
the top of the brain and regions along the central sulcus. The results of this comparison have
confirmed that for some regions the single-sphere model is indeed overly simplistic.

3.3.3. Interpolated three-shell BEM using the OS model.As we described in section 2, the
overlapping spheres are obtained by adjusting their centres so that the discrete lead fields of
such a model best match those of the computed three-shell BEM model. Figure 7 shows the
maximum unconstrained RPE between these two models. One can see from the plot that for
most dipole locations the difference is quite small (less than 0.5%). If we compare this result
with the performance of the single-shell BEM (figure 5), we find that they are quite similar. The
only exception is for a small portion of the frontal lobe, where the overlapping sphere model
gives a somewhat larger error. On the other hand, the OS model outperforms the single-shell
BEM for some dipoles on the deeper layers (figure 5). Although the single-shell is faster to
compute than the three-shell, we see that the OS model is equivalent in RPE performance at
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dramatically lower computational cost. As we mentioned previously, this OS model can be
effectively used as the interpolating function for the forward solution generated over the grid
of points using BEM. However, this approach requires that we first calculate the BEM model
in order to search for the best fitting spheres.

3.3.4. Sensor-weighted OS model versus three-shell BEM model.In section 2 we described
the procedure for forming the sensor-weighted OS model without calculating the BEM; rather,
we used approximations to the surface integral to fit a sphere on a sensor-by-sensor basis.
Figure 8 illustrates the largest unconstrained RPEs for our sensor-weighted OS model relative
to the three-shell BEM model. Compared with figure 5 and figure 7, we see comparable RPEs
at most locations. Indeed, our case study of the previous section was conducted for one of
the larger RPEs of 3.4%. Compared with figure 6 (the single sphere), we see a dramatic
improvement in the RPE, yet at virtually no increased computational cost.

For each dipole location in the grid, we used the identified worst case dipole orientation
to generate the noiseless forward data for the BEM. We then performed a dipole inverse
procedure using the OS model, to record how much bias the OS model introduced relative to
the BEM location. In figure 9 we present the model bias for the upper layer of dipoles, as
well as RPE for the same locations. We observe that the bias is quite small throughout many
regions of the head, consistent with the RPE. For locations near the edge of the array (lower
regions of the plot), the bias increases somewhat, approaching 10 mm. In these regions we
have the confounding effects of less precision in the BEM (due to neck and facial regions)
and decreased sensor coverage, so we remark only that the BEM and OS models begin to

Figure 9. Model bias between the BEM and OS models, using the BEM as the forward model and
the OS as the inverse model in an otherwise noiseless inverse procedure. Dipole orientations used
were those identified by the RPE as yielding the worst error.
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differ in these regions. Throughout much of the upper head the two models are in quite good
agreement.

All the calculations presented in this paper were programmed using MATLAB and run on
an HP735 workstation with a clock frequency of 125 MHz. Fitting the sphere centres to the
MRI for the OS model took about 15 min of computation time. Calculating the OS model for
3294 dipoles and 127 sensor locations required only a few seconds.

4. Discussion

In this paper we have introduced the novel idea of a nearly exhaustive MEG head model
comparison using a generalized eigenvalue decomposition. We have applied this technique
to a variety of head models and observed that for a small portion of the frontal region, the
overlapping-sphere models gave slightly larger differences when compared with the three-
shell BEM model (see figure 7 and figure 8). We believe that this is because the head is highly
non-spherical in the vicinity of the eye sockets and nasal structures. Although we considered
the three-shell BEM to be our ‘gold standard’, differences between the true conductivities in
the head and those assumed in the BEM calculations may in fact introduce larger errors than
differences between the BEM and OS models (Leahyet al 1998).

It has been noted (Mosheret al 1999) that the assumptions made by the BEM can result
in significant error under some circumstances. For instance, since finite elements have finite
sizes, the forward calculation using the BEM for a source that is quite close to the mesh can
have a large error. To avoid this situation in this study, we have purposely designed our dipole
grid so that each of the 3294 dipoles was at least 6 mm away from inner skull triangular mesh.
However, in reality, the brain activities can sometimes be quite superficial. In order to handle
this case, one needs to use very fine meshes (at least in the area of the superficial sources).
These finer meshes will no doubt further increase the computational burden and require even
larger computer memory for the matrix inversion. On the other hand, the OS model that we
have introduced in this paper has no such limitations for superficial sources. Finally, although
the sensor-weighted overlapping-sphere head model that we presented in this paper is for MEG,
we note that the concept is readily extendable to EEG as well.

5. Conclusions

In this study we have presented a novel technique for MEG head model comparisons using
generalized eigenvalue decomposition. This technique automatically computed the smallest
and largest possible differences between two head models under comparison. In addition, the
traditional error measurement function using percentage error was modified to take into account
the anticipated noise level. We applied this method to examine the single-shell BEM model
and traditional single-sphere model. The result confirmed that the single-shell BEM model is
a very good approximation of the BEM model involving three shells. These results agree with
those of Ḧamäläinen and Sarvas (1989).

The result of the traditional single-sphere model showed that the single sphere is probably
too simplistic for some regions of the head. We demonstrated the use of a set of overlapping
spheres as a means of interpolating a BEM calculation, negating the need to calculate a full
BEM forward model for each iteration in an inverse algorithm. The results showed that this
sensor-dependent overlapping-sphere model can have similar accuracy to that of the BEM. We
then showed how these spheres could be obtained without the need to calculate the BEM. The
centres of the overlapping spheres are fit directly to the skull surface, using a local weighting
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function derived from the true surface integral equations. The results showed that this model
has similar accuracy to the BEMs for most regions of the brain at greatly reduced computational
cost and complexity.
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