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We describe the use of random field and permutation methods to

detect activation in cortically constrained maps of current density

computed from MEG data. The methods are applicable to any

inverse imaging method that maps event-related MEG to a coregis-

tered cortical surface. These approaches also extend directly to

images computed from event-related EEG data. We determine

statistical thresholds that control the familywise error rate (FWER)

across space or across both space and time. Both random field and

permutation methods use the distribution of the maximum statistic

under the null hypothesis to find FWER thresholds. The former

methods make assumptions on the distribution and smoothness of the

data and use approximate analytical solutions, the latter resample the

data and rely on empirical distributions. Both methods account for

spatial and temporal correlation in the cortical maps. Unlike previous

nonparametric work in neuroimaging, we address the problem of

nonuniform specificity that can arise without a Gaussianity assump-

tion. We compare and evaluate the methods on simulated data and

experimental data from a somatosensory-evoked response study. We

find that the random field methods are conservative with or without

smoothing, though with a 5 vertex FWHM smoothness, they are close

to exact. Our permutation methods demonstrated exact specificity in

simulation studies. In real data, the permutation method was not as

sensitive as the RF method, although this could be due to violations of

the random field theory assumptions.
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Introduction

Magnetoencephalography (MEG) is used to image electrical

activity in the brain. Clusters of thousands of synchronously

activated pyramidal cortical neurons are believed to be the main
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generators of MEG signals. In particular, the currents associated

with their large dendritic trunks, which are locally oriented in

parallel and perpendicular to the cortical surface, are the primary

source of the neuromagnetic fields outside the head (Hämäläinen

et al., 1993). Imaging approaches to the MEG inverse problem

exploit this concept by restricting the reconstruction to elemental

sources (dipoles) oriented normally to the cortical surface (Dale

and Serano, 1993). Consequently, a commonly used approach

extracts a tessellated representation of the cerebral cortex from a

coregistered MR image and solves the inverse problem for a

current dipole located at each vertex of the tessellated surface.

Since the position and orientation of the dipoles is fixed, image

reconstruction is a linear problem and can be solved using

standard techniques (Baillet et al., 2001; Hämäläinen et al., 1993;

Katila and Karp, 1983; Phillips et al., 1997). However, the

highly convoluted nature of the human cortex requires the use of

many thousands of dipoles for an accurate representation of the

cortical surface. The inverse problem becomes hugely under-

determined and the resulting current density maps (CDMs) are of

low resolution; interpretation is further confounded by the

presence of additive noise exhibiting a highly nonuniform spatial

correlation.

As with fMRI images, objective assessment of CDMs requires a

principled approach to identifying regions of activation. The

analysis of CDMs involves testing thousands of hypothesis (one

per surface element) for statistically significant experimental effects.

This raises the possibility of large numbers of false-positives simply

as a result of multiple hypothesis testing. To effectively control the

number of false-positives over all tests, we must therefore consider

the multiple hypothesis-testing problem. Many false-positive

measures have been proposed in this context, including familywise

error rate, expected false discovery rate, per-comparison error rate

and per-family error rate (Nichols and Hayasaka, 2003). The

standard approach, and the one investigated in this paper, is to

control the Familywise Error Rate (FWER), i.e., the chance of one or

more false-positives under the null hypothesis.

The simplest approach to controlling the FWER is the

Bonferroni correction method (Hochberg and Tamhane, 1987;
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Nichols and Hayasaka, 2003). This method produces conserva-

tive thresholds unless the tests are independent, a case that is

rarely true in neuroimaging experiments and certainly not for the

smooth images reconstructed from MEG data. Other methods

that consider the spatial dependence of the data make inferences

based on the global maximum distribution. The FWER is

directly related to the maximum statistic; one or more voxels Ti
will exceed the threshold u under the null hypothesis H0 only if

the maximum exceeds the threshold:

(1)
P FWERð Þ ¼ P [i Ti N ujHoð Þ ¼ P max

i
Ti N ujHo

� �

¼ 1� FmaxT jHo
uð Þ ¼ 1� 1� að Þ ¼ a

Therefore, we can control the FWER at level a, if we choose

the threshold u to be in the (1 � a) 100th percentile of the

maximum distribution.

Random Field (RF) theory methods approximate the upper tail

of the maximum distribution Fmax using the expected value of the

Euler characteristic of the thresholded image (Worsley et al.,

1996). They are implemented in various software packages (SPM-

http://www.fil.ion.ucl.ac.uk, VoxBo-http://www.voxbo.org, and

FSL-http://www.fmrib.ox.ac.uk/fsl among others), and are typi-

cally used in PET and fMRI studies. However, RF theory relies on

several assumptions including the following: the image has the

same parametric distribution at each spatial location, the point

spread function has two derivatives at the origin, sufficient

smoothness to justify application of continuous RF theory, and a

sufficiently high threshold for the asymptotic results to be

accurate.

Resampling methods are a different approach to controlling

the FWER that exploit the information contained in the data to

estimate the empirical distribution of the maximum statistic.

They do not assume parametric distributions, they adapt to

underlying correlation patterns in the data, and are now

computationally feasible. The two main categories are boot-

strap-based, which allow for a general modeling framework, and

permutation-based, which require some knowledge of exchange-

ability conditions under the null hypothesis. Here, we only

consider permutation methods since they are exact, that is, they

give precise control of the FWER, while bootstrap methods are

only asymptotically exact. Furthermore, the permutation approach

relies on a less restrictive exchangeability condition than the

requirement in the bootstrap that samples are independent and

identically distributed.

Permutation and RF theory methods have been applied widely

in functional (Andrade et al., 2000; Nichols and Holmes, 2001;

Worsley et al., 1992, 1996) and structural (Bullmore et al., 1999;

Chung, 2001; Pantazis et al., 2004; Sowell et al., 1999a,b;

Thompson et al., 2001, 2003) brain imaging. However, until

recently, error rate control in MEG experiments has drawn little

attention. Dale et al. (2000) normalized the CDMs using an

estimate of the background noise variance at each cortical

element. These normalized images follow a t distribution under

the null hypothesis of Gaussian background noise. Thresholding

of the resulting statistical maps was then used to detect significant

activation, however, the multiple comparisons problem was not

addressed. Barnes and Hillbrand (2003) presented an application

of RF theory to MEG data but their method is specifically tailored

to beamforming solutions rather that the general linear inverse
methods. Carbonell et al. (2004) used Hotelling’s T2 random

fields to localize significant MEG/EEG activation in time, and

then t statistics to achieve spatial localization. Permutation tests

were applied by Blair and Karnisky (1994) for the analysis of

EEG data as recorded on an array of electrodes, and by Pantazis

et al. (2003) for the analysis of MEG data in reconstructed cortical

maps of brain activation. An alternative permutation scheme,

proposed by Singh et al. (2003), detects event-related synchroni-

zation or desynchronization components in an MEG study

involving visual stimulation and a Linearly Constraint Minimum

Variance (LCMV) beamformer applied to data decomposed into

multiple frequency bands. The current work presents a novel

general RF theory-based method to control FWER in MEG. Also,

it extends the results in Pantazis et al. (2003) to extract thresholds

for each time-point. Finally, we compare RF theory and

permutation methods in terms of specificity, sensitivity, and

possible limitations.
Methods

Our goal is to detect spatial and temporal regions of

significant activity in MEG-based cortical maps while control-

ling familywise error rate. The methods to do this that we

describe below also apply directly to cortical maps computed

from EEG data, since the inverse imaging methods differ only in

the forms of their lead field matrices (Baillet et al., 2001). In

this section, we first describe our MEG data model. We then

present two methods, the first based on RF theory and the

second on permutations, for controlling the error rate in MEG

experiments.

Model

We assume that MEG data are collected as a set of J stimulus-

locked event-related epochs (one per stimulus repetition), each

consisting of a pre- and post-stimulus interval. Each epoch consists

of an array of data M (nchannels � ntimepoints) representing the

measured magnetic field at each sensor as a function of time. The

measurements M are linearly related with the brain activation X

(nsources � ntimepoints) as:

M ¼ GX þ N ð2Þ

where G (nchannels � nsources) is the forward operator and N

represents additive noise in the channel measurements. The lead

field matrix G is dependent on the shape and conductivity of the

head and can be computed using a simplified spherical head model,

or more accurately using boundary or finite element methods that

account for the true shape and conductivity within the head (Baillet

et al., 2001; Mosher et al., 1999).

A cortical map can be computed for each epoch by applying a

linear inverse method to produce an estimate of the temporal

activity at each surface element i in the cortex. We write the

reconstructed cortical maps as {Xitj} where i = 1,. . ., S, t = �N0 +

1,. . ., N, and j = 1,. . ., J are indices in space, time, and epoch,

respectively. We let t = 1 correspond to the stimulus event time so

that there are N0 pre-stimulus time points. We use the pre-stim data

to estimate the baseline mean l̂i and standard deviation ĵi at each

spatial element i We model the centered data u Yitj = Xitj � l̂i as

Yitj ¼ lit þ �itj; t ¼ 1; N ;N ð3Þ
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where l it is the spatiotemporal profile, and eitj is the zero mean

random error. We assume independence across epochs, but not

over time and space; that is, that eitj is independent of eitj V for j p jV
and all i, t.

We take the standard massively univariate approach and model

each spatial location independently. For each spatial location, the

model then amounts to a one-way ANOVA model with repeated

measures. The standard linear modeling approach would be to find

estimates l̂it and test

H0 : lit ¼ 0; t ¼ 1; N ;Nf g; ð4Þ

for each location i. Estimation and inference on this hypothesis

is complicated by the temporal dependence, as the optimal

estimates require the temporal whitening of the data (and

model). The temporal dependence can be difficult to estimate,

and whitening with an inaccurate covariance can bias variance

estimates and even increase the variance of mean estimates

(Friston et al., 2000). Inference on the nulls in Eq. (4) with F

statistics is also challenging. Without whitening, the null F

distributions will be incorrect (though conservative approximations

are available (Greenhouse and Geisser, 1959), while whitening

with estimated covariances yields only approximately correct

inferences.

Hence, we depart from standard statistical approaches in three

important ways. First, instead of whitening, we use ordinary least

squares with inference methods that are valid despite the depend-

ence (the case for permutation), or that require only low-dimen-

sional characterization of the dependence (the case for RF theory).

While this implies that our parameter estimates do not have

minimum variance, it makes our methods general and easy to

implement. In particular, since we expect no experimental effect

over epochs, the spatiotemporal profiles are estimated as the

appropriate average over j in Eq. (5):

l̂lit ¼ Ȳ it:; ð5Þ

where the bar indicates an average over the dotted subscript.
Fig. 1. Illustration of the summarizing procedures used to construct FWER-correcte

exchanging pre- and post-stimulus data. The epochs are then averaged and norma

used. Method 1: Tit* are summarized in time (T̃id* ) and space (T̃..*) to produce ep

converted into P-values ( Pi*) and summarized in space (P̃.*) to produce uniform s

space (T̃d t* ) to produce a threshold (F̂�1
T̃.t

(1 � a)) for each time t.
Second, instead of testing the temporal-omnibus null hypothesis

(Eq. (4)) for each location i, we test

H0 : lit ¼ 0; ð6Þ

for each t N 0 and i. This allows temporal as well as spatial

localization. The test t statistic for Eq. (6) is

Tit ¼
l̂lit

r̂ri=
ffiffiffi
J

p : ð7Þ

Lastly, we use the pre-stimulus variance estimate r̂i instead

of a residual variance estimator. We may do this because we

expect no systematic response in pre-stimulus time. We

choose to do this since it is likely that the stimulus will

increase the variance in the post-stimulus time period in a

heterogeneous fashion; in the presence of a response, the

residual variance estimator would overestimate the background

noise level.

Random field theory method

Random field methods use the topology of the statistic image to

estimate the maximum distribution. In this section, we describe

their application to surface reconstructed MEG data.

Assumptions

Gaussian random field methods assume that the statistic image,

or equivalently, the normalized errors, approximate a Gaussian

random field. Based on our modeling, to control FWER over

space, it is required that for each t and j the spatial process of the

normalized errors

�itjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var �itj

� �q
9>=
>;

i

8><
>: ð8Þ

is a sampled version of a continuous, mean zero, unit variance

Gaussian random field. To control FWER over space and time,
d thresholds: the original epochs Yitj produceM permutation samples Yitj* by

lized to produce Tit and Tit*. Three different summarizing methods can be

ochwise thresholds (F̂�1
T̃.t
.(1 � a)); method 2: Tit* are summarized in time,

pecificity epochwise thresholds (F̂�1
P̃. (a)); method 3: Tit* are summarized in



Table 1

Summary statistics for three permutation methods

Time-summarizing Space-summarizing

Method 1 T̃i.* = maxt N 0 jTit*j T̃..* = maxi T̃i.*

Method 2 Pi* = pi(T̃i.*) P̃.* = mini P̃i*

Method 3 T̃.t* = maxi jTit*j
The permutation samples are Tit*, with i the spatial index, and t the time

index. The tilde indicates the maximum over the dotted subscript; pi(d ) is

the permutation P-value function using only data from spatial location i.
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the spatiotemporal process of normalized errors must satisfy this

condition. While the core RF theory results also assume

stationarity, there have been recent developments that relax this

assumption as described below.

When the degrees of freedom are high, the t random fields will

be well approximated by a Gaussian random field; Worsley et al.

(1995) offers a rule of thumb of 120 degrees-of-freedom as being

sufficient. Our t statistic Tit has N0 � 1 degrees of freedom. As the

number of epochs ( J) grows, the central limit theorem implies that

l̂it will be Gaussian, even if eitj is not. Hence, if both N0 and J are

large, the random field methods should have their distributional

assumptions satisfied.

Spatial and temporal smoothing

To apply the continuous RF theory results, the statistic images

must be sufficiently smooth, since failure to satisfy this

assumption typically leads to conservative thresholds. Nichols

and Hayasaka (2003) found that 3 voxels FWHM smoothness is

sufficient for 3-dimensional Gaussian images; more smoothness

was required for low degrees-of-freedom t images. The smooth-

ness required for surface reconstructed CDMs is unknown. The

highly convoluted cerebral cortex causes Tit to be rather rough

across i, especially on gyral crests and sulcal fundi where

neighboring vertices have rapidly changing orientations. There-
Fig. 2. Illustration of the impact of heterogeneous voxel null distributions on a 5%

the distribution of their maximum in three cases: each having different variances,

(left) demonstrates the variable false-positive rate when test statistics are not norma

demonstrates the impact of non-Gaussianity, even when variance is normalized, a

(right) shows that with homogeneous null distributions the false-positive rate a

controlled at 5%.
fore, we consider spatially smoothing l̂ it to avoid conservative

thresholds.

Smoothing in Euclidean space is typically performed by

convolving the image X(z), z a Rn with a Gaussian kernel of

FWHM ¼ 4 ln2ð Þ1=2
ffiffi
t

p
as follows:

X Vðz; tÞ ¼ 1

4ptð Þn=2
Z
Rn

e� z�yð Þ2=4tX yÞdyð ð9Þ

where X V(z,t) is the smoothed image at time t. Here, the time

variable t determines the degree of smoothing by analogy to an

isotropic diffusion process. This equation cannot be applied

directly to cortical surfaces. To apply smoothing on arbitrary

curved surfaces, we can reformulate Gaussian kernel smoothing as

a solution of a diffusion equation on a Riemannian manifold

(Chung, 2001):

BX V

Bt
¼ DX V ð10Þ

with the initial condition X V(z, 0) = X(z). For an n-dimensional

Euclidean space, DF = B
2F/Bx1

2 + . . . + B
2F/Bxn

2; for an arbitrary

Riemannian manifold (such as a cortical surface), D is called the

Laplace–Beltrami operator and is given by:

DF ¼
X
i; j

1

jgj1=2
B

Bui
jgj1=2gij BF

Bu j

��
ð11Þ

where g = ( gij) is a 2 � 2 matrix whose coefficients are the

Riemannian metric tensors, u1 and u2 are the coefficients of a local

parameterization of the cortical surface, and ( gij) = g�1 (Arfken,

2000; Boothby, 2002).

If control of FWER’s over time and space is desired, then

smoothing in time may also be required. This can be accomplished

with initial bandpass filtering of the data, or with temporal

smoothing of the CDMs. One problem with temporal smoothing is
FWER threshold. Shown are null distributions of five surface elements and

different skewed distributions, and one common distribution. The first case

lized (e.g., use raw CDM values l̂ij instead of Tit). The second case (center)

nd motivates the use of P values to normalize Tij into pi(Tit). The last case

t each surface element is homogeneous. Note that in all cases FWER is



Fig. 3. Simulated source 1 (left hemisphere) and source 2 (right hemisphere) are shown mapped onto high resolution and smoothed versions of the cortical

surface.
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that the usual estimate of ri is only unbiased under independence;

when temporal samples are correlated, a bias correction for r̂i can
be found using the Saitherwaite correction (Satterthwaite (1946);

Worsley and Friston (1995)).

Estimating the maximum distribution

As shown in Eq. (1), the FWER can be determined directly

from the maximum distribution; specifically, the probability of the

maximum exceeding u gives the FWER for threshold u. Adler

(1981) demonstrated that the expected value of the Euler

Characteristic is a good approximation of this probability when u

is large. Worsley et al. (1996) provides an intuitive formula that

unifies the results for all types of random fields:

P max
i

Titzu

� �
c

X2
d¼ 0

Rd Sð Þqd uð Þ ð12Þ

This equation gives the FWER P-value for threshold u in a 2-

dimensional random field (Tit for fixed t) in a search region S

(cortical surface). The term Rd(S) is the d-dimensional RESEL

count, a unitless quantity that depends only on topological features

of the CDMs in the search region S. The qd(u) term is the Euler

Characteristic density that depends only on the threshold u and the

type of statistical field (such as z, t, X2, and Hotelling’s T2). In Eq.

(12), the summation of the lower dimensional terms (d = 0 and d =

1) compensate for the case when the excursion set, that is, the

regions of voxels in a field above a threshold u, touches the

boundary.

It is straightforward to extend these results to a 3-dimensional

random field that includes the time dimension (Worsley et al.,
Fig. 4. Time-courses of simulated sources, blue for source 1 and red for

source 2. The pattern of activation mimics a typical neuroimaging study

where an early response to a stimulus propagates to another brain region

giving a delayed component.
1996). Let s denote the number of RESELS computed in the time

dimension, then:

P max
it

Titzu

� �
c

X2
d ¼ 0

Rd Sð Þ sqdþ1 uð Þ þ qd uð Þ
� �

ð13Þ

In MEG we are interested in positive or negative deflections of

current density, and hence make inferences on the absolute values

jTitj using two-side FWER P-values:

P max
i

jTitjzu

� �
c2R2 Sð Þq2 uð Þ ð14Þ

for control of FWER over space only, and

P max
it

jTitjzu

� �
c2R2 Sð Þ sq3 uð Þ þ q2 uð Þ½  ð15Þ

for control of FWER over space and time. Note that we have

droped the d = 0 and d = 1 terms, as the cortical surface has a

spherical topology and no edge. In the Appendix we give equations

for q2(u), q3(u) and estimates for R2(S) and s based on pre-

stimulus data.
Permutation method

We use resampling methods to allow more flexible models and

to avoid random field theory assumptions. The standard approach

to permutation tests is to find units exchangeable under the null

hypothesis. While epochs can be regarded as independent,

permuting of epochs does not change the value of epoch-averaged

statistics (although the bootstrap can make use of the epoch

replicates). By collecting an equal duration of pre- and post-

stimulus data (N = N0), we can permute pre- and post-stim data

since these intervals are interchangeable under the null hypothesis

of no activation at any post-stimulus timepoint. Given J original

epochs Yitj, j = {1,. . ., J}, we can create M V 2J permutation

samples Yitj* , each consisting of J new epochs (Fig. 1). The symbol

(*) indicates that the values Yitj* are created by permutation.
Table 2

Thresholds for the sources illustrated in Figs. 3 and 4 for controlling FWER

over space and time

Nominal

FWER

Unsmoothed

CDMs

Smoothed

CDMs

Permutation method 1 0.050 5.236 5.151

Permutation method 1 0.123 5.050 –

Permutation method 2 0.123 4.998 –



Table 3

Thresholds for the sources illustrated in Figs. 3 and 4 for controlling FWER

over space only

Nominal

FWER

Unsmoothed

CDMs

Smoothed

CDMs

Permutation method 3 0.050 3.876 3.778

Random field method 0.050 4.451 4.076
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Assumptions

Except in the special case of data from randomized experi-

ments, permutation methods are not assumption-free. In order to

permute the data under the null hypothesis, we must assume that

the distribution of the errors is exchangeable with respect to

epochs. That is, the multivariate distribution of {eitj} is invariant

with respect to permutations of indices j, but is otherwise

unspecified; independence across epochs is sufficient to satisfy

this condition. We further assume that under the null hypothesis,

the distribution of {eitj} is unaltered by exchanging the pre- and

post-stim data (we require that N = N0).

Permutation statistics

Both permutation and RF theory approaches use the maximum

distribution to control the FWER over space for one time point, or

over time and space simultaneously. To obtain thresholds that

control FWER over space at a given time t, we compute the

permutation distribution of the spatial maximum:

T̃Td t4 ¼ max
i

jTit4j ð16Þ

where the tilde indicates an extremum over the dotted subscript;

here, for statistic values, this is a maximum. Later, when used

with P-values, it will be a minimum. These M permutation

samples T̃dt* estimate the null distribution of T̃d t, written as F̂T̃d t
.1

The level a spatial FWER threshold is F̂T̃d t

�1 (1� a).

Thresholds that control FWER over time at a given spatial

location i, or that control FWER over both time and space, are

found by the corresponding permutation distribution:

T̃T id
4 ¼ max

t N 0
jTit4j

T̃T ::4 ¼ max
i

T̃T id
4 ð17Þ

The T̃..* are used to estimate the null distribution of T̃.., written

as F̂T̃idd
. The level a FWER threshold is F̂T̃dd

�1 (1 � a). The above

procedures are summarized as methods 1 and 3 in Table 1.

Achieving uniform spatial specificity

Permutation tests are always valid given the assumption of

exchangeability under the null hypothesis. However, if the null

distribution varies across space, different surface elements will

have differing specificity, as illustrated in Fig. 2. To address the

problem, we can perform an element by element normalization by

converting the statistic values at each location to P-values, which

are computed using permutations. We then control FWER with

respect to the distribution of the minima of these P-values, rather

than the maxima of the original statistic. In this way, we achieve

uniform spatial specificity.
1 FX denotes the cumulative density function (CDF) of the random

variable X.
The method to achieve uniform specificity proceeds as follows.

We first summarize by computing the maximum over time for each

permutation sample at each location, to generate T̃id* as defined in

Eq. (17). We then use these permutation statistics to estimate the

null distribution F̂T̃id
of T̃id . Using this distribution, we then replace

each permutation statistics T̃id* with its P-value:

Pi4 ¼ pi T̃T id
4

� �
¼ 1� F̂F T̃T id

T̃T id
4

� �
ð18Þ

Effectively, this is equivalent to counting how many of the M

permutation sample statistics T̃id* at location i are greater than or

equal to the current permutation statistic, and dividing by M. For

each i, the Pi* have a uniform distribution under the null

hypothesis, and hence are self-normalized. To find a threshold

on the P-values that controls FWER, we first find the minimum

P-value for each permutation sample:

P̃P :4 ¼ min
i

P̃Pi4 ð19Þ

We then use the M permutation values P̃.* to estimate the null

distribution, F̂P̃., of P̃.. By choosing a level a threshold on F̂P̃., that

is, (F̂P̃.
�1(a)), and retaining only those locations at which the P-

value is less than this threshold, we control the FWER at a.
Furthermore, since under the null hypothesis the P-values will

have the same uniform distribution at each location, this approach

will guarantee uniform specificity. The above procedure is sum-

marized in Table 1 (method 2).

One practical problem of this approach is the discreteness of the

P-valuesPi*, which in turn causes P̃.* to be discrete. If many P̃.* have

the smallest possible value (1/M), then small a level thresholds may

be unattainable. For example, oneMonte Carlo experiment withM =

1000 found that 30% of the permutations had a minimum Pi* of

value 0.001 and hence the smallest possible FWER threshold

corresponded to a = 0.3. Therefore, the P-value normalization

approach, while it makes no assumptions on differing shapes of the

local distributions, requires many permutations.

Thresholds

The three different permutation methods produce different types

of thresholds. Method 1 produces a single statistic value threshold

for all time and space: F̂T̃dd

�1 (1� a). Method 2 also produces a single

P-value threshold for all time and space: F̂P̃.
�1 (a). This P-value can

be re-expressed in terms of statistic values, which will yield

different thresholds for each spatial location: pi
�1 (F̂P̃.

�1 (a)). Method

3 produces one threshold for each time point: F̂T̃. t

�1 (1� a). The key
difference between these thresholds is that methods 1 and 2 control

FWER over all time and space, while method 3 controls FWER

over space at a single time point.
Results

In this section, we evaluate the random field method and the

three permutation methods given in Table 1 in terms of specificity,

i.e., the ability of the methods to control false-positives, and

sensitivity, a measure of how well the method can detect and

localize true brain activation.

Simulation studies

A cortical surface was extracted from an MRI scan using

BrainSuite, a brain surface extraction tool (Shattuck and Leahy,



Fig. 5. Examples of significant activation maps for permutation and random field methods for two time instances, (a) permutation method 1 using unsmoothed

CDMs, (b) permutation method 3 using unsmoothed CDMs, (c) permutation method 3 using smoothed CDMs, (d) random field using smoothed CDMs. The

first method controls FWER over space and time, while the last three methods control FWER over space for one time point only.
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2002). The surface extraction algorithm consists of skull and

scalp removal, nonuniformity correction, tissue classification,

and cortical surface topology correction. The surfaces produced

by BrainSuite can be constrained to be topologically spherical,

and are suitable for use in current source localization and

visualization. The surfaces where then coregistered to the MEG

sensor arrangement of a 151 channel CTF Systems Inc. Omega

system using an affine transformation, based on three fiducial

points (nasion, right/left preauricular). The resulting surface,

which contained approximately 520,000 faces, was downsampled

to produce a 15,000 face (7481 vertices) surface suitable for

reconstruction purposes. CDMs were mapped back onto the

higher resolution surface, as illustrated in Fig. 3a, as well as

onto a smoothed version of the surface to assist in visualization,

Fig. 3b. An orientation constraint was applied during recon-

struction, using surface normals estimated from the original

dense cortical surface. The forward model was calculated using

an overlapping spheres model (Huang et al., 1998). We used a

Tikhonov regularized linear inverse method (Tikhonov and

Arsenin, 1977) with regularization parameter k = 4d 10�7

(Baillet et al., 2001).

Source simulation

We simulated two sources, one each in left and right primary

motor cortex, as shown in Fig. 3. Each source consists of an
Fig. 6. Examples of significant activation maps for permutation methods 1 and 2 for

and the comparison for both methods is done at this level.
activated patch approximately 2 cm2 in size. The time-courses

simulate early and delayed responses to a stimulus (Fig. 4), which

is a typical pattern in neuroimaging studies.

A total of 100 stimulus-locked event-related epochs (or trials)

were simulated, each one consisting of 100 pre-stimulus and 100

post-stimulus time points. Each epoch is an array of data (151

channels � 200 timepoints) representing the measured magnetic

field at each sensor as a function of time. Gaussian i.i.d. noise with

power 2000 times the averaged power of the signal was added to

the channel measurements, making the reconstruction a difficult

task. We then applied the Tikhonov regularized inverse operator

(Tikhonov and Arsenin, 1977) to produce CDMs Xitj. We also

generated spatially smoothed versions of the CDMs using diffusion

smoothing as described in the RF theory section. We used an

approximation of the Laplace–Beltrami operator given in Oosten-

dorp and Oosterom (1988) with spatial filtering corresponded to a

23.5 mm FWHM. Since the mean distance between the vertices in

our tesselated cortical surface was 4.5 mm, the spatial filtering was

equivalent to approximately 5 vertices FWHM. Finally, we created

M = 1000 permutation samples for permutation methods 1 and 3,

and M = 10,000 permutation samples for permutation method 2

due to the discreteness concerns discussed above.

We tested smoothed and unsmoothed CDMs for significant

activation using the random field and permutation methods.

Spatiotemporal FWER-corrected thresholds (Table 2) are higher,

as expected, than spatial FWER-corrected thresholds (Table 3).
two time instances. The lowest achieved threshold for method 2 is a = 0.123



Fig. 7. Thresholded and unthresholded maps of the current density (l̂ it), the noise normalized current density (Tit) and the (1 � P) value map pi(Tit) at t = 113.
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The thresholds for permutation method 2 are given only for

unsmoothed CDMs, because of the high computational cost of

smoothing 10,000 permutations, and represent the average statistic

value thresholds over all spatial locations, Ei{ pi
�1 (F̂P̃.

�1 (a))}. For
method 2, the smallest false positive rate possible with the

empirical distribution of P̃. was 12.3%. Therefore, in order to

compare methods 1 and 2, we repeated the analysis for method 1

with a = 12.3% as listed in Table 2.

The design of the statistics Tit, involving post-stimulus data lit

and pre-stimulus data ri, causes permutation methods to adapt to

the activation pattern of the sources on the cortical surface. In

particular, when a stimulus activates a source on the cortical

surface, the corresponding time-course has higher amplitude and

variability in the post-stimulus area than in the pre-stimulus area.

As a result, the original data will have relatively high Tit (high lit

and small ri) as compared to the permutation samples; as a source

gets stronger, the significance of the original data increases. In our

simulation experiments, the time-courses of the sources vary with

time; therefore, we expect the FWER-corrected thresholds to adapt

to this variation.

For permutation method 3, we estimate a different threshold

F̂T̃. t

�1(1 � a) for each timeslice after the stimulus t N 0 and Table

3 shows the mean of these thresholds (3.876 for unsmoothed

CDMs and 3.778 for smoothed CDMs). The random field method

is less sensitive with higher thresholds (4.451 and 4.076,

respectively) and particularly conservative when unsmoothed

CDMs are used.
Table 4

Noise-only simulation results for control of spatial and spatiotemporal

FWER at nominal level a = 5%

Unsmoothed

CDMs

Smoothed

CDMs

Threshold Observed

FWER

Threshold Observed

FWER

Spatiotemporal FWER methods

Permutation method 1 5.350 0.0600 5.245 –

Spatial FWER methods

Permutation method 3 4.059 0.0480 3.980 –

Random field method 4.453 0.0139 4.081 0.0340

The Monte Carlo standard error for the spatiotemporal FWER is 0.0218; for

the spatial FWER, it is 0.0022.
Fig. 5 shows examples of significant activation maps for the

permutation and random field methods. Epochwise thresholds

(Fig. 5a) are more stringent and thus less sensitive to signals

than slicewise thresholds (Fig. 5b). We are, however, more

confident that a signal is truly present because the false-

positives are controlled over all time slices. Spatial smoothing

(Fig. 5c) produced a mild loss in resolution compared to the

unsmoothed case (Fig. 5b). Finally, comparison of the permu-

tation and random field results for the smoothed CDMs (Figs.

5c and d, respectively) indicates similar performance in this

simulation.

We should comment here that permutation and random field

tests do not address the limited resolution of MEG reconstruction

methods. The MEG inverse problem is ill-posed and CDMs are of

low resolution and tend to mislocalize source activation. If the

inverse method identifies experimental variation is some region,

permutation and random field tests will identify these regions

regardless of the presence of an actual source at those locations. In

most cases, CDM reconstructions of activation from a single sulcus

or gyrus will tend to show activation in neighboring sulci or gyri,

respectively. It is quite possible, as shown in Fig. 5, that

reconstructions of activation in a single cortical area will exceed

the determined threshold in multiple areas, and thus particular care

is required in interpretation of CDMs, even after thresholding to

control for FWER.

It is interesting to study the effect of the P-value trans-

formation on the significant activation maps: if the effect is

significant, it is an indication that Gaussianity assumptions, used

by random fields and permutation methods 1 and 3, are violated.

Fig. 6 shows that permutation methods 1 and 2 produce very

similar results in simulations. This is expected, since in this case,

the data was homogeneously Gaussian. The P-value transforma-

tion step only affects the solution if, under the null hypothesis, the

surface elements have an inhomogeneous distribution (see also

Fig. 2). However, for real data experiments, as we shall see in a
Table 5

Number of RESELS for simulated and real data

Unsmoothed

CDMs

Smoothed

CDMs

Source simulation data 641.14 141.04

Real data 574.44 125.62



Fig. 8. Examples of significant activation maps for permutation and random field methods for real data. (a) Permutation method 1 using unsmoothed CDMs, (b)

permutation method 3 using unsmoothed CDMs, (c) permutation method 3 using smoothed CDMs, (d) Random field controlling FWER over space only.
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following section, the two methods produced different activation

maps, an indication that the Gaussianity assumption may be

violated.

We can display the unthresholded P-value maps of permutation

method 2 by transforming the CDMs of the original data into P-

values. Even though this does not address the multiple comparisons

problem, it is interesting to compare the relative apparent loca-

lization properties of CDMs (l̂it), noise-normalized CDMs (Tit),

and P value maps ( pi(Tit)). Such a result is shown in Fig. 7. Noise-

normalized and (1 � P) value maps are qualitatively similar, again

this is because the data are Gaussian. However, (1 � P) value maps

offer a direct quantitative measure of significance. In the lower row

of Fig. 7, all sources with P-value less than 0.05 are shown for the

(1 � P) value maps; CDMs and noise-normalized CDMs are

thresholded subjectively, indicating the importance of some form of

normalization of the CDMs, either by noise standard deviation or

using P-values, before thresholding.

Noise simulation

In order to test all methods for specificity, we created MEG

sensor data using only standard Gaussian noise and no signal. The

data consisted of 100 epochs, each having 100 pre-stimulus and

100 post-stimulus time points. We then estimated the 5% threshold

values for all methods, as given in Table 4.
Fig. 9. Reconstruction and significant maps from permut
We then repeated the above procedure 100 times and tested the

simulated data (n1 = 100 epochs for spatiotemporal FWER-

corrected thresholds, n2 = 10,000 slices for spatial FWER-

Corrected thresholds) for activation. The approximate Monte Carlo

standard errors for a true 0.05 rejection rate are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ=n1

p
¼

0:0218 for spatiotemporal FWER-corrected thresholds andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ=n2

p
¼ 0:00218 for spatial FWER-corrected thresholds.

The approximate 95% confidence intervals are (0.0073, 0.0927)

and (0.0457, 0.0543), respectively.

The random field method is conservative, with or without

spatial smoothing. Without smoothing the spatial FWER is 0.0139;

with spatial smoothing of 5 vertices FWHM, the spatial FWER is

0.0340. Both are outside the 95% confidence limit, though the

result with smoothed data is better.

It can be shown theoretically that permutation methods are

always exact, that is, they will achieve the chosen FWER.

Our experiments verify this: for unsmoothed data method 3

had a spatial FWER of 0.0480, while method 1 had a

spatiotemporal FWER of 0.06, both inside the 95% confidence

intervals.

Real data experiment

The effectiveness of the proposed algorithms was also

investigated using data from a somatosensory experiment. Data
ation methods 1 and 2 for a FWER of a = 0.086.



Fig. 10. Global threshold applied by permutation method 1 (F̂T̃..
�1 (1 � a)) at level a = 0.086, as compared to the histogram of the thresholds pi

�1 (F̂P̃d
�1 (a))

applied to each source i by method 2. Also, a map of the thresholds on the cortical surface is given on the right. Most of the individual thresholds are below

F̂T̃..
�1 (1 � a).
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were acquired using a CTF Systems Inc. Omega 151 MEG

system. The somatosensory stimulation was an electrical square-

wave pulse delivered randomly to the thumb, index, middle, and

little finger of each hand of a healthy right-handed subject

(Meunier et al., 2001). For the purposes of this study, only data

from the right thumb was used. The recordings consist of 400

epochs each having 62 pre-stimulus and 62 post-stimulus time

points.

Table 5 shows the number of estimated RESELS, R2(S), for the

source simulation and real data experiments. Since both data have

the same range of RESELS, our simulation experiments were

performed under conditions consistent with our real experiment.

All methods identify significant activity in the left somatosen-

sory cortex. Since the experiment involved right thumb stimulation,

activation of area S1 (primary somatosensory cortex) in contrala-

teral somatosensory cortex is expected (Kandel et al., 2000). Fig. 8

allows for similar inferences as presented in the simulation section

for Fig. 5, that is, epoch-wise or spatiotemporal thresholds are more

conservative than slice-wise thresholds (Fig. 8a vs. b) and spatial

smoothing slightly reduces resolution (Fig. 8b vs. c). In this case,

the RF threshold is lower than that for the permutation method 3

(Table 6), so that a broader area of activation is seen in the RF result

compared to the permutation method (Fig. 8c vs. d). Since these are

real data, we cannot know whether Fig. 8c or d is closer to truth;

however, S1 activation, as revealed in other neuroimaging studies,

is typically highly focal. Since the two methods performed similarly

in simulations, one explanation is that the real data do not satisfy the

distribution assumptions of RF theory.

Evidence of violated assumptions is supported by Fig. 9. This

shows permutation method 2 to be more sensitive than method 1.

Simulation experiments demonstrated that when the data are

Gaussian, the two permutation methods exhibit very similar
Table 6

Real data thresholds found with the different RF and permutation methods

Nominal

FWER

Unsmoothed

CDMs

Smoothed

CDMs

Spatiotemporal FWER methods

Permutation method 1 0.050 9.346 8.925

0.086 8.691 8.351

Permutation method 2 0.086 7.473 –

Spatial FWER methods

Permutation method 3 0.050 6.597 6.387

Random field method 0.050 4.426 4.045
performance; the discrepancies between the two maps of signifi-

cant activation using methods 1 and 2 indicate a violation of this

distributional assumption. At t = 22 ms, only method 2 detected

significant activity. Further, it seems to correct the CDM, which

shows the main activity in the ipsilateral hemisphere. As

mentioned before, we expect activation of the left hemisphere (at

least for the early component of the response) and this is supported

by our results. For t = 28 ms, the same remarks for sensitivity are

true. Finally, Fig. 10 shows the thresholds applied by each of the

two methods. Again, due to discreteness, the lowest achieved

FWER by method 2 is a = 0.086.

An alternative explanation to the stringency of the permutation

results is contamination of the empirical permutation null

distributions. Permutations that are similar to the correctly labeled

data will also yield relatively large statistic values, affecting the

upper tail of the permutation distribution and shifting the threshold

upwards. A possible solution to this problem is to use a step-down

test in which the null distribution is dpurifiedT by removing spatial

elements that test as significant and recomputing the permutation

distribution of the maximum.

Note that our method can, to some extent, counteract the

tendency to inflate the permutation distribution due to our use of a

pre-stim standard deviation. While a strong signal can inflate a

permuted statistic values, it will also induce more variability into

the pre-stim period, inflate the estimated standard error, and hence,

reduce permuted statistic values. In this data set, this effect

apparently did not overcome the strong signal.
Conclusion

We have presented RF theory and permutation methods for

processing of MEG data and extracting significant activation maps.

They can be used with any linear or nonlinear cortical imaging

method to obtain objective thresholds on statistic maps. The

random field method demonstrated valid but conservative perform-

ance in our null simulation experiments; the observed FWER was

0.034 (vs. 0.05 nominal) for smoothed data, and worse for

unsmoothed data. However, the method successfully identified

the two simulated sources while rejecting false-positives on other

surface elements. This suggests that the nonstationary smoothness

estimation addresses the problem of highly variant spatial

correlation of the noise.

Permutation method 3, which controls spatial FWER at each

point in time, as does the RF method, achieved superior perform-

ance in the simulations, though there was little difference with
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smoothed data. This is because in simulations with smoothed data,

RF assumptions are satisfied, i.e., Gaussianity and sufficient

smoothness, so that the method is almost exact and performs

similarly to its non-parametric counterpart. In experimental

somatosensory data, permutation method 3 found activated sources

in the contralateral S1 area as expected, with fewer significant

spatial elements than the random field method. We cannot say

whether the random field method in this case is more sensitive or

simply giving false-positives induced by violated assumptions.

Overall, the permutation methods are more flexible than RF

based methods. We can work with spatially smoothed or

unsmoothed CDMs depending on the desired tradeoff between

SNR and spatial resolution, when RFs should only be used with

sufficiently smoothed CDMs. In general, we prefer to smooth the

data as little as possible; data are low resolution, and it seems

undesirable to further reduce the resolution. Further, permutation

methods can achieve uniform sensitivity by defining different

thresholds per surface element via P-values. More importantly,

they do not rely on distribution assumptions, making them suitable

for real data experiments. Their major limitation is that we need

equal pre- and post-stimulus regions to allow exchangeability.

This issue can generally addressed in planning the event-related

MEG study.
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Appendix A. Euler characteristic and RESELS for Gaussian

Random Fields

Worsley et al. (1996) gives the Euler characteristic density for a

2-dimensional Gaussian RF as

q2 uð Þ ¼ 4loge2

2pð Þ
3
2

e�u2=2u ðA:1Þ

q3 uð Þ ¼ 4loge2ð Þ
3
2

2pð Þ2
e�u2=2 u2 � 1

� �
ðA:2Þ

and for a t RF as
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The estimation of R2(S) is complicated by the strong but

heterogeneous spatial correlation. A thorough treatment of such

fields can be found in Worsley (2000) and Worsley et al. (1999);

we only summarize the results here. The variance of Tit is already

unity, so does not need to be normalized. For each surface

element i, we define the time vector Ti with N0 elements Tit, t =

�N0 + 1,. . ., 0. We assume the tessellated cortical surface
comprises K triangles Dk, k = 1,. . .,K and let Ti0k
, Ti1k

, and Ti2k
be

the random field time vectors on the vertices of triangle k. Then,

the number of RESELS, R2(S), on the 2-dimensional cortical

surface is:

R2 Sð Þ ¼
XK
k ¼ 1

det 1
N0�1

PT
k Pk

� �1
2

2
4loge2ð Þ�1 ðA:5Þ

Pk ¼ T i1k � T i0k � T i0k ½ ðA:6Þ

where Pk is an N0 � 2 matrix and 1
N0 � 1

PT
k Pk corresponds to an

averaging over time.

Finally, the number of time RESELS s over a time interval T0 is

given by:

s ¼ T0

FWHMt

¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffi
4loge2

p k ðA:7Þ

where k ¼ Var
�

BTit
Bt

�
¼ Et

�
BTit
Bt

�2
��

is the variance of the

temporal derivative and is estimated by finite differences.
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