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Paired MEG Data Set Source Localization Using
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Abstract—An important class of experiments in functional
brain mapping involves collecting pairs of data corresponding
to separate “Task” and “Control” conditions. The data are then
analyzed to determine what activity occurs during the Task
experiment but not in the Control. Here we describe a new method
for processing paired magnetoencephalographic (MEG) data
sets using our recursively applied and projected multiple signal
classification (RAP-MUSIC) algorithm. In this method the signal
subspace of the Task data is projected against the orthogonal
complement of the Control data signal subspace to obtain a
subspace which describes spatial activity unique to the Task. A
RAP-MUSIC localization search is then performed on this pro-
jected data to localize the sources which are active in the Task but
not in the Control data. In addition to dipolar sources, effective
blocking of more complex sources, e.g., multiple synchronously
activated dipoles or synchronously activated distributed source
activity, is possible since these topographies are well-described
by the Control data signal subspace. Unlike previously published
methods, the proposed method is shown to be effective in situations
where the time series associated with Control and Task activity
possess significant cross correlation. The method also allows for
straightforward determination of the estimated time series of the
localized target sources. A multiepoch MEG simulation and a
phantom experiment are presented to demonstrate the ability of
this method to successfully identify sources and their time series
in the Task data.

Index Terms—Array signal processing, magnetoencephalog-
raphy, signal subspace methods, source localization.

I. INTRODUCTION

T O ISOLATE the components of the complex processes
involved in sensorimotor and cognitive brain activation,

brain imaging studies are often performed to examine the differ-
ence in response between a baseline or “Control” condition and
a specific “Task” condition. In positron emission tomography
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(PET) and functional magnetic resonance imaging (fMRI) acti-
vation studies, differences between the two conditions are deter-
mined using methods ranging from simple image subtraction to
sophisticated statistical analysis of differences between sets of
Control and Task images [1]. Equivalently, magnetoencephalog-
raphy (MEG) data could be analyzed by separately estimating
all sources in the Control and Task data and then performing
a statistical analysis of the differences between the two. How-
ever, when using nonlinear localization or imaging methods, the
accuracy with which sources can be estimated decreases with
increasing complexity of the sources [2]. This has motivated
a number of researchers to investigate methods for estimating
only those sources which are present in the Task but not in the
Control data.

Variations in latency from epoch to epoch will result in dif-
ferences between two data sets even when the sources in the
two data sets are nominally the same. Consequently, as shown
in [3], simple waveform subtraction between Task and Control
data-sets fails if there is any latency variation in the common
source activity between the two sets of data. Sekiharaet al. [3]
describe an alternative method based on a covariance difference
algorithm. In this method, a MUSIC localization search ([4],
[5]) is performed using the subspace of the difference matrix
formed by the subtraction of the Control covariance matrix from
the Task covariance matrix. One of the underlying assumptions
in this method is that the cross correlation between the Control
and Task source time series is zero. This method was shown
to be effective at blocking out Control sources (and localizing
target sources) in cases where cross correlation between Task
and Control source time-series was minimal (i.e., the cross cor-
relation was less than 0.3). However, in situations where signif-
icant cross correlation exists between the time series of Control
and Target sources, this method was ineffective. Another limita-
tion of this method was that it did not allow for straightforward
estimation of the time-series associated with localized target ac-
tivity.

Soong and Koles [6] present a method based on principal
components for localizing abnormal components contained in
the electroencephalographic (EEG) data. The method is based
on the assumption that the covariance matrix can be expressed as
the sum of a standard control EEG and a second EEG containing
abnormal components. Spike and sharp wave potentials (rep-
resenting the abnormal activity of interest) are identified visu-
ally based on the morphology of the waveforms corresponding
to each of the common spatial patterns. An EEG is then re-
constructed from these components, this is followed by local-
ization on the reconstructed EEG data-set. One feature of this
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method is that it allows for reconstruction of the time series as-
sociated with the “abnormal” target activity. As was the case
in [3], this method operates under the implicit assumption that
Control (normal) and Task (abnormal) activity are uncorrelated.

Here, we present an alternative method for determining the
sources spatially unique to the Task data. The method represents
an extension to the RAP-MUSIC algorithm in which the signal
subspace of the Control data is estimated and its orthogonal
complement computed. The signal subspace of the Task data
is then projected into the orthogonal complement of the Control
data signal subspace to obtain a subspace which describes ac-
tivity unique to the Task data. A standard RAP-MUSIC search is
then performed to estimate the Task source parameters. In con-
trast to the methods in [3] and [6], this method does not require
that the sources unique to the Task data set be uncorrelated with
those in the Control. Furthermore, the method allows accurate
extraction of the associated time series. One of the other advan-
tages of this and other subspace-based methods is that complex
source distributions in the Control data can be represented di-
rectly from their measurement signal subspace without resorting
to specific assumptions or models.

The layout of paper is as follows. Section II provides the basic
definitions and an overview of the RAP-MUSIC algorithm. A
description of the proposed method is presented in Section III.
Results from a multiepoch Monte Carlo simulation and phantom
study are presented in Sections IV and V, respectively. Final
conclusions are drawn in Section VI.

The notation used throughout this paper is as follows. In gen-
eral, an italicized plain font is used to denote scalar quantities,
and boldface is used to indicate column vectors and matrices.
The superscript “ ” is used to denote the transpose operator.
For any matrix or vector, the subscripts “,” “ ,” and “ ” are
used to denote Control, Task, and Distinct Task (i.e., sources in
“ ” but not in “ ”), respectively.

II. BACKGROUND

A. The Forward Model

The objective of MEG inverse methods is to estimate neural
current source characteristics given an observed set of noise-
corrupted magnetic field measurements. For the biological sig-
nals of interest in MEG, the time-derivatives of the associated
electric and magnetic fields are sufficiently small that the fields
may be considered quasistatic (e.g., [7] and [8]). Under the qua-
sistatic approximation, the magnetic field resulting from an ar-
bitrary static current distribution (e.g., discrete dipoles, multiple
synchronously activated dipoles, synchronously activated cur-
rent fields, or combinations thereof) can be determined using
the Biot–Sarvart law. The inverse problem can be solved by in-
verting the Biot–Savart law; unfortunately, the solution is not
unique. That is, an infinite number of source configurations in-
side the brain can account for a given set of magnetic field mea-
surements. The problem is often further complicated by the lim-
ited number of measurements available. As a result, physical
models for the underlying current distribution are employed [8].
Here we will restrict ourselves to distinct Task sources that can
be well modeled as collections of equivalent current dipoles.

Theforward modelrelates a current dipole of momentat lo-
cation to the magnetic field at location . This “primary”
current generates volume (or “return”) currents that must also
be included in the forward model. We will limit our discussion
here to the case of spherically symmetric head models for which
closed form solutions of the forward problem are well known.
See [9] for a review of other forward models in EEG and MEG
and explicit formulations in the linear algebraic framework used
here.

The general expression for the magnetic field outside a spher-
ically symmetric volume is given by Sarvas [10]. For the spe-
cial case where the MEG sensor is radially oriented, the con-
tribution due to passive volume currents in the spherical model
will vanish, and the forward model simplifies to the following
well-known result

(1)

where is the distance between the observation and source
locations, . Regardless of the specifics of the
forward model, by electromagnetic superposition the forward
model is linear in the moment, and we may write the relation-
ship between the dipole moment and the sensor measurement
as the inner product of a “lead field” vector and the moment,

.
We assume an MEG array of sensors sampling the mag-

netic field of the dipole. By concatenating the measurements
into a vector, we can represent the “forward field” of the dipole
as

(2)

where the “gain matrix” is also a function of the set of
discrete sensor locations .

B. Independent Topographies

To maintain consistency with our terminology in [11], we de-
fine a -dipole independent topographyas a set of dipoles
having the same quasistatic time course. For any arbitrary set of

dipoles, the forward model can be found by summing (2) over
all dipole locations and moments , . For
an independent topography sampled oversensors and time
instances, we can express the resulting spatiotemporal
data matrix as

(3)

where represents theth dipole sampled at theth time
instance.
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By definition of a -dipole topography, all of these dipoles
have the same time course and therefore the matrix of dipole mo-
ments in (3) is rank one. A singular value decomposition (SVD)
yields a single nonzero singular valueand the corresponding
set of singular vectors and , such that the dipole moments
matrix is represented as

(4)

Defining the scalar time series of this independent topography
to be , we can rewrite (3) as

(5)
The -dipolar topography vector is a function
of the set of dipole locations, and the unit norm
vector from (4). The vector can be viewed as a generalization
of an “orientation” vector by alternatively concatenating all of
the dipolar moments and scaling by the resulting vectors norm

(6)

The full forward model considered here comprisesindepen-
dent topographies in the presence of noise producing the mea-
surement matrix

(7)

where each column vector repre-
sents theth independent topography corresponding to theth
time series . The set comprises the sets of source locations

and the set the corresponding topography orientations
. By definition, the matrix of time series is rank , and the

matrix of topographies is assumed to be unambiguous
and therefore also of rank. The matrix represents additive
noise, which we will assume to be zero mean and spatially and
temporally white with variance . The case of colored noise is
readily handled by “prewhitening” of the data and model ([12],
[13]).

C. Task and Control Spatiotemporal Measurements

We assume a paired study comprises aTaskand aControl
component. The Task measurements are represented by the ma-
trix , and we assume that the Task containsindependent
sources. Similarly, we assume the Control measurement ma-
trix contains independent sources. We also assume that
sources active in the Control data are also active in the Task data
such that . The number of sources present only in the
Task data, which we will refer to in the following as theTarget
sources, is . In practice, it is likely that the Con-
trol data may also contain sources which are not present in the
Task data. In order to maintain reasonable notation, we have not

generalized the development for this case, but it can be handled
using a simple modification of the method as discussed in Sec-
tion III.

Under the assumption that the signal is not correlated with
the noise, the autocorrelation matrix for the Control data is

(8)

and similarly for the Task data

(9)

The corresponding eigendecomposition of these matrices can be
represented as follows:

(10)

(11)

where in either data set the diagonal matrix rep-
resents the (or ) largest “signal plus noise” eigenvalues.
Their corresponding orthonormal eigenvectors form the matrix

. The diagonal matrix represents the smallest
“noise” eigenvalues and their corresponding eigenvectors form
the matrix . Using the standard terminology, we will refer to
the space spanned by as thesignal subspaceand that spanned
by as thenoise-only subspace.

In practice, we are limited to a finite setof temporal samples
in and the signal and noise subspace basis vectors must
be estimated by eigendecomposition of the outer product

(12)

Alternatively, the spatiotemporal data matrix may be decom-
posed directly via the SVD as to obtain the
same singular vectors , where the eigenvalues are the
square of the singular values .

III. M ETHODS

A. RAP-MUSIC

Before describing the algorithm for paired data sets, we first
summarize the RAP-MUSIC algorithm in [14], an extension of
the original MUSIC algorithm [4], [5], [11]. The first source is
found as the source location that maximizes the metric

argmax (13)

over the allowed source space. The matrix is the gain ma-
trix for the first source, is the matrix spanning the estimated
signal subspace of the data, and we assume that all appropriate
forward modeling assumptions of head and sensors have been
incorporated into the gain matrix. The function is
the cosine of the firstprincipal anglebetween the subspaces
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spanned by the columns of and . Principal angles are
defined in [15]; applications in the context of dipole localiza-
tion are described in [11] and [14]. For descriptive purposes, we
will refer to the cosines of the principle angles assubspace cor-
relations.

If we define to be the orthogonal matrix spanning the
same space as , then the square of the subspace correlations
are found as the eigenvalues of the matrix (cf. [5], [11], and [14])

(14)

By maximizing the subspace correlation in (13), we identify
the source location and corresponding gain matrix that has
the smallest principal angle with respect to the estimated signal
subspace. To complete the first independent topography model,
we need the corresponding source orientation vector, which is
a simple linear transformation of the eigenvector of (14) corre-
sponding to the maximum eigenvalue; see [11] for details. The
resulting estimates yield the first estimated independent topog-
raphy, .

For the th RAP-MUSIC recursion, , the
nonlinear source location parameters are found as

argmax (15)

where

(16)

represents the independent topography matrix found through the
previous recursion. The orthogonal projection operator
is computed as

(17)

where is the pseudo-inverse of
, and we initialize the topography matrix as equal to

the “null matrix” and therefore .
At each iteration, the source location setin (15) may rep-

resent one or more dipolar sources. Here, we will restrict the
search to one-dipolar models only, halting the recursion when
the one-dipolar maximum subspace correlation drops too low.
Extensions to multiple synchronous sources are discussed in
[11], [14] in which the complexity of the model is increased as
the simpler models fall below a correlation threshold.

With all sources in the data identified and their independent
topographies represented in the final topography matrix,can
be used to estimate the corresponding time series

(18)

B. Paired RAP-MUSIC Algorithm

Each iteration of the RAP-MUSIC algorithm begins by pro-
jecting both the signal subspace and the model into a reduced
dimensional subspace “away” from the existing solution set.
This orthogonal projection operation of the existing solution
set is easily extended to include the subspace associated with
the Control data. We will continue to assume that the distinct
Target activity is represented by one-dipolar independent to-
pographies, but we will allow the sources in the Control data
to be more generally specified as independent topographies,
where each topography may be arbitrarily specified, e.g., a syn-
chronous nondipolar distributed source. We continue to assume
that this same set of independent topographies is also present
in the Task data, so that the independent topographies in
the Task data contain arbitrary independent topographies in
common with the Control data and Target one-dipolar to-
pographies, .

We estimate the two signal subspaces as in (10) and (11),
then initialize the RAP-MUSIC algorithm for the Task data with

. In other words, we use the estimated signal subspace
from the Control data as a “prior data subspace” in the initial
recursion of the Task data. For theth Paired RAP-MUSIC re-
cursion, the algorithm proceeds as before, with (16) modified to
be

(19)

The recursion halts after the last source unique to the Task data
is identified, i.e., after recursions under our assumption of

one-dipolar sources. A flow chart summarizing the Paired
RAP-MUSIC algorithm methodology is shown in Fig. 1.

With all distinct Target sources identified, estimates of the
corresponding time series associated with just Target source ac-
tivity can be determined as

(20)

where is the submatrix in (19)
representing the Target topographies found during the paired
RAP MUSIC search.

C. Extensions

In the description above and in the simulations and experi-
ments that follow, we have considered the case where the Con-
trol sources are also present in the Task data. We have addition-
ally assumed that the correct rank of the Control and Task are
selected when forming the signal subspace estimates. We now
describe extensions of the Paired RAP-MUSIC algorithm to the
case of distinct activity in both the Control and Task data, as
well as overspecified ranks of both signal subspaces.

The rank of the signal subspace is typically selected by vi-
sual inspection of the singular value spectrum (e.g., [5], [11]).
If there is not a clear drop in the singular values to clearly indi-
cate the rank, then it is safer to overestimate the assumed rank.
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Fig. 1. Paired RAP MUSIC algorithm flow chart.

Selecting too large a rank will result in additional “noise” eigen-
vectors being included in the signal subspace estimate; how-
ever, the probability is quite small that these additional noise
eigenvectors will actually correlate with the source models (cf.
[16]). Conversely, selecting too small a rank can be detrimental,
in some cases resulting in an inability to localize any sources.
In this extension, we will therefore assume that the ranks
and for the Control and Task data may be overspecified. The
number of distinct Target one-dipolar independent topographies
remains designated as , but in this extension this number may
no longer be the simple difference betweenand .

The Paired RAP-MUSIC algorithm described in the previous
section may still be used even in the case where the Control
subspace contains these additional eigenvectors. When the

method is applied, however, the projection of the Task signal
subspace away from the additional eigenvectors may unnec-
essarily suppress signal energy in the distinct Target sources.
Consequently, localization accuracy of the Target sources may
needlessly suffer. We can instead find the component of the
Control subspace which is also in the Task subspace, and
project away from only this component in (19). We identify
this common subspace from the subspace correlations between
the two spaces as

(21)

In the noiseless case, if the Control sources are all present in
the Task data, then the rank of the Control data is less than
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Fig. 2. Source locations, orientations, and search limit boundaries used in computer simulation.

the rank of the Task data, and the analysis will reveal
subspace correlations equal to unity. In the presence of moderate
noise, these correlations will be near unity. In the case where
the Control subspace contains additional sources not found in
the Task data, then only a subset of the subspace correlations
will be near unity. More generally, we will find correlations
near unity, where . These correlations cor-
respond to a -dimensional subspace common to the two signal
subspaces in (21). As described in [11], [15], the corresponding

principal vectorsfrom each signal subspace are readily identi-
fied as part of the subspace correlation calculation. We can form
the common subspace from the corresponding principal
vectors in the Control data and use this subspace in place of
in (19).

With the common subspace identified, Paired RAP-MUSIC
proceeds as above to identify the distinct Target activity in the
Test data, halting after recursions of a one-dipolar topog-
raphy. Note that this procedure does not estimate the activity dis-
tinct to the Control data. To model the distinct Control activity,
we simply reverse the role of Task and Control in the above dis-
cussion.

IV. SIMULATION STUDIES

A. Dipolar Source Study

In order to assess the viability of the proposed method, we
performed a multiepoch Monte Carlo simulation. This simula-
tion employed a 64-sensor hemispherical array with data col-
lected over 100 epochs. Each epoch comprised 500 time sam-
ples and the amplitude and latency were varied between epochs.
One hundred independent Monte Carlo trials were performed.

MEG Array Geometry:We simulated an array of 64 radi-
ally oriented magnetometers along the outer circumference of
a 10-cm hemisphere. The sensors were nominally uniformly
spaced with approximately 3.8 cm between sensors.

Multiepoch Current Dipole Time Series Generation:Five
dipolar sources were generated with linearly independent

time series. Our goal was to generate realistically shaped
overlapping time series possessing moderate cross correlations
(0.3–0.6). The dipole time series were generated using expo-
nentially decaying sinusoids of varying frequencies to simulate
the shapes of the time series shown for example in [8]. A total
of 500 samples were generated for each time series using a
sample rate of 1 ms. Location and orientation were assumed to
be fixed for each dipole. A peak dipole moment of 10 nA-m
was used for each dipole. The location and orientation of each
dipole is summarized in Fig. 2. A plot of the time series for
each dipole is shown in Fig. 3.

A total of 100 epochs were generated for each Monte Carlo
trial. Each epoch was allowed to vary in both amplitude and
latency. Latency variations were Gaussian with a standard de-
viation of 10 ms. Amplitude variations were generated using a
uniformly distributed scaling factor between 0.5–1.5, yielding
peak dipole moments between 5–15 nA-m. A depiction of the
first ten epochs in the presence of amplitude and latency varia-
tions is shown in Fig. 3.

Sensor Measurement Generation:Radially oriented mag-
netic field measurements were generated and white Gaussian
noise added to each measurement sample. Two different
noise levels were investigated in this study (see Table I). The
single-epoch SNR is defined as the square of the Frobenius
Norm (F-norm) of the noiseless signal matrix divided by the
square of the F-norm of the noise-only data matrix. The spa-
tiotemporal matrix used for source localization was obtained
by averaging over all epochs, as shown in Fig. 4. The effective
SNR following averaging is increased in proportion to the
number of trials.

Baseline RAP-MUSIC Localization:The RAP-MUSIC al-
gorithm described in Section III was used to localize each of the
five sources on a 0.05-cm grid in the range:
cm; cm; and cm. A dipole
localization was declared for a maximum subspace correlation
greater than 0.95. In order to maintain consistency throughout
this study, the rank of the data matrix signal subspace was al-
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Fig. 3. Dipole source time series used in computer simulation. Control set consists of dipoles 1–3 shown on top row. Target dipole set consists of dipoles 4–5 on
bottom row. Example of epoch-to-epoch amplitude/latency variations is shown for first ten epochs of dipole 3 in lower right plot.

ways correctly specified; see the Extensions section above for
discussions on overspecifying the rank.

The RAP-MUSIC localization procedure was repeated for
each of 100 Monte Carlo trials. The mean and standard devi-
ation of each of the following metrics was computed.

1) Localization Accuracy: Vector distance
between the true dipole location and the localization
estimate .

2) Subspace Correlation: Cosine of the smallest principle
angle between the signal subspacespanned by the data
and the subspace spanned by the forward model at
the location .

Localization results for this case are shown in Table I. Standard
deviations in the localization errors ranged from fractions of a
millimeter in the high SNR case up to 3.7 mm for the weakest
dipole in the lower SNR case. In all cases, a very strong subspace
correlation (greater than 0.99) was observed.

Paired RAP-MUSIC Localization:Task data were identical
to that used in the above baseline study. The Control data were
generated using dipoles 1 to 3 only. The Control data were gen-
erated independently from the Task using different realizations
of the noise, dipole latency, and amplitude variations. Local-
ization results after projecting the Task signal subspace away
from the Control subspace are summarized in the second result

column in Table I. In each case, sources in the Control data were
effectively blocked while Target sources were successfully lo-
calized. Localization accuracy of Target dipoles 4 and 5 using
the paired data was found to be nearly identical to that obtained
via direct localization on the 5-dipole Task data-set. In nearly
all cases, the difference in localization error between the two
results was within 1 mm. Direct extraction of Target Source
time-series activity utilizing equation (20) is shown in Fig. 5,
where the extracted target dipole time series is plotted alongside
the true dipole time-series. This figure demonstrates the ability
of the paired RAP MUSIC method to successfully extract the
Target time series even when they are partially correlated with
the sources in the Control data.

For comparison, we also performed a localization study using
the Covariance Difference method described in [3]. For this
study the sources in Control and Test were identical to those
used in the Paired RAP MUSIC study except that the dipole time
series was fixed for all epochs (i.e., no amplitude or latency vari-
ations). In addition, a RAP-MUSIC search was employed rather
than a classical MUSIC search. Localization results for this ex-
periment are presented in the final result column in Table I.
While Control source activity was successfully blocked, only
one of the two Target sources was successfully localized. The
error associated with this localization was in excess of 1 cm. In
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TABLE I
RAP-MUSIC DIPOLE SEARCH RESULTSUSING FIVE ONE-DIPOLAR SOURCES IN THETASK DATA AND THREE ONE-DIPOLAR SOURCES IN THECONTROL DATA.

RESULTSSHOWN FORDIRECT RAP-MUSIC LOCALIZATION ON TASK DATA, PAIRED RAP-MUSIC LOCALIZATION USING TASK AND CONTROL DATA, AND

PAIRED DATA LOCALIZATION USING COVARIANCE DIFFERENCEMETHOD [3]. STATISTICS COMPUTED OVER100 MONTE CARLO TRIALS

comparison, localization errors using the Paired RAP-MUSIC
method were between 0.1–2.3 mm (Table I).

B. Distributed Source Study

In order to determine the algorithm performance in the pres-
ence of more complex distributed sources, a cm
rectangle “distributed current field” was created by generating
27 synchronously activated sources all within the vicinity of
dipole 2. The moment of each of these sources was scaled by
27 such that the total source moment remained unchanged.

The results are shown in Table II. Baseline RAP-MUSIC
localization was performed on the five source Task data-set.
The Paired RAP MUSIC method was then applied to the five
source Task data with three source Control data. The single
epoch F-Norm SNR of the Task data was on the order of 0.1
(giving a 100-epoch post averaged SNR of approximately ten).
A one-dipolar forward model was utilized in the RAP-MUSIC
search.

As shown in Table II, the baseline study shows a dipole in
the vicinity of the simulated 27-dipole “current field,” albeit
with a somewhat large localization error of 4.5 mm (the error
was computed with respect to the centroid of the distributed
source). In the paired experiment, the distributed source was
successfully “blocked” with no adverse affect on the localiza-
tion solution of the Target sources. As was the case with the
one-dipolar sources, target source localization accuracy using
either direct localization or the Paired RAP-MUSIC method
were observed to be nearly equivalent. Paired experiments were

also conducted using Control data-sets containing distributed
sources containing two or three synchronously activated
dipoles. In each case, these distributed source topographies
were successfully blocked with no observed degradation in the
localization error of Target source activity.

V. PHANTOM EXPERIMENTS

A. Overview

This method was also evaluated using MEG data collected
in a controlled phantom experiment. In these experiments, a
phantom containing 32 programmable dipoles was used to si-
multaneously collect EEG and MEG data. MEG data was col-
lected using a Neuromag-122 (Neuromag Ltd., Helsinki, Fin-
land) whole head system at the Neuroimaging Center of the
New Mexico Regional Federal Medical Center in Albuquerque,
New Mexico. This machine contains 61 dual-channel planar-
gradiometer sensors giving a total of 122 spatial measurements.
An X-ray computed tomography (CT)-generated side view of
the phantom is shown in Fig. 6.

Evaluation of data collected directly from a physical system
has the advantage that effects associated with forward model
inaccuracies, the nonideal nature of the sensors, and correlated
background noise are present in the data. These effects are not
well modeled (and often ignored) in simulation studies. The use
of phantom data has the secondary advantage that dipole lo-
cation, orientation, and time-series “ground truth” can be es-
tablished. In this study, true dipole locations and orientations
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Fig. 4. Computer simulation Task (upper left) and Control (upper right) waveform sets. Each plot shows radial magnetic field measurement for each of the 64
sensors averaged over 100 epochs. The 20 largest singular values corresponding to the Task data (lower left) and the Control data (lower-right) are shown for a
low SNR case.

Fig. 5. Plot of recovered time series for Target sources 4 and 5 using computer simulation data described in Section IV. Task data consisted of five 1-dipolar
sources while Control data consisted of three 1-dipolar sources. Time series estimated using equation (20).

were extracted from X-ray CT scans of the phantom and the
dipole time series were those used in the source file for the pro-

grammable dipole driver. A comprehensive description of the
phantom physical model, experimental observations, and indi-
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TABLE II
PAIRED RAP-MUSIC DIPOLE SEARCH RESULTSUSING TASK DATA (CONTAINING ONE DISTRIBUTED SOURCE& FOUR ONE-DIPOLAR SOURCES) WITH CONTROL

DATA (CONTAINING ONE DISTRIBUTED SOURCE& TWO ONE-DIPOLAR SOURCES). STATISTICS COMPUTED OVER100 MONTE CARLO TRIALS

Fig. 6. X-ray CT view of skull phantom and EEG electrodes. The tips of the
32 coaxial cables inserted through the base form the individual dipoles. The
opposite end of the cables were connected to the source driver via a connector
(shown in the lower left).

vidual dipole localization results are described by Leahyet al.
[17].

In the phantom study, each of the 32 dipoles was driven using
a 10-Hz sinusoid. Dipoles were fired in succession (with no
overlap) so that the activation time for each dipole was 1.0 s. The
estimated peak amplitude of each dipole was between 200–300

nA-m. MEG measurements were sampled at a rate of 500 sam-
ples/s. Observed SNRs for the subset of dipoles used in this
study (expressed as the square of the F-Norm of the spatiotem-
poral data matrix divided by the square of the F-Norm of “noise-
only” data collected under prestimulus conditions) were in the
range of 5.9–10.9. These SNRs represent single-epoch values
computed from data sets which included all post-filtering oper-
ations. All phantom localization experiments in this paper were
performed using one epoch of data. It should be noted that this
data is somewhat noisier than data collected in a typical MEG
experiment where spatiotemporal data-sets are averaged over
multiple epochs to smooth out uncorrelated background noise.
Raw data collected on the phantom showed significant signs of
60 Hz background noise interference. To minimize the effects
of this noise, the raw data sets were filtered using a four-pole
elliptic low-pass filter with a cutoff frequency of 20 Hz. In [17]
the dipole localization errors due to registration of the MEG
data to the X-ray CT images of the phantom and to extraction of
the dipole locations from the CT images were estimated to be
2–3 mm. All localization experiments presented in this paper
utilized a RAP-MUSIC search incorporating a single locally
fitted sphere forward model [10].

B. Phantom Localization Experiments

Spatiotemporal data collected in the phantom experiment de-
scribed above were used to construct multiple dipole data-sets
possessing correlated time sequences. Given two dipoles with
sinusoidal time-series of the same frequency, the desired cross
correlation was obtained by adding an appropriate phase shift.
This technique was limited to two sinusoidal time-series since a
third phase-shifted sinusoid can be represented as a linear com-
bination of the other two. Additional data-sets were created by
resampling the original 10-Hz time series to 5.71 Hz. Using this
technique, a set of four dipoles were constructed. The time-se-
ries cross correlation was 0.41 between dipoles 1 and 3 and 0.54
between dipoles 2 and 4.

Multiple dipole data sets were constructed by adding together
the time-series associated with each of the dipoles of interest.
In order to avoid any potential transient effects that may have
occurred at the time of dipole switching during the original
phantom study, only the central 800 ms (400 samples) of the
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TABLE III
PHANTOM STUDY: RAP-MUSIC DIPOLE SEARCH RESULTSUSING FOUR ONE-DIPOLAR TASK DATA AND TWO ONE-DIPOLAR CONTROL DATA. RESULTSSHOWN

FOR DIRECT RAP-MUSIC LOCALIZATION ON TASK DATA AND PAIRED RAP-MUSIC LOCALIZATION USING TASK AND CONTROL DATA

Fig. 7. Plot of recovered time series for target sources 2 and 3 using low SNR single-epoch phantom data for the case summarized in Table III. Task data consisted
of four 1-dipolar sources while Control data consisted of two 1-dipolar sources. Time series estimation performed using equation (20). A 10-Hz and 5.71-Hz
sinusoid (representing the true time series) are shown for reference with a broken line.

TABLE IV
RAP-MUSIC DIPOLE SEARCH RESULTSUSING TWO ONE-DIPOLAR AND ONE TWO-DIPOLAR SOURCE IN TASK DATA AND ONE ONE-DIPOLAR AND

ONE TWO-DIPOLAR SOURCE IN CONTROL DATA. RESULTS SHOWN FOR DIRECT RAP-MUSIC LOCALIZATION ON TASK DATA AND

PAIRED RAP-MUSIC LOCALIZATION USING TASK AND CONTROL DATA

each 1.0-s data set were utilized. To ensure that Task and Control
data sets each contained independent noise samples, a separate
dipole time-series realization was utilized in each data set. The
results of two localization experiments using correlated Task
and Control data are shown in Table III for a case using dipoles
1–4 in the Task data and dipoles 1 and 2 in the Control data.
Baseline localization using the Task data was able to locate all
four dipoles. The paired RAP MUSIC search using the Control
data to block dipoles 1 and 2 resulted in detection of dipoles 3

and 4. When compared to the phantom truth data, the localiza-
tion error using the Paired-RAP method showed a slight increase
(2.7 mm) in the case of dipole 4 and a slight decrease (2.4 mm)
in the case of dipole 3. The time series for the two Target sources
in the Task data are shown in Fig. 7. Note that the method is able
to extract the Target time courses even when they are correlated
with the sources in the Control.

A second example used two synchronous dipoles and one
independent dipole in the Control, as shown in Table IV. The
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Task data contained these sources plus a second dipole. Again,
the Paired RAP MUSIC method was able to localize the Target
source in the Task data. In this case, a slight increase in error
(1 mm) was observed. In both examples, a slight decrease in the
subspace correlation using the Paired RAP-MUSIC method was
also observed.

VI. CONCLUSION

We have presented a new method for extracting source ac-
tivity from paired MEG data where the objective is to identify
source activity occurring in the Task data but not in the Control.
The method presented is based on the RAP-MUSIC algorithm,
a variant of the well-known MUSIC algorithm. A key feature of
the RAP-MUSIC algorithm is the orthogonal projection oper-
ator which effectively “removes” the subspace associated with
previously located source activity. In the Paired RAP-MUSIC
method, the orthogonal projection operation is extended to in-
clude the signal subspace of the Control data.

Computer simulation and phantom studies show the Paired
RAP-MUSIC method is effective at blocking out Control
source activity and identifying Target source activity. In ad-
dition to simple point-dipolar sources, effective blocking of
more complicated sources was demonstrated. Synchronously
activated sources present a challenge given that their subspace
collapses into a subspace different than that of the individual
sources. Direct localization of complex sources (using subspace
based methods) is often difficult given that the combinatorics
associated with testing multiple-dipole forward models is often
prohibitive. While distributed source activity may be difficult
to localize, knowledge of its subspace is sufficient to effectively
block the source via application of the orthogonal projection
operator.

Localization accuracy of Target source activity using the
Paired RAP-MUSIC method was found to be nearly equivalent
to results obtained by performing direct RAP-MUSIC localiza-
tion on the entire Task data-set. In some cases, the paired-RAP
method produced superior localization results, whereas in
other cases direct localization produced better results. This was
observed in both the simulation and phantom studies where
differences in localization accuracy were within 3 mm.

Computer simulation and phantom study results show this
method to be effective in cases where the cross correlation
between Task and Control source time-series was significant
(values of 0.3–0.6 were tested in this study). In comparison,
the method presented in [3] was shown to be ineffective in
cases where source activity possessed significantly correlated
time-series. The Paired RAP-MUSIC method was also shown
to be effective in the case of a multiepoch computer simulation
where random signal “jitter” (amplitude and latency variations)
occurs between epochs and data-sets. A straightforward expres-
sion for estimating the time-series associated with Target source
activity (20) was also presented and validated in simulation and
phantom studies.

Although the methods presented in this paper focus on the
MEG inverse problem, the results are directly applicable to the
EEG inverse problem after application of the appropriate for-
ward model.
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