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Source Localization Using Recursively
Applied and Projected (RAP) MUSIC

John C. Mosher and Richard M. Leahy

Abstract—A new method for source localization is described
that is based on a modification of the well-known MUSIC algo-
rithm. In classical MUSIC, the array manifold vector is projected
onto an estimate of the signal subspace. Errors in the estimate
of the signal subspace can make localization of multiple sources
difficult. Recursively applied and projected (RAP) MUSIC uses
each successively located source to form an intermediate array
gain matrix and projects both the array manifold and the signal
subspace estimate into its orthogonal complement. The MUSIC
projection to find the next source is then performed in this
reduced subspace. Special assumptions about the array manifold
structure, such as Vandermonde or shift invariance, are not
required. Using the metric of principal angles, we describe a
general form of the RAP-MUSIC algorithm for the case of
diversely polarized sources. Through a uniform linear array
simulation with two highly correlated sources, we demonstrate
the improved Monte Carlo error performance of RAP-MUSIC
relative to MUSIC and two other sequential subspace methods: S
and IES-MUSIC. We then demonstrate the more general utility
of this algorithm for multidimensional array manifolds in a
magnetoencephalography (MEG) source localization simulation.

Index Terms—Array signal procesing, EEG, MEG, MUSIC,
signal subspace, source localization.

I. INTRODUCTION

SIGNAL subspace methods in array processing encompass
a range of techniques for localizing multiple sources by

exploiting the eigenstructure of the measured data matrix.
Multiple signal classification (MUSIC) [1], [2] and its many
variants are among the more frequently studied subspace
methods [3]. The attractions of these MUSIC methods are
twofold. First, they can provide computational advantages over
direct least squares methods in which all sources are located
simultaneously. More importantly, they also allow exhaustive
searches over the parameter space for each source, thereby
avoiding potential problems with local minima encountered
in searching for multiple sources over a nonconvex error
surface. Subspace methods have been most widely studied in
application to the problem of direction of arrival estimation for
narrowband linear equally spaced arrays. Other applications
involve broadband and near-field sources and arrays with
arbitrary element locations. In these cases, range and azimuth
may become additional parameters over which the search must
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be conducted. The problem can become even more involved
when the sources are diversely polarized, such that the ar-
ray manifolds required to model the sources with unknown
polarization become multidimensional. Subspace methods can
also be applied to nontraditional array processing problems,
for example, the localization of quasistatic electromagnetic
sources from electrophysiological and meteorological data [4],
[5].

One important application of subspace methods is to
the localization of equivalent current dipoles in the human
brain from measurements of scalp potentials or elec-
troencephalogram (EEG) and external magnetic fields or
magnetoencephalogram (MEG) (collectively E/MEG) [6].
These current dipoles represent the foci of neural current
sources in the cerebral cortex associated with neural activity
in response to sensory, motor, or cognitive stimuli. In this case,
the current dipoles have three unknown location parameters
and an unknown dipole orientation (which is modeled in
a similar way to the polarization vector in the diversely
polarized source problem treated in [1], [2], and [7]). A direct
search for the location and orientation of multiple sources
involves solving a highly nonconvex optimization problem.
Problems with convergence to local minima have motivated
other E/MEG researchers to resort to search strategies such
as simulated annealing and the use of genetic algorithms. As
an alternative approach, we investigated a signal subspace
approach based on the MUSIC algorithm [4], [8]. However,
two problems often arise in practice. First, errors in estimating
the signal subspace can make it difficult to differentiate
“true” from “false” peaks in the MUSIC metric. Second,
automatically finding several local maxima in the MUSIC
metric becomes difficult as the dimension of the source space
increases.

Recursively applied and projected (RAP)-MUSIC over-
comes these problems by using a recursive procedure in which
each source is found as the global maximizer of a different cost
function. In essence, the method works by applying a MUSIC
search to a modified problem in which we first project both
the estimated signal subspace and the array manifold vector
away from the subspace spanned by the sources that have
already been found. We describe the RAP-MUSIC method
using principal angles [9], which provide a framework for
comparing signal subspaces and have previously been used in
other related subspace signal processing problems [2], [10],
[11], [12]. Since we are primarily interested in the E/MEG
source localization problem, we have restricted our attention
to methods that do not impose specific constraints on the
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form of the array manifold. For this reason, we do not
consider methods such as ESPRIT [13] or ROOT-MUSIC [3],
which exploit shift invariance or Vandermonde structure in
specialized arrays.

In Sections II and III, we briefly review the problem for-
mulation, and for comparative purposes, we describe classical
MUSIC in terms of principal angles. We then develop RAP-
MUSIC in Section IV for the general case of “diversely
polarized” sources [1], [2], [7]. A comparison of this method,
both in terms of formulation using principal angles and Monte
Carlo performance evaluation, is presented for three alternative
sequential algorithms: S-MUSIC [14], IES-MUSIC [15] and
R-MUSIC [16]. We then present an MEG example to highlight
diversely polarized applications. A preliminary version of this
work was presented in [17].

II. BACKGROUND

We consider the problem of estimating the parameters of
sources impinging on an -sensor element array. Each

source is represented by an (possibly complex) ar-
ray manifold vector Each source parameter may
be multidimensional, and the collection of themanifold
parameters is designated The manifold
vectors collectively form an array transfer matrix

(1)

which we assume to be of full column rankfor any set of
distinct source parameters, i.e., no array ambiguities exist.
Associated with each array manifold vector is a time series

, and the data are acquired as ,
where is the vector of time series at time The additive
noise vector is assumed to be zero mean with covariance

, where superscript “” denotes the
Hermitian transpose.

The autocorrelation of can be partitioned as

(2)

where we have assumed that the time series are uncorrelated
with the noise. We assume that the correlation of the signal
time series yields a full rank matrix , and

can be eigendecomposed as , where
contains the eigenvectors corresponding to the nonzero

eigenvalues, and span The eigenvalues
of this decomposition combine with the noise covariance to
form with the eigenvalues in the diagonal

arranged in decreasing order. The diagonalcomprises
the repeated eigenvalues , and contains the
corresponding eigenvectors. Thus, (2) represents the
well-known partitioning of the covariance matrix intosignal
subspace span and noise-only subspacespan
terms.

Let denote the sample covariance. We designate the first
eigenvectors of as , i.e., a set of vectors that span

our estimate of the signal subspace; similarly, we designate

the estimated noise-only subspace using the remaining
eigenvectors.

Finally, we generalize the array manifold vector for the
case of vector sources representing, for instance, diverse
polarization [1], [2], [7], in conventional array processing
or current dipoles in EEG and MEG source localization
[8]. In this case, the array manifold vector is the product
of a multidimensional array manifold or gain matrix and a
polarization or orientation vector

(3)

and we may view the parameter set for each source as
, comprising quasilinear orientation parametersand

nonlinear location parameters

III. M USIC AND PRINCIPAL ANGLES

The MUSIC algorithm [1], [2] finds the source locations
as those for which the corresponding array manifold vector is
nearly orthogonal to the noise-only subspace or, equivalently,
projects almost entirely into the estimated signal subspace.
For the diversely polarized case, the problem becomes more
complex since the signal or noise-only subspaces must be
compared with the entire span of the gain matrix A
natural way to compare these two subspaces is through use of
principal angles[9] or canonical correlations(i.e., the cosines
of the principal angles) (cf., [11]).

Let denote the minimum of the ranks of two matrices
and The canonical or subspace correlation is a vector

containing the cosines of theprincipal angles that reflect the
similarity between the subspaces spanned by the columns of
the two matrices. The elements of the subspace correlation
vector are ranked in decreasing order, and we denote the
largest subspace correlation (i.e., the cosine of the smallest
principal angle) as

(4)

If , then the two subspaces have at least
a one-dimensional (1-D) subspace in common. Conversely, if

, then the two subspaces are orthogonal.
These subspace correlations are readily computed using SVD’s
as described in [9].

The MUSIC algorithm finds the source locations as those
for which the principal angle between the array manifold
vector and the noise-only subspace is maximum. Equivalently,
the sources are chosen as those that minimize the noise-
only subspace correlation or maximize the
signal subspace correlation Since the first
argument is a vector and the second is already orthogonalized,
the square of this signal subspace correlation is easily shown
to be

(5)

where the right-hand side is the standard metric used in
MUSIC [1], [2].

Principal angles can also be used to represent the MUSIC
metric for multidimensional array manifolds represented by
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in (3). In this case, the algorithm must compare the
entire space spanned by with the signal subspace. A
linear combination of the columns of that lies entirely
in the signal subspace yields , which
indicates the presence of a source with nonlinear parameters
It is again straightforward to equate the subspace correlation
with Schmidt’s metric for diversely polarized MUSIC:

(6)

where contains the left singular vectors of , and
is the maximum eigenvalue of the enclosed expres-

sion.
The nonlinear source locationscan be found as those for

which (6) is approximately unity. The direction of polarization
(in the diversely polarized case) or the dipole orientation (in
MEG and EEG) is then found as the normalized quasilinear
parameter vector that must be multiplied by to produce
the array manifold vector that lies in the span The
quasilinear parameters can be derived from the eigenvector
corresponding to the maximum eigenvalue in (6). Equiva-
lently, the singular vectors from the SVD’s performed to
compute can be used to form [9], [16].

IV. RAP-MUSIC

If the -dimensional signal subspace is estimated perfectly,
then the sources are simply found as theglobal maximizers
of (6). Errors in our estimate reduce (6) to a function with
a single global maximum and at least local maxima.
Finding the first source is simple: Over a sufficiently densely
sampled grid of the nonlinear parameter space, find the
global maximum of

(7)

We then extract the corresponding eigenvector in (6) to form
the quasilinear parameter estimate The estimate of the
parameters of the first source is denoted , and
the first estimated array manifold vector is formed as

(8)

Identifying the remaining local maxima becomes more
difficult since nonlinear search techniques may miss shallow
or adjacent peaks and return to a previous peak. We also
need to locate the best peaks rather than any local
maxima. Numerous techniques have been proposed in the past
to enhance the “peak-like” nature of the spectrum (cf. [3], [10])
so that identifying these peaks becomes simpler. In highly
correlated or closely spaced sources, the peaks become almost
indeterminate, as shown in Fig. 1. These “peak-picking” algo-
rithms rapidly become complex and subjective as the number
of sources and the dimensionality ofincrease.

The novelty of RAP-MUSIC is to avoid this peak-picking
problem entirely. We instead remove the component of the
signal subspace that is spanned by the first source and then
perform a search to find the second source as the global
maximizer over this modified subspace. In this way, we replace
the problem of finding local maxima with one in which

Fig. 1. Two sources arrive from 25 and 30� at a uniform linear array. The
MUSIC metric (5) is plotted as a function of the angle of arrival. The two
peaks are not readily discernible, as shown in the inset enlargement. An
algorithm must be trained to “peak-pick” the second source, shown here at
30�. Such algorithms must also distinguish between the two “true” peaks
and all other “local” peaks, as illustrated in this figure. The projected forms
of MUSIC presented in this paper make detection of the second peak more
obvious as well as improve statistical performance in locating the sources.

we find the sources as global maxima over their respective
modified signal subspaces.

The method can be viewed simply in terms of the subspace
correlation functions described above. Define the orthogonal
projector for as

(9)

and apply this operator to both arguments of the
function. The second source is then found as the global
maximizer

(10)

Here, we have projected both our signal subspace esti-
mate and the multidimensional array manifold away from the
first solution and then found the maximum subspace correla-
tion (minimum principal angle) between these two projected
spaces. After the maximization, the quasilinear parameters are
again easily extracted, and the second array manifold vector is
estimated as We then form the orthogonal
projection operator for the combination of the first two sources
and proceed recursively.

By extension, the th recursion of RAP-
MUSIC is

(11)

where we define

(12)

as formed from the array manifold estimates of the previous
recursions, and

(13)
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is the projector onto the left null space of The recursions
are stopped once the maximum of the subspace correlation in
(11) drops below a minimum threshold.

Practical considerations in low-rank E/MEG source local-
ization lead us to prefer the use of the signal rather than the
noise-only subspace [17]. The development above in terms
of the signal subspace is readily modified to computations in
terms of the noise-only subspace. Our experience in low-rank
forms of MUSIC processing is that the determination of the
signal subspace rank need not be precise, as long as the user
conservatively overestimates the rank. The additional basis
vectors erroneously ascribed to the signal subspace can be
considered to be randomly drawn from the noise-only subspace
[11]. As we described above, RAP MUSIC removes from
the signal subspace the subspace associated with each source
once it is found. Thus, once the true rank has been exceeded,
the subspace correlation between the array manifold and the
remaining signal subspace should drop markedly, and thus,
additional fictitious sources will not be found.

V. OTHER SEQUENTIAL FORMS OF MUSIC

We now compare RAP-MUSIC with three other sequential
forms: R-MUSIC [16], S-MUSIC [14] and IES-MUSIC [15].
All of the methods used in our comparison find the first
source in the same way, i.e., as the global maximizer of

The manner in which the subsequent
sources are found differs for each method.

A. R-MUSIC

In [16], we introduced a preliminary version of RAP-
MUSIC that we refer to as R-MUSIC. The algorithm differs
from RAP-MUSIC in the manner in which the sources that
have already been found are used to alter the search for the
next. In contrast to (11), theth recursion of
R-MUSIC is

(14)

where denotes the th element of
the subspace correlation (i.e., the cosine of theth ordered
principal angle) between the estimated signal subspace and
the concatenation of , which are the array manifold
vectors for sources already found, and , which is the
array gain matrix. The basis for this method is as follows.
The sources already found produce a matrix
whose column space is (approximately) contained in span
and, hence, will yield principal angles (approximately)
equal to zero. Once the true parameteris found in ,
then the matrix should yield principal angles
approximately equal to zero. Equivalently, theth ordered
subspace correlation in (14) should be close to unity.

B. S- and IES-MUSIC

We now simplify the presentation to the case of two
nonpolarized sources that is treated in [14] and [15]. In S-
MUSIC [14], we apply the projection operator (9) to the array

manifold, but not the signal subspace, and find the second
source as , where

(15)

In IES-MUSIC [15], the denominator of (15) is dropped,
and the modification used is

(16)

where This measure is equivalent to
S-MUSIC for and MUSIC for In [15], an
optimal complex scalar is derived for the case of two sources,
which minimizes the theoretical asymptotic error variance of
the second source. However, this scalar requires knowledge
of the two sources and Since these parameters are
unknown, IES-MUSIC first obtains the estimated locations
and from another approach, such as MUSIC, from which
it forms the estimate After this step, is maximized
to find the second source.

For this nonpolarized two-source problem, these algorithms
may be summarized and compared using the subspace corre-
lation function as follows.

MUSIC:

(17)

S-MUSIC:

(18)

IES-MUSIC defined in [15]):

(19)

R-MUSIC:

(20)

RAP-MUSIC:

(21)

In (18) and (19), the first argument is a vector, and the
second argument is already orthogonal. Thus, (18) and (19)
are readily seen to be equivalent to (15) and (16), respectively,
using, for instance, (5). When viewed in terms of the subspace
correlations, we see that the clear difference between RAP-
MUSIC and the other sequential forms is that the projection
operator is applied to both arguments before computing the
subspace correlation rather than just to the array manifold, as
in the case of S- and IES-MUSIC.

VI. SIMULATIONS

We present two different simulations in order to show both
the performance and the utility of RAP-MUSIC. The first
simulation is a conventional two-source uniform linear array
example to compare with the other sequential forms. The
second simulation is a three-source multidimensional manifold
example, localizing three dipoles in three-dimensional (3-D)
space in an MEG application.
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TABLE I
COMPARISON OFANALYTIC STANDARD DEVIATIONS AND RMS ERROR. THE NUMBER OF TIME SAMPLES REMAINS CONSTANT AT 1000,AND THE

CORRELATION BETWEEN THE TWO SOURCES ISVARIED. FOR EACH OF THE 2000 MONTE CARLO REALIZATIONS, SOURCE 1 (EITHER 25 OR

30�) WAS SELECTED AS THE SOURCE WITH THE HIGHEST MUSIC PEAK. THE THEORETICAL STANDARD DEVIATION [15] AND ROOT MEAN

SQUARED (RMS) ERROR OF THESECOND SOURCE IS TABULATED. IES-MUSIC IS SHOWN WITH ITS SCALAR SET USING BOTH TRUE AND

ESTIMATED VALUES. MUSIC WAS UNRELIABLE IN LOCATING THE SECOND PEAK FOR  = 0:975, AS ILLUSTRATED IN FIG. 1

A. Narrowband Uniform Linear Array Example

We follow the simulations in [15] in order to draw perfor-
mance comparisons between the various sequential forms of
MUSIC. The sensor array is the conventional uniform linear
array of sensors spaced a half-wavelength apart. The sources
are farfield narrowband and impinging on the array from
scalar direction The array manifold vector may therefore
be specified as

(22)

where is broadside to the array, and
The source time series are assumed to be complex zero-mean
Gaussian sequences with covariance matrixWe assume 15
sensor elements and two sources at 25and 30. The source
covariance matrix is specified as

(23)

where determines the degree of correlation between
these two sources of equal power. The variance of the noise
is set to unity, such that the signal to noise power ratio is
also unity.

We simulate samples of both the signal and noise, form the
estimated data covariance matrix, and then extract the matrix

comprising the two estimated signal subspace vectors.
The noise variance is estimated as the mean of the noise-
only subspace eigenvalues. For each realization, we find the
maxima of the MUSIC measure in a region about each of
the true solutions. The source with the better correlation is
considered source The second source is then found by
maximizing the appropriate measure (17)–(21). In [15], closed-
form formulae are presented for calculating the theoretical
error variance of MUSIC, S-MUSIC, and IES-MUSIC.

Since IES-MUSIC is a “two-pass” algorithm, i.e., it requires
an initial estimate of both source parameters, we used the RAP-
MUSIC source estimates for the initial estimate in our Monte
Carlo study, as the RAP-MUSIC solution was on average
superior to the MUSIC and S-MUSIC estimates. We also ran
as a comparison IES-MUSIC with set to the optimal value
found using the true source angles. For each estimator, we
calculated a numerical root mean squared (RMS) error,

RMS (24)

where represents the estimate from theth Monte Carlo
run. In each of these 2000 runs, we determined which of the
two MUSIC peaks in the regions about the true answer was
greater and declared this source asWe then estimated the
second source and tabulated the actual number of runs used
for both 20 or 30 , which is approximately evenly split
at about 1000 Monte Carlo runs each.

In Table I, we held the number of time samples constant at
and varied the degree of correlation between the two

sources. For uncorrelated sources ( ), all measures per-
formed similarly, as also demonstrated in [15]. The differences
in performance begin to arise as we increase the correlation to

, where we observe that IES-MUSIC and RAP-MUSIC
have RMS error about 25% better than MUSIC and S-MUSIC
and 50% better than R-MUSIC. At , we see that
RAP-MUSIC continues to have performance comparable with
that of perfect IES-MUSIC but that estimated IES-MUSIC is
beginning to degrade in comparison; MUSIC and S-MUSIC
have RMS error almost twice that of IES-MUSIC and RAP-
MUSIC at this correlation, and R-MUSIC has the largest RMS
error.
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Fig. 2. From the first column of Table I, histogram of the source localization results for 1009 Monte Carlo runs, a correlation of 0.975 between the two
sources at 25 and 30�, and 1000 time samples per simulation. For the source at 25�, we see that R-MUSIC has the lowest bias, whereas RAP-MUSIC and
IES-MUSIC have developed a more noticeable bias toward the other source. Both RAP-MUSIC and IES-MUSIC, however, exhibit lower variance (� in the
legend) such that the RMS error of all four sequential techniques is approximately the same for this highly correlated case, as shown in Table I.

By , all methods are experiencing comparable
difficulty in estimating the sources and have deviated signif-
icantly from the theoretical variances. MUSIC is particularly
poor at this correlation since in many trials, an adequately
detectable peak did not occur in the region around the true
answer, as illustrated in Fig. 1. In Fig. 2, a histogram of
Monte Carlo results for this highly correlated case shows
the bias and variance differences between the competing
sequential techniques. Both S-MUSIC and R-MUSIC appear
much less biased but have higher variance than IES-MUSIC
and RAP-MUSIC, such that all techniques exhibit similar
RMS performance for this highly correlated case. At a slightly
lower correlation ( ), the bias drops markedly in all
techniques to 0.1 or less, such that the RMS error reflects
more closely the standard deviation of each technique.

In general, the RMS error of MUSIC and S-MUSIC match
the theoretical asymptotic error variances established in [15]
quite well, but the theoretical calculations for IES-MUSIC
tend to underestimate RMS error. IES-MUSIC performance
using the optimally designed agrees quite well with the
theoretical values, but this performance obviously requires
prior knowledge of the true solution. RAP-MUSIC consistently
maintains an improved RMS error over that of IES-MUSIC,
and we note again that IES-MUSIC depends on some other
technique in order to arrive at an initial set of source estimates.

These RMS errors were calculated at a relatively large num-
ber of time samples. We also tested small sample performance
in which we held the correlation constant at and varied

the number of time samples. As shown in Table II, at lower
numbers of time samples, we generally had a difficult task
determining a second MUSIC peak, and the MUSIC results
were unreliable. As in Table I, RAP-MUSIC consistently
maintained improved performance over the other methods.

B. MEG Simulation

We now illustrate the ability of RAP-MUSIC to extract
multiple current dipole sources in the brain from MEG data.
See [8] and [16] for more details of the formulation and
[6] for an introduction to this problem. Compared with the
narrowband simulation above, the MEG source localization
problem has several additional difficulties. Each dipolar source
has a 3-D location parameter and an additional 3-D quasi-
linear parameter for the orientation of the source. The under-
lying physics of quasi-static electromagnetics yields an array
manifold that may exhibit partial array ambiguities for multiple
sources, complicating the 3-D peak search. The sources of
interest usually have transient time courses that limit the
number of time samples that can be used for localization.

In this simulation, we make the simplifying assumption
that the brain is a spherical homogenous conductor so that
closed-form expressions are available for the external magnetic
fields produced by the current dipoles. We arrange 229 radially
oriented sensors about 2 cm apart on the upper hemisphere of
a 12 cm virtual sphere. Each sensor is modeled as a first-order
gradiometer with a baseline separation of 5 cm. For exemplary
purposes, we arrange three sources in the same-plane:
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TABLE II
NUMBER OF TIME SAMPLES IS NOW VARIED, WHEREAS THE CORRELATION BETWEEN THE TWO SOURCES IS HELD CONSTANT AT 0.9.

AS IN TABLE I, FOR EACH OF THE 2000 MONTE CARLO REALIZATIONS, SOURCE 1 (EITHER 25 OR 30�) WAS SELECTED AS

THE SOURCE WITH THE HIGHEST MUSIC PEAK. MUSIC WAS UNRELIABLE IN LOCATING THE SECOND PEAK FOR n = 100

Fig. 3. Simulated MEG data for 229 sensors by 50 time snapshots. True sources are three asynchronous fixed dipoles. Gaussian white noise was added
such that the squared Frobenius norm of the noiseless data matrix was 3.16 times that of the noise-only matrix, i.e., 10 dB SNR. The signal subspace
was overspecified to be rank 5.

cm. We fix the orientation of each source and assign each
an independent time series. We then add white Gaussian i.i.d.
noise on each sensor channel. The noiseless and noisy data
are displayed in Fig. 3.

An SVD of the noisy spatio-temporal data matrix clearly
showed the signal subspace to be rank three; however, to
illustrate insensitivity to rank overselection, we chose a signal

subspace of rank five. We created a 1.5-mm–spaced grid in
the correct -plane and computed the 3-D gain matrix
for each location on the grid. We then computed the standard
MUSIC metric (5) between each gain matrix and the rank five
signal subspace. The result is shown in Fig. 4 as the image

, where is the value of at
each grid point.
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Fig. 4. MUSIC scan of MEG dipolar models, imaging the subspace cor-
relation between model and signal subspace in the planez = 7:0 cm. The
arrows indicate the true locations. The noise and partial ambiguities of dipolar
models makes discerning each peak difficult, particularly in three dimensions;
the circle indicates a source location nearly ambiguous with the three true
solutions. The maximum correlation was located in the grid and then used to
initiate a directed search for a refined maximum of 99.3% correlation at the
correct solution of [�1.0,�1.0, 7.0] cm (rounded to 1 mm).

Note that in Fig. 4, three peaks correspond to the correct
dipole locations, and a fourth peak (indicated by the circle)
represents an incorrect location. This fourth peak corresponds
approximately to a dipole location that would give a local
minimum in a least squares search. Since the height of the
peak corresponding to this incorrect source location was nearly
that of the third true source location, a MUSIC scan that
picks out the three largest peaks could mislocate one of the
dipoles. Similarly, since we have overspecified the true signal
subspace rank, we might erroneously infer that there were four
sources. This incorrect location was the cumulative result of
the partial correlations of the three correct locations yielding
a near ambiguous additional solution. As we will see below,
RAP-MUSIC avoided this problem.

The initial location of the first source was taken as the global
maximum on the grid in Fig. 4. We refined the estimated
location of this first source by searching between the grid
points using a Nelder–Meade simplex method to find the
source point of maximum correlation. We then projected the
signal subspace, and the gain matrices for each grid point,
away from the subspace spanned by the array manifold vector
for the first source and then ran the second recursion of
RAP-MUSIC, i.e., computed the subspace correlation in (10).
In Fig. 5, we see the image resulting from computing these
subspace correlations for each grid point, and we note that
the first source is now suppressed. We again performed a
directed search about the maximum on the grid to refine the
location of the second source. With the second source located,
we again extracted its orientation and formed the two-source
array manifold matrix (12). Each grid point and the signal
subspace were then projected away from the span of this

Fig. 5. MUSIC scan of subspace correlation after projecting both the mani-
fold and signal subspace away from the solution of Fig. 4. The MUSIC peak
from the first source is suppressed, and we readily performed a directed-search
for the maximum of this second correlation: 99.3% at [1.0, 0.6, 7.0]. The true
solution is 1 mm different at [1.0, 0.5, 7.0]. Note the increased suppression
of the ambiguous source indicated in Fig. 4.

Fig. 6. MUSIC scan of subspace correlation after projecting away the first
two solutions. The MUSIC peaks from the first two sources are suppressed,
and we readily performed a directed-search for the maximum of this third
correlation: 99.2% at [0, 0.1, 7.0]. The correct solution is 1 mm away, [0.0,
0.0, 7.0]. The search for a fourth solution yielded a principal correlation of
only 26.7%, halting the recursion.

matrix and the subspace correlations computed according to
(11). The resulting image of the subspace correlations used
to find the third source are displayed in Fig. 6. Again, a
directed-search algorithm refined the location of the maximum.
Repeating the process to look for a fourth source, we found
a maximum correlation over the set of grid points of 27%,
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indicating that there were no additional identifiable sources
present.

This single example is included to demonstrate the potential
of RAP MUSIC in higher dimensional source localization
problems and to emphasize that the method can cope with
overestimation of the dimension of the signal subspace. A
more detailed evaluation of the performance of this approach
in MEG source localization and extensions to the case of
synchronous dipolar sources and nondipolar sources will be
presented in a future publication.

VII. CONCLUSIONS

We have presented a novel framework, based on the prin-
cipal angles between subspaces, in which to view MUSIC
and its variations. The MUSIC methods replace the search
for multiple sources with procedures for separately identifying
each source. For multiple sources, classical MUSIC requires
the identification of multiple local maxima in a single metric.
Although it is straightforward to identify the first source using
the global maximum of this metric, finding subsequent sources
requires a peak-picking procedure and can lead to errors,
particularly when these sources are weak or strongly correlated
with the first source. The other sequential MUSIC forms
presented here are measures designed to make localization of
the second source more straightforward. Our modifications (R-
MUSIC and RAP-MUSIC) are derived from a canonical corre-
lations perspective. Our original R-MUSIC algorithm, which
has been derived for MEG research, had error performance
comparable to S-MUSIC, but the numerical studies presented
here show RAP-MUSIC to yield improved performance over
the other forms of MUSIC when the sources are highly
correlated; all of the techniques performed well for uncor-
related or slightly correlated cases. Extensions of the RAP-
MUSIC approach to many sources and higher dimensionality
of the manifold are also more straightforward than the other
sequential forms. Finally, the recursive nature of RAP-MUSIC
allows the automatic termination of the search for additional
sources when the signal subspace rank is overestimated.
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