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Abstract—The parameters of the prior, the hyperparameters,
play an important role in Bayesian image estimation. Of par-
ticular importance for the case of Gibbs priors is the global
hyperparameter, �, which multiplies the Hamiltonian. Here we
consider maximum likelihood (ML) estimation of � from incom-
plete data, i.e., problems in which the image, which is drawn
from a Gibbs prior, is observed indirectly through some degra-
dation or blurring process. Important applications include image
restoration and image reconstruction from projections. Exact ML
estimation of � from incomplete data is intractable for most
image processing. Here we present an approximate ML estimator
that is computed simultaneously with a maximuma posteriori
(MAP) image estimate. The algorithm is based on a mean field
approximation technique through which multidimensional Gibbs
distributions are approximated by a separable function equal to
a product of one-dimensional (1-D) densities. We show how this
approach can be used to simplify the ML estimation problem.
We also show how the Gibbs–Bogoliubov–Feynman (GBF) bound
can be used to optimize the approximation for a restricted class
of problems. We present the results of a Monte Carlo study that
examines the bias and variance of this estimator when applied to
image restoration.

I. INTRODUCTION

BAYESIAN approaches to inverse problems in image pro-
cessing typically involve computing a point estimate of an

unknown image from a set of data . We assume
that the two quantities are related by a known conditional
probability, . This conditional probability or likelihood
function is dependent on the imaging modality and is problem
specific. The estimate of is computed as a function of the
posterior density , which requires the specification of
a prior density in addition to the likelihood function. In
the context of Bayesian image estimation, the parameters of
the prior are referred to ashyperparameters. In this paper, we
address the problem of estimating these parameters in the case
where it is not possible to observe the true imagedirectly.
We describe a practical method for estimating hyperparameters
from observations of the data . We begin by briefly
reviewing two models for image restoration and reconstruction
for which this method is applicable.

One of the most widely addressed models in image restora-
tion and reconstruction is the linear Gaussian model

, where is the observed data, is the underlying
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image, is zero-mean Gaussian noise with covariance matrix
and matrix is a linear degradation operator. Then

(1)

A second common model is the linear Poisson model, which
arises in problems where the data acquisition system is photon
limited, e.g., emission tomography, gamma-ray astronomy,
and fluorescence microscopy. In this model, the mean ofis
related to the image by a linear operator , i.e.,
and follows a joint Poisson distribution

(2)

The objective of the inverse problems of interest here, is to
obtain a point estimate of from the observation . Since
is often ill-conditioned, direct inversion based on maximizing
the likelihood function does not always provide a unique and
stable solution. Bayesian methods solve this type of ill-posed
inverse problem by combining information contained in the
observed data with prior information concerning the relative
probabilities of possible solutions. The unknown image can
then be estimated by maximizing over the posterior density

to form a maximum a posteriori(MAP) estimate.
The posterior density is proportional to the product of the
likelihood function , and a prior on the image, .
Usually the prior reflects an expectation that images are locally
smooth. Markov random fields (MRF’s) [3], [10], [24] have
been widely used to model local smoothness in images and
will be the class of priors considered here. The joint density
for the MRF has the form of a Gibbs distribution

(3)

where is the Gibbs energy function, is the partition
function, and is the global hyperparameter.

Image estimation using MRF priors has proven to be a
powerful approach to restoration and reconstruction of high-
quality images. However, a major problem limiting its utility
is the lack of a practical and robust method for selecting the
parameters of the prior. Of particular importance for the case
of homogeneous isotropic MRF’s is the global hyperparameter

, which multiplies the Gibbs energy function. MAP estimates
of the image are clearly functions of , which controls
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the balance of influence of the Gibbs prior and that of the
likelihood. If is too large, the prior will tend to have an
over-smoothing effect on the solution. Conversely, if it is too
small, the MAP estimate may be unstable, reducing to the ML
solution as goes to zero.

To illustrate the effect of the hyperparameter on the MAP
estimate, we show two curves in Fig. 1 computed for a typical
application to image restoration. In Fig. 1(a), we have a typical

-curve [15], [40], which is a plot of the value of the Gibbs
energy versus the likelihood energy

, computed at the MAP solution for a range of values of
. We observe two characteristic parts on the curve, namely

a flat part where the MAP solution is dominated by the prior,
and an almost vertical part, where the solution is dominated
by the likelihood function. Heuristically, the region between
these two characteristic parts, i.e., the “corner,” corresponds
to a good balance between fidelity to the data and smoothness
of the solution. Fig. 1(b) shows a curve of the squared error
in the MAP estimate for a range of values. Here, it is clear
that an appropriate choice ofis necessary to achieve a small
error. Furthermore, we have observed that the corner of the

-curve corresponds to a value of the hyperparameterthat
is close to that which minimizes the squared error for the MAP
estimation problem described here (both points are indicated
by *). Similar observations were made in [15] concerning the
more general regularization problem.

A truly Bayesian formulation requires either that the hy-
perparameters are known or that we specify a “hyperprior”
density. However, in practice the hyperparameters are often
unknown because the true images can never be observed
directly, and little evidence exists to justify an informative
hyperprior density. Even if is known, problems can arise if
there is an unknown gain factor in the transfer functionin (2)
or an unknown noise variance in (1). These problems can be
avoided if the hyperparameters are estimated directly from the
observed data. Data-driven selection of the hyperparameter is
often performed in an ad hoc fashion through visual inspection
of the resulting images. There are two basic approaches for
choosing in a more principled manner: i) treating as
a regularization parameter and applying techniques such as
generalized cross validation, the-curve, and goodness
of fit tests; and ii) estimation theoretic approaches such as
maximum likelihood (ML).

The generalized cross-validation (GCV) method [9] has
been applied in Bayesian image restoration and reconstruction
[18]. Several difficulties are associated with this method: The
GCV function is often very flat, and its minimum is difficult
to locate numerically [34]. Also, the method may fail to select
the correct hyperparameter when measurement noise is highly
correlated [35]. For problems of large dimensionality, this
method may be impractical due to the amount of computation
required. Hansen and Leary’s-curve is based on the em-
pirical observation that the corner of the curve, illustrated in
Fig. 1(a), corresponds to a good choice ofin terms of other
validation measures [15]. The-curve has similar performance
to GCV for uncorrelated measurement errors; however, the

-curve criterion also works, under certain restrictions, for
correlated errors [15]. We have used the-curve to select the

(a)

(b)

Fig. 1. Illustration of the quantitative effect of the global hyperparameter
using (a) theL-curve and (b) global mean squared error of restored image
versus �. Note that the value of� giving minimum squared error (�)
corresponds to the corner of theL-curve.

hyperparameter in MAP image reconstruction [40]. The corner
of the -curve is difficult to find without multiple evaluations
of the MAP solution for different hyperparameter values. Thus,
the computation cost is again very high. statistics have
been widely used to choose the regularization parameter [33].
For MAP image estimation, Hebertet al. [17] developed an
adaptive scheme based on a statistic to select . Since
the image is estimated from the data, the degrees of freedom
of the test should be reduced accordingly. This presents a
problem when the data and image are of similar dimension. It
has also been observed that methods tend to over-smooth
the solution [33].

As an alternative to the regularization based methods dis-
cussed above, a well-grounded approach to selection of the
hyperparameter is to apply ML estimation. The image, which
is drawn from thecomplete datasample space characterized
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by the parameter , is not observed directly. Instead, we ob-
serve a second processwhich is drawn from theincomplete
datasample space . The ML estimate of the hyperparameter
corresponds to the maximizer of the incomplete data likelihood
function , which is found by marginalization of the
joint probability density for the complete and incomplete data,

, over the complete data sample space. Selection
of the hyperparameter can therefore be viewed as an ML
estimation problem in an incomplete/complete data framework
and is a natural candidate for the expectation maximization
(EM) algorithm [8]. However, in most imaging applications,
the high dimensionality of the densities involved make the EM
approach impractical. Geman and McClure [11] propose using
a stochastic relaxation technique, such as a Gibbs sampler, to
evaluate the E-step of the EM algorithm. While this approach
provides a means of overcoming the intractability of the true
EM algorithm, the computational cost remains extremely high.
Markov chain Monte Carlo (MCMC) methods [4] have also
been used to solve the high dimensional integration involved
in ML estimation. Zhanget al. [39] and Saquibet al. [32] in-
corporate the MCMC method in EM algorithm to evaluate the
expectation function at the E-step. Geyer and Thompson [13]
propose a Monte Carlo maximum likelihood method which
uses MCMC methods to approximate the likelihood function
directly. The major disadvantage of the sampling methods
is their high computational cost. Other estimation methods
have been studied that do not share the desirable properties
of true ML estimation but have much lower computational
cost. Several generalized ML approaches have been described
[3], [19], [26] that make the simplifying approximation that
the ML estimate of and the MAP estimate of the image
can be found simultaneously as the joint maximizers of the
joint density of and . This approach works well in some
situations, but the crudeness of the approximation results in
poor performance in general. The method of moments (MOM)
[11], [25] defines a statistical moment of the incomplete data
that is ideally chosen to reflect the variability in the unob-
served image and to establish a one-to-one correspondence
between the moment value and the global hyperparameter.
Initial computational costs for this method are very large, but
the moment versus hyperparameter curve is independent of
the observed data and can be computed off line. For each
new data set the hyperparameter is determined by simply
comparing the computed statistic with the precomputed curve.
The major limitation in using this method is in finding a
statistic with sufficient slope that the hyperparameter can be
reliably determined. In practice, it has been observed that the
method performs well only for relatively small values of
[25]. Finally, a variational method is described in [1]. This
approach leads to a procedure similar to, but simpler than,
the EM algorithm. However, the computational cost remains
high, and few validation or experimental results have been
published for this method.

Here we return to the ML approach, but develop an approx-
imation that results in a reasonable computational cost. The
major difficulty in computing a true ML estimate of is in
evaluating the multidimensional integrals over the complete
data sample space , which occur in either evaluation of

the prior and posterior partition functions or the prior and
posterior expectation of Gibbs prior energy functions. We thus
approximate these Gibbs distributions with simple and separa-
ble densities so that the multidimensional integrals become
functions of one dimensional integrals. This approximation
renders the ML approach tractable. The approximation is
closely related to the mean field approximation methods of
statistical mechanics. In the mean field approach, the separable
approximation is achieved by replacing the statistical influence
of the neighbors of each pixel with their estimated means.
In our work, we use a mode-field rather than a mean-field
approximation, where the mode of the posterior density is
computed using a MAP image estimation algorithm. We use a
sequential updating scheme to estimate both the image and the
hyperparameter. Successive iterates of a MAP image estima-
tion algorithm are substituted in the mode-field approximation,
which in turn is used to update the hyperparameter estimate.

We present a brief summary of the problem formulation for
ML estimation of the hyperparameter from incomplete data in
Section II. We then describe our mean/mode field approach
to parameter estimation in Section III. We also describe how
an optimal approximation can be found in special cases using
the Gibbs–Bogoliubov–Feynman (GBF) bound [7]. We then
describe the application of this method to the problem of image
restoration in Section IV. Finally, in Section V, we present the
results of extensive Monte Carlo studies that examine the bias
and variance of this estimator for cases where the true value
of is known.

II. BACKGROUND

A. Gibbs Priors for Image Estimation

We will assume a homogeneous isotropic MRF model for
the image, , characterized by the Gibbs distribution

(4)

with Gibbs energy , partition function , and global
hyperparameter . The partition function is the scaling con-
stant

(5)

Here, we indicate explicitly that the partition function is
dependent on the hyperparameter.

We restrict the Gibbs energy to pairwise interactions on a
second-order (eight nearest-neighbor) system as follows:

(6)

where denotes the set of eight nearest neighbors of pixel
with unity for horizontal and vertical neighbors and

for diagonal neighbors. The image sample space is
where is the total number of pixels in

the image.
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(a) (b)

(c) (d)

Fig. 2. Plot of the potential functionsV (xi; xj) versus(xi � xj ) for the four Gibbs priors in (8): (a) quadratic, (b) Huber, (c) log-quadratic, and
(d) saturated quadratic.

The defining feature of a MRF is
. For the pairwise interaction model above,

the conditional density has the special form [24]

(7)

The specific potential functions, , used in this work
are as follows.

Quadratic function:

Huber function:

if

otherwise.

Log-quadratic:

Saturated-quadratic:

(8)

These four functions are representatives of three major
categories for image priors: strictly convex (), semi-convex
( ), and nonconvex ( ) potential functions. They are
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illustrated in Fig. 2. All four can be used to model locally
smooth images. However, the quadratic function penal-
izes the differences of neighboring pixels at an increasing rate,
which tends to force the image to be smooth everywhere.
The Huber function behaves as a quadratic function
when the difference of the neighboring pairs are small, but
applies a linear penalty when the differences are large; i.e.,
the rate of the penalty applied to intensity differences does not
change beyond the threshold. Therefore, this prior does not
differentiate substantially between slow monotonic changes
and abrupt changes and consequently does not penalize the
presence of edges or boundaries in the image. The function

was introduced in [17] and in [11]. Both have
saturating properties that actually decrease the rate of penalty
applied to intensity differences beyond a threshold determined
by . Consequently, they positively favor the presence of edges
in the image. However, and are nonconvex, which
presents difficulties in computing global MAP estimates.

B. Maximum Likelihood Hyperparameter
Estimation from Incomplete Data

Given the observed incomplete data,, an ML estimate
of can be found from the maximizer of the marginalized
likelihood function [8]

(9)

where

(10)

is the partition function of the posterior density, .
Therefore

(11)

and the ML estimator of the hyperparameter is a root of the
equation

(12)

It is straightforward to verify that

(13)

(14)

where and denote expectation with respect to
the prior and posterior densities, respectively. It follows from
(12)–(14) that the ML estimate of from is a root of the
likelihood equation

(15)

This equation can in principle be solved using an EM
algorithm [8], [11] as follows.

E-Step: Estimate the complete-data sufficient

statistic by finding

M-Step: Determine as the solution of

the equation

Exact solution of this EM problem is impractical. Geman
and McClure [11] note that a solution can be found using
stochastic sampling from the posterior and prior densities
to approximate the expectations. Due to the complexity of
sampling from the posterior, the computation cost remains
unacceptable. Therefore, in [11], a second estimation method
is also described. This method of moments (MOM) simply
requires the computation of a statistic of the data. The
parameter is then chosen as a root of the equation

(16)

where the moment curve is precomputed for a large
range of and should be monotonic with respect toto ensure
identifiability of the hyperparameter from the moment curve.
Unfortunately, this method tends to perform poorly, at least for
statistics that we have considered, due to small gradients in the
moment curve, which result in high variance estimates of.

In [3], [19], and [26], an alternative simplified approach is
taken whereby, instead of maximizing with respect toover
the marginalized density (9), is computed with as the pair

that jointly maximize , as
follows:

(17)

Some authors term this the generalized ML (GML) method
[26]. The optimization can be performed in a two-step algo-
rithm

(18)

(19)

Note that the first step is actually the MAP estimate of
given the current choice of , and the second step is the
maximum likelihood estimate of using the current MAP
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estimate of as a direct (complete data) observation of. It
is straightforward to show that the second step is equivalent to
solving the equation . From the viewpoint
of statistical mechanics, GML gives an approximate solution to
the likelihood in (15), which neglectsall statistical fluctuations
in the field and considers only the contribution of the
maximum term to integrals with respect to a Gibbs distribution
[12]. As we shall see below, the mean field approach is far
less restrictive than the GML approximation, which translates
into significantly improved estimates of when compared to
GML.

In practice, direct computation of the GML estimate is still
difficult as the second step requires evaluation of the partition
function of the prior. This step is usually approximated using
maximum pseudolikelihood (MPL) [3], [19], i.e., we replace
the second step with

(20)

We refer to this as the generalized maximum pseudolikelihood
(GMPL) method in the following.

III. M AXIMUM LIKELIHOOD HYPERPARAMETERESTIMATION

USING MEAN AND MODE FIELD APPROXIMATION

True ML estimation of is difficult because of the com-
plexity and dimensionality of the joint density .
It is essentially impossible to compute the marginal density
(partition functions) in (9) or expectations in (15) for each
new data set . One approach to simplifying this problem is
to approximate the multidimensional densities with separable
joint densities equal to a product of one-dimensional (1-D)
probability densities. The multidimensional integrals involved
in computing marginal densities, partition functions, or mo-
ments, can then be approximated with a product or sum of
1-D integrals with respect to these 1-D pixel-wise densities.

Approximating Gibbs distributions using separable joint
density functions is the basis for the mean field theory in
classical statistical mechanics [7]. The mean field theory was
originally developed as a statistical mechanics tool for the
analysis of many body systems through approximation as a
set of single body systems. The basic idea is to focus on one
particular particle (in our case a pixel site) in the system and
assume that the role of the neighboring particles (pixels) can be
approximated by an average field that acts on the tagged parti-
cle. This approach, therefore, neglects the effects of statistical
fluctuations in all pixels other than the current tagged one. The
corresponding joint description is simply the product of that
for each individual particle or pixel. Mean field approximation
has previously been applied in the image processing field to
surface reconstruction [12], image segmentation [36], image
restoration [38], and motion estimation [37]. However, we
believe this is the first application of this approach to parameter
estimation in image processing.

In this section, we focus first on a restricted class of Gibbs
distribution for which we develop an optimal mean field
approximation. We use the GBF bound to select the mean field
approximation, which leads to an optimal approximation of the
partition function. Using this result we describe an “optimal”

ML hyperparameter estimator focusing on the problem of
image restoration from Gaussian data with a quadratic Gibbs
prior. Unfortunately, this optimized approximation is not appli-
cable to the general problem. For the general case, we provide
a heuristic development of an alternative approximation that
can be applied to problems with Gibbs priors for any of the
four potential functions in (8) with either the Gaussian or
Poisson likelihood functions.

A. Optimal Approximation of the Partition Function

We can see from (11) that the true ML estimate ofis
completely determined by the prior and posterior partition
functions. Therefore, for the purposes of computing an ac-
curate ML estimate of , the mean field approximations of
the prior and posterior Gibbs distributions should be chosen
to give the best approximations of their respective partition
functions. We begin by describing our partition function opti-
mization procedure for a restricted class of Gibbs distributions.
We then apply this to approximation of the prior and posterior
distributions to develop the mean field approximated ML
estimator of . The development below is based on that in
[7] in several places. We emphasize that it is the application
of this approximation to parameter estimation, rather than the
approximation itself, that is novel.

The approximation involves replacing the true Gibbs distri-
bution, , with amean field referencedistribution, ,
which is a separable function in

(21)

i.e., the pixels are modeled as independent random variables.
The choice of the mean field reference distribution is based
on the following result.

Theorem 1—Gibbs–Bogoliubov–Feynman Bound [7]:For
a Gibbs distribution with partition function and Gibbs
energy , and any other Gibbs distribution with partition
function and Gibbs energy , we have the following
inequality:

(22)

where

(23)

Theorem 1 states that if we useany Gibbs distribution
to approximate the original Gibbs distribution, the quantity

will never exceed the original .
Consequently, the mean field reference distribution that leads
to the best approximation of the original partition function,
can be found by maximizing the quantity on the right side of
the GBF bound.

Proposition 1: The partition function can be best ap-
proximated through a mean field reference distribution with
partition function and Gibbs energy as

(24)

where maximizes .
Unfortunately, a closed-form solution to this optimization

problem exists only for a restricted class of Gibbs distributions.
This includes the class of continuous stateauto-models[2], to
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which we now apply Proposition 1. The auto-models have the
form where

(25)

with and the single pixels sample space
. The mean field reference distribution is

chosen in this case as a separable Gibbs distribution with mean
field energy of the form

(26)

This reference distribution approximates the influence of
neighboring pixels by a constant . We
now develop an optimal reference in the sense of choosing

to maximize the right side of the GBF bound.
Since the reference field is separable, i.e.,

, we consider first the local mean field reference
density

(27)

with

(28)

the corresponding local mean field partition function. As a
direct result of (27) and (28), the mean of the reference field,
i.e., the mean field value, is

(29)

The value of that maximizes the right side of the GBF
bound must satisfy

(30)

We proceed with

(31)

where we use the independence of pixels in the reference field
to simplify for . By combining
(29) and (31) in (30), noting that each pair
appears twice in the summation, and that , we get

(32)

Solving this gives

(33)

This is the value of the constant , which maximizes the
right side of the GBF bound over the set of separable Gibbs
distribution with energies of the form of (26).

Substituting (33) into (27), we obtain the optimal local mean
field reference distribution for the auto-models

(34)

We note the optimal mean field local density is equivalent
to fixing the values of the neighboring sites of in the
Markov local conditional density at their mean field values,
i.e., .

Substituting (33) into (31), we obtain

(35)

The optimal approximation of the partition functionis then
given by (36), shown at the bottom of the page.

B. Hyperparameter Estimation Using
an Optimal Approximation

The optimal mean field approximation mechanism devel-
oped in the previous subsection can be directly applied to
ML hyperparameter estimation in image restoration and re-
construction problems with the Gaussian likelihood function
(1) and the quadratic Gibbs prior, in (8). We can write
the Gibbs energies of the prior and posterior densities for this
specific example as, respectively

(37)

and

(36)
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(38)

where

(39)

and

(40)

The superscripts and denote prior and posterior,
respectively. The constant terms and are independent of

and and do not affect the choice of or estimation of .
and denote the prior and posterior neighborhoods

of pixel .
Clearly, both prior and posterior distributions belong to the

class of auto-models discussed in the previous subsection.
Therefore, we use the optimal choice of from (33) in
(37) and (38), which gives the following mean field energy
functions:

(41)

(42)

where

(43)

(44)

(45)

Here, and denote with respect to the
posterior and prior densities, respectively.

Having developed the optimal mean field reference densi-
ties, there are two alternative approaches to computing the
approximate ML hyperparameter estimate. One is to compute
the partition function approximation as

(46)

(47)

and then to compute the mean field approximated ML estimate
of by finding the maximum of based
on the likelihood in (11).

The other approach is to compute the approximate prior
and posterior expectations of the Gibbs prior energy, ,
as follows:

(48)

(49)

and substitute these into the likelihood equation (15)

(50)

or equivalently

(51)

This can be rewritten, using (35), (41), and (42), as

(52)

or equivalently

(53)

In this paper, we adopt the latter approach, i.e., to compute
the estimate of by finding a root of (53). For a given
mean field , can be computed by finding a root of
this equation. Since the mean field is itself dependent
on the value , a recursive procedure that alternates between
computation of using the current value of and vice
versa, is required. We return to the problem of computing the
solution in Section III-D.

C. Hyperparameter Estimation Using a
Generalized Approximation

The preceding development works only for the restricted
class of auto-Gibbs distributions of the form (25). We now
consider the more general case, and present a heuristic devel-
opment of a mean field reference that can be applied to both



852 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 6, JUNE 1997

Poisson and Gaussian likelihoods with any of the four potential
functions in (8). Consider the general Gibbs distribution, which
is to be approximated

(54)

with conditional density

(55)

where is the sum over all potential
functions in that include site and denotes the set of
neighboring pixel sites of. We again use a separable mean
field approximation

(56)

where we define the local mean field densities to be
equal to the conditional density for each site given the mean
field of their neighbors, i.e.,

(57)

(58)

where denotes all sites except. The corresponding
partition function is then given by

(59)

Combining the local energy and partition functions gives the
overall mean field energy function , and mean field
partition function,

(60)

This mean field approximation can be applied to either the
prior, , or posterior, , densities in Bayesian
inverse problems provided the densities are written in the form
of a Gibbs distribution. Clearly, this generalized mean field
reference system takes the same form as the optimal one for
the auto-models [see (34) and the comments that follow].

The generalized mean field reference system for a prior with
any of the potentials in (8) can then be written as

(61)

For the posterior distribution with a Poisson or Gaussian
likelihood and a prior with any of the potential functions in
(8), the mean field reference can be written as (62), shown
at the bottom of the page. is defined in (43) for
the Gaussian likelihood. For the Poisson likelihood model (2),
we use

(63)

Having developed the generalized mean field reference
system, we can compute the ML estimate ofby finding
a root of as we did in (50)–(53) for
the optimal case. It is easy to show that for any of the four
potential functions in (8)

(64)

(65)

where

and

The terms of and in
(51) are difficult to evaluate except for the case of the quadratic
potential function. However, we note that for the case where
the prior is an auto-model, if we use the posterior mean field,

, in the place of in (51), then these two terms
cancel. Applying this idea for the general case by dropping

(62)
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(a) (b)

(c)

Fig. 3. Comparison of partition function approximation using MCMC sampling and mode field approximation. (a) Plot oflog Z(yyy; �), the prior partition
function. (b) Plot of log Z(yyy; �), the posterior partition function. (c) Plot oflog p(yyyj�) = log Z(yyy; �) � log Z(�), whose maximum corresponds
to ML estimate of �.

the second term on either side of (51), the equation reduces to

(66)

We can rewrite (66) as

(67)

which can be interpreted as a general mean field approximation
of the likelihood in (15). Note that this version of the mean
field approximated ML estimator is different from that derived
using the GBF bound, i.e., (53), even for the auto-models. As
we see below, methods that use the GBF bound outperform
those based on (67). This is not surprising given the optimal
nature of the first and heuristic nature of the second method.
However, in cases where the optimal approximation cannot be
found, the second method still performs exceptionally well in
comparison to other well-known methods.

D. Mean and Mode Field Approximations

In many imaging applications, we are more interested in
computing a MAP estimate of the image than a minimum mean
squared error estimate. These correspond, respectively, to the
mode and the mean of the posterior densities. Therefore, rather
than also computing the mean field of the posterior reference
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(a) (b)

(c)

Fig. 4. Comparison of MCMC sampling and mode field approximation methods for solving the likelihood equation (15). (a)E[U(xxx)jyyy; �]. (b) E[U(xxx)j�].
(c) E[U(xxx)jyyy; �] � E[U(xxx)j�]. The function in (c) equals zero at the ML value of�.

field, we replace the mean field with amode-field. This mode is
computed using an iterative MAP estimation procedure. Note
that using the separable approximations described above, the
mode of the original and reference fields are identical. We note
that this mode-field approximation is referred to as a saddle
point approximation in [38]. In cases where the posterior
density is unimodal and symmetric, the mean and mode field
approximations are identical. This would be the case for
Gaussian data with a Gaussian prior on the image. For the
case where the single pixel sample space is not the entire real
line, or when the MRF prior is nonquadratic, then the mode
and mean field approximations will differ. This is also the case
for Poisson data, since the Poisson likelihood is asymmetric.
We refer to the parameter estimation methods described above
as mode field approximated maximum likelihood(MFAML).
To distinguish the two approximations in Sections III-B and

III-C, we refer to them as MFAML-Opt and MFAML-Gen,
respectively.

To summarize, we have developed an optimal mean field
reference distribution for auto-models, of which the Gibbs
quadratic prior and the Gibbs posterior formed by a Gaussian
likelihood and a quadratic prior are special examples. Based
on this mean field reference, we have provided a mechanism
for the optimal approximation of partition functions and ex-
pectations. To facilitate the generalization of the methodology,
we also propose a suboptimal approximation in which both the
prior and posterior mean fields are replaced by the posterior
mode field.

To examine these approximation strategies, we conducted
an experiment using MCMC sampling [4]. A sample image
was generated using the Metropolis algorithm for the quadratic
prior with on a lattice of size 64 64 with a
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single pixel sample space, [0, 100]. Datawere then generated
according to the equation , where is the blurring
function Opt 1 (defined in Section V-A), is Gaussian noise
with zero mean and variance . Using this data, we
then compared the functions computed using our mode field
approximations with those obtained using MCMC methods.
For each of the curves shown below, the MCMC sampling
method used the Metropolis algorithm with a 500 cycle burn-
in period. Averages were then computed from the next 1000
cycles. This procedure was repeated for each value of. We
used different initialization points to check for convergence
after 1000 averages.

Shown in Fig. 3(a) and (b) are plots of the log-partition
function for the prior and posterior densities. In Fig. 3(c),
we plot which is equal to the log
likelihood [see (11)]. The value of at which this
function attains its maximum is therefore the ML estimate.
We note that there is some displacement between the maxima
of the functions using the mode-field approximation and
MCMC sampling, but the difference is small. Since our
estimation procedure solves an approximated version of the
likelihood equation (15), rather than directly maximizing the
log-likelihood, we also plot the expected values of the Gibbs
energy with respect to the posterior and prior densities in
Fig. 4(a) and (b), respectively. Their difference,

is shown in Fig. 4(c). Note from (15) that this
function should equal zero at the ML solution. Again, while
the mode-field approximation and MCMC sampling curves do
not exactly coincide, the ML solutions obtained using both
methods are very close. We note that we cannot draw strong
conclusions regarding differences in bias and variance between
the sampling method and mode-field approximation from
these examples, since they are based on a single realization
of and . The results presented for our method in the
following section involve averages over 50 realizations for
many different cases. Due to the high computational cost
involved in the use of the MCMC methods we could not
include these methods in our comparisons.

IV. NUMERICAL METHODS

A. Combined MAP Image Estimation and
ML Hyperparameter Estimation

Using the approximations described above, the MAP esti-
mate of the image and the ML estimate of the hyperparameter
can be jointly computed using a two-step iteration, as follows.

1) Initialize the image and hyperparameter
. Set .

2) Maximize to find .
3) Compute a new hyperparameter value by solving

the approximated likelihood equation (53) or (67) using
as the current mode field.

4) Set , go to Step 2.

In practice, neither Steps 2 or 3 need be iterated to conver-
gence before moving to the next step. We have no convergence
proof for this method. However, in running the method for a
wide range conditions, we have never observed a case in which
the method does not converge.

Fig. 5. Experiment for image restoration from Gaussian data,�2 = 100,
with blurring kernel Opt-2. Top row: left, original; right, noisy, blurred
data. Middle row: left, MAP with quadratic prior; right, MAP with Huber
prior. Bottom row: left, MAP with log-quadratic prior; right, MAP with
saturated-quadratic prior. All images shown above correspond to the estimated
� use MFAML-Gen.

B. Computing the MAP Image Estimate

For a Gibbs prior of the form (5), the MAP estimate is found
by maximizing over the log posterior density

(68)

for the Gaussian likelihood, and as shown in (69), at the bottom
of the next page, for the Poisson likelihood.

These functions are concave for and but not for
and . Gradient-based optimization will therefore lead only
to local maxima for the last two potential functions. However,
it is widely accepted that for most practical applications a local
optimum is acceptable. We therefore restrict attention here to
local search methods, although the MFAML method described
above can be combined with any numerical procedure for
computing a MAP image estimate. Many computational meth-
ods for solving large inverse problems in image processing
have been studied in recent years. These include Gauss–Siedel
procedures (sequential coordinate descent algorithm) [6], con-
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TABLE I
MONTE CARLO TEST (n = 50) COMPARING PERFORMANCE OFGENERALIZED MAXIMUM PSEUDOLIKELIHOOD (GMPL), THE METHOD OF MOMENTS

(MOM), AND THE TWO MODE FIELD APPROXIMATED ML M ETHODS (MFAML) (A � INDICATES THE ALGORITHM FAILED TO CONVERGE)

jugate gradient methods [27], [30], the method of iterated
conditional modes [3], iterated conditional average (ICA) [18],
[25], and generalized EM methods. The performance of these
algorithms in terms of computation cost and convergence rate
is highly problem dependent. We have previously found that
preconditioned conjugate gradient methods produce favorable
performance for image restoration and reconstruction problems
[27] and use this approach in the results presented below.
Note that this method includes the use of a penalty function
to impose a nonnegativity constraint on the MAP estimate.

C. Computing the Hyperparameter Value

The method that we use to implement Step 3 is an EM-
like algorithm. We adopted this approach after finding prob-
lems with numerical stability when using a standard New-
ton–Raphson procedure. For hyperparameter estimation using
the mean field approximation based on the GBF bound, we
perform Step 3 as follows.

[3a] Compute the mean field approximated statistic
defined as the current left hand side of

the mean field likelihood equation (53)

(70)

[3b] Compute the new hyperparameter value by
solving the equation

(71)

For the general approximation, we use the following method
to solve Step 3.

[3a] Compute the mean field approximated statistic
defined as the current left hand side of

the mean field likelihood equation (67)

(72)
[3b] Compute the new hyperparameter value by

solving the equation

(73)

In Step [3b] of this EM-like algorithm, the new hyperpa-
rameter value is computed using one or more iterations of a
Newton–Raphson procedure. All integrals encountered were
computed numerically using an adaptive quadrature method
[29]. We also use a scaling procedure to ensure that the
single pixel sample space is approximately [0, 1]. This can be
achieved by a corresponding inverse scaling of the elements of
the operator in the likelihood function. This has the effect of
avoiding large numerical errors when computing integrals con-
taining integrands of the form .

D. Computational Cost

The computational cost of the algorithm we describe above
is highly problem dependent. We usually run 5–10 iterations
of the conjugate gradient algorithm to update the MAP image
estimate for a given value of , and then use one or two
Newton–Raphson iterations to update the value of. We
typically repeat this procedure 10–20 times to achieve effective
convergence in . We have observed that the number of
iterations required increases with both the degree of blurring
and the variance of the additive noise. For image restoration

(69)
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TABLE II
MONTE CARLO TEST OF MFAML-OPT AND MFAML-GEN PERFORMANCE AS A FUNCTION OF ADDITIVE NOISE VARIANCE

TABLE III
ROBUSTNESS OFMFAML-GEN AND MFAML-OPT TO DIFFERENT SMOOTHING OPERATORS

with local blurring only, the dominant computational costs
are the Newton–Raphson iterations required for updating the
hyperparameter. On a SunSPARC 20/61 workstation, each
iteration of the conjugate gradient MAP algorithm for a
256 256 pixel image requires only a few seconds. Each
iteration of the Newton–Raphson algorithm can take from
several seconds to several minutes because each iteration
requires 3 256 256 1-D numerical integrations. For
problems with Gaussian likelihoods and quadratic priors, we
can replace the numerical integrals with an error function
look-up table, thus reducing the per iteration cost to a few
seconds.

V. PERFORMANCE STUDIES

We have applied the mode field approximated maximum
likelihood (MFAML) method to image restoration and recon-
struction. We present the results for image restoration below.
Application of this method to parameter estimation in positron
emission tomography (PET), where the data are Poisson, is
described in [28] and [41]. We simply note here that we have
observed similar performance for the PET problem to that
described below for image restoration.

A. Estimator Bias and Variance Using Stochastic Sampling

We used extensive Monte Carlo simulations to evaluate the
performance of the new MFAML hyperparameter estimators
in the problem of image restoration from blurred data with
additive Gaussian noise. We have compared the performance
of the MFAML methods described above with generalized
maximum pseudolikelihood (GMPL) and the method of mo-
ments (MOM), for which the statistic takes the same

form as the Gibbs energy function of the prior, computed over
the noisy image with an eight nearest neighbor interaction.

We performed Monte Carlo studies for image restoration
as follows. For each value of the hyperparameter, 50 sample
images were drawn from a specific prior using the Metropolis
algorithm [24]. Each sampled image was then blurred by one
of the following 3 3 kernels:

Opt 1:

Opt 2:

and

Opt 3:

Note that the degree of smoothing increases from Opt 1–3.
Pseudorandom Gaussian noise with known variancewas
generated to contaminate each of the resulting blurred images.
The likelihood function for these noisy data take the form of
(1). The hyperparameters were estimated for each method of
interest for each of the 50 noisy images. Since the original
images are sampled from specific priors with known hyper-
parameter values, we were able to calculate bias and variance
across the 50 resulting estimates.

A comparison of the performance of the various methods
for a range of values of is shown in Table I. The original
images were generated using the Metropolis algorithm with the
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(a) (b)

(c) (d)

Fig. 6. Total squared error versus� for (a) quadratic and (b) Huber priors. Shown are theL-curves for (c) quadratic and (d) Huber priors. A “�” indicates
the � value obtained using MFAML-Gen and “o” using MFAML-Opt (quadratic case only). Note the estimated� values correspond approximately to
the minimum squared error.

quadratic prior and a single pixel sample space [0, 100]. These
were then blurred using Opt 1 and contaminated by zero mean
Gaussian noise with variance . All methods perform
best when is small and deteriorate as increases and the
images become smoother. The GMPL method works only for
the smaller values of . As increases, the two-step method,
which iterates between MAP estimation of the imageand
estimation of , fails to converge. The MOM method performs
better in general, but as increases, the slope of the moment
curve decreases, leading to increased bias and variance. In
all cases, both the general and optimal forms of MFAML
outperform both of the other techniques. The differences are
very clear for the cases whereis large, which corresponds
to the case of increasingly smooth images. For these larger
values, MFAML shows approximately a tenfold reduction in
bias and variance relative to the MOM method. The optimal

form of MFAML exhibits lower bias than the general form,
with slightly larger variance and overall superior performance.
However, in practice these differences are small and lead to
little noticeable difference in image quality when applied to
real images.

To test the robustness of the MFAML methods to noise,
we used the same set-up as in the comparative studies above
and generated data for a range of additive noise variances. As
before, ensemble statistics were computed to determine the
effects of different noise levels on the bias and variance of

. We summarize these results in Table II. Although we do
observe deterioration in the performance when noise variance
increases, both MFAML methods appear to perform well and
are stable even for very large additive noise variances.

The conditioning of the likelihood affects the degree of ill-
posedness of the inverse problem, i.e., the conditioning of the
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(a) (b)

(c) (d)

Fig. 7. Total squared error versus� for (a) log-quadratic and (b) saturated-quadratic priors. Shown are theL-curves for (c) log-quadratic and (d)
saturated-quadratic priors. A “�” indicates the� value obtained using MFAML-Gen. Note the estimated� values correspond approximately to the
minimum squared error.

operator determines our ability to recover the imagefrom
the blurred data, which in turn affects our ability to accurately
estimate . Results in Table III show that as the degree of
blurring increases and the inverse problem becomes more ill
posed, performance of the MFAML methods deteriorates. The
bias in the estimator appears to be more affected than variance
by changes in the degree of blurring. Note also that in this
example, there are more substantial differences in performance
between the general and optimal MFAML methods than was
seen in Table I. For the Opt-2 and Opt-3 blurring kernels,
GMPL does not converge and MOM is unable to identify the
parameter due to the flatness of the moment curve.

B. Applications and Validations with Real Images

In this experiment, we used the 33 blurring mask Opt 2 to
blur the 256 256 pixel Boat image. The single pixel sample

space of the Boat image is [0, 255]. We generated Gaussian
noise with a variance of 100 to contaminate the resulting
blurred Boat image. The images were then restored using MAP
estimation for each of the four potential functions in (8) and
the appropriate likelihood function. Images were reconstructed
for a range of fixed values of and the total squared
error between the original and restored image calculated.
The images were then reconstructed again with simultaneous
MFAML estimation of . For the case of Gaussian noise
and the quadratic prior we use both the MFAML-Gen and
MFAML-Opt estimators. In all other cases we use only the
MFAML-Gen method.

The restored images for the cases whereis estimated
are shown in Fig. 5. The corresponding curves showing the
restored image error as a function of hyperparameter are
shown in Figs. 6 and 7. Note the log-scale on theaxis.
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We show the location of the MFAML-Gen and MFAML-
Opt estimate of the hyperparameter on the curves using
“*” and “O,” respectively. Also shown in these figures is
the corresponding -curve, again with the location of the
estimated hyperparameter indicated. These results show that
the estimated hyperparameter gives close to the minimum
squared error in all cases, and is located close to the knee
of the -curve.

VI. CONCLUSION

We have described a general method for estimating the
hyperparameter of Gibbs priors from incomplete data. This
method is based on a mean-field-like approximation of the
Gibbs distributions involved. The result provides a balance
between the oversimplified model implicit in the generalized
ML methods and the intractability of a true ML estimator.
While computational costs are significant, we anticipate they
will be acceptable in practical situations. Convergence of the
method by which the solution is computed simultaneously with
a MAP image estimate has not been shown; however, we have
not encountered any problems with convergence in the many
cases we have run.

The results presented indicate that good performance is
achieved over a range of conditions when applied to image
restoration. We have also observed similar behavior in appli-
cations to PET [28], [41]. We do observe that the estimator
degrades as the degree of blurring increases. This is inevitable
in the sense that the ultimate performance of the method
is limited by the slope of the likelihood function .
The method described here is not limited to estimation of
the specific problems described. It appears straightforward to
modify this approach for estimation of the hyperparameters
of discrete spatial processes such as those used for image
segmentation and labeling.
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