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Abstract—The parameters of the prior, the hyperparameters image,n is zero-mean Gaussian noise with covariance matrix

play an important role in Bayesian image estimation. Of par- (' and matrixA is a linear degradation operator. Then
ticular importance for the case of Gibbs priors is the global

hyperparameter, 3, which multiplies the Hamiltonian. Here we Plylz) = (27r)_N/2|C|_1/2
consider maximum likelihood (ML) estimation of 5 from incom- 1 T 1
plete data, i.e., problems in which the image, which is drawn 1 €Xp [—5 (y— Az)" C™ (y — Ax)]. (1)

from a Gibbs prior, is observed indirectly through some degra- . . . .
dation or blurring process. Important applications include image A second common model is the linear Poisson model, which

restoration and image reconstruction from projections. Exact ML  arises in problems where the data acquisition system is photon
estimation of 3 from incomplete data is intractable for most limited, e.g., emission tomography, gamma-ray astronomy,
image processing. Here we present an approximate ML estimator 4.4 fluorescence microscopy. In this model, the mean isf

that is computed simultaneously with a maximuma posteriori . . ) _
(MAP) image estimate. The algorithm is based on a mean field related to the image by a linear operatod, i.e., Efy] = Az

approximation technique through which multidimensional Gibbs ~andy follows a joint Poisson distribution

distributions are approximated by a separable function equal to s

a product of one-dimensional (1-D) densities. We show how this

approach can be used to simplify the ML estimation problem. ZAija:j

We also show how the Gibbs—Bogoliubov—Feynman (GBF) bound 7

can be used to optimize the approximation for a restricted class  P(y|z) = H 7

of problems. We present the results of a Monte Carlo study that i (:)!

examines the bias and variance of this estimator when applied to

image restoration. The objective of the inverse problems of interest here, is to

obtain a point estimate of from the observation. Since A

is often ill-conditioned, direct inversion based on maximizing

. o the likelihood function does not always provide a unique and

BAYE_S'AN approaches to inverse problems in image prasape solution. Bayesian methods solve this type of ill-posed
cessing typically involve computing a point estimate of jherse problem by combining information contained in the

unknown imager € &' from a set of datg € V. We assume qpseryed data with prior information concerning the relative

that the two quantities are related by a known conditiongfspapilities of possible solutions. The unknown image can

probability, P(y|x). This conditional probability or likelihood han pe estimated by maximizing over the posterior density

funct_i(_)n is depen_dent on the imaging modality anq is proble@amy) to form a maximum a posterioriMAP) estimate.

specific. The estimate af is computed as a function of thetpe “nosterior density is proportional to the product of the

posterior densityP(z|y), which requires the specification ofjixejihood function P(y|x), and a prior on the image?(x|3).

a prior densityP(z) in addition to the likelihood function. In g a|ly the prior reflects an expectation that images are locally

the context of Bayesian image estimation, the parametersgfqoth. Markov random fields (MRF’s) [3], [10], [24] have

the prior are referred to de/perparametersin this paper, We peen widely used to model local smoothness in images and

address the problem of estimating these parameters in the Ggfepe the class of priors considered here. The joint density

where it is not possible to observe the true imagdirectly. ¢4 the MRF has the form of a Gibbs distribution

We describe a practical method for estimating hyperparameters

from observations of the data € ). We begin by briefly P(z|B) = 1 exp {—BU(z)} (3)

reviewing two models for image restoration and reconstruction Z

for which this method is applicable. where U(z) is the Gibbs energy functior/ is the partition

One of the most widely addressed models in image restofanction, andg is the global hyperparameter.
tion and reconstruction is the linear Gaussian mogle: Image estimation using MRF priors has proven to be a
Az +n, wherey is the observed data; is the underlying powerful approach to restoration and reconstruction of high-

ality images. However, a major problem limiting its utilit
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the balance of influence of the Gibbs prior and that of the ...
likelihood. If 3 is too large, the prior will tend to have an ™[
over-smoothing effect on the solution. Conversely, if it is too
small, the MAP estimate may be unstable, reducing to the ML *2
solution asg goes to zero. : : : : ; : :
To illustrate the effect of the hyperparameter on the MAP 10z P pre fee SR P P
estimate, we show two curves in Fig. 1 computed for a typical § § :
application to image restoration. In Fig. 1(a), we have atypica? gH oo R e e b ............. ......... i
L-curve [15], [40], which is a plot of the value of the Gibbs & : : : : : :
energyl/(z) versus the likelihood enerdy — Az)TC~'(y— £
Azx), computed at the MAP solution for a range of values of |
3. We observe two characteristic parts on the curve, namely a-
a flat part where the MAP solution is dominated by the prior, |:
and an almost vertical part, where the solution is dominated »|-
by the likelihood function. Heuristically, the region between |:
these two characteristic parts, i.e., the “corner,” corresponds oL

1 1 I '

to a good balance between fidelity to the data and smoothness ° ! 2 3Likelihood4Energy s ® 7“03
of the solution. Fig. 1(b) shows a curve of the squared error
in the MAP estimate for a range ¢f values. Here, it is clear @)

that an appropriate choice gfis necessary to achieve a small
error. Furthermore, we have observed that the corner of the'
L-curve corresponds to a value of the hyperparam@térat
is close to that which minimizes the squared error for the MAP *
estimation problem described here (both points are indicated
by *). Similar observations were made in [15] concerning thes 207
more general regularization problem. 8

A truly Bayesian formulation requires either that the hy-325}
perparameters are known or that we specify a “hyperpriorg
density. However, in practice the hyperparameters are oftereof -
unknown because the true images can never be observed
directly, and little evidence exists to justify an informative 1s} -
hyperprior density. Even i is known, problems can arise if
there is an unknown gain factor in the transfer functibim (2) 10} -
or an unknown noise variance in (1). These problems can be
avoided if the hyperparameters are estimated directly from the sL_
observed data. Data-driven selection of the hyperparameter is'® Global Hyperparameter
often performed in an ad hoc fashion through visual inspection b)
of the resulting images. There are two basic approaches for

; ; T . ; Fig. 1. lllustration of the quantitative effect of the global hyperparameter
ChOOSIﬂg f in a more prmupled manner. I) treating as using (a) theL-curve and (b) global mean squared error of restored image

a regularization parameter and applying techniques suchv@gus 3. Note that the value of3 giving minimum squared errorsJ
generalized cross validation, the-curve, andy? goodness corresponds to the comer of tHecurve.
of fit tests; and ii) estimation theoretic approaches such as
maximum likelihood (ML). hyperparameter in MAP image reconstruction [40]. The corner
The generalized cross-validation (GCV) method [9] hasf the L-curve is difficult to find without multiple evaluations
been applied in Bayesian image restoration and reconstructafnhe MAP solution for different hyperparameter values. Thus,
[18]. Several difficulties are associated with this method: Thee computation cost is again very higk? statistics have
GCV function is often very flat, and its minimum is difficultbeen widely used to choose the regularization parameter [33].
to locate numerically [34]. Also, the method may fail to seledtor MAP image estimation, Hebeet al. [17] developed an
the correct hyperparameter when measurement noise is higidiaptive scheme based onyd statistic to select3. Since
correlated [35]. For problems of large dimensionality, thithe image is estimated from the data, the degrees of freedom
method may be impractical due to the amount of computatiofi the test should be reduced accordingly. This presents a
required. Hansen and Learyk-curve is based on the em-problem when the data and image are of similar dimension. It
pirical observation that the corner of the curve, illustrated imas also been observed thgt methods tend to over-smooth
Fig. 1(a), corresponds to a good choicefoin terms of other the solution [33].
validation measures [15]. Thie-curve has similar performance As an alternative to the regularization based methods dis-
to GCV for uncorrelated measurement errors; however, thassed above, a well-grounded approach to selection of the
L-curve criterion also works, under certain restrictions, fdryperparameter is to apply ML estimation. The imag&hich
correlated errors [15]. We have used theurve to select the is drawn from thecomplete dat@ample spac&’ characterized

T
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by the parameteg, is not observed directly. Instead, we obthe prior and posterior partition functions or the prior and
serve a second procegsvhich is drawn from théncomplete posterior expectation of Gibbs prior energy functions. We thus
datasample spac@’. The ML estimate of the hyperparameteapproximate these Gibbs distributions with simple and separa-
corresponds to the maximizer of the incomplete data likelihodide densities so that the multidimensional integrals become
function P(y|3), which is found by marginalization of thefunctions of one dimensional integrals. This approximation
joint probability density for the complete and incomplete datagnders the ML approach tractable. The approximation is
P(x, y|3), over the complete data sample space. Selectiolosely related to the mean field approximation methods of
of the hyperparameter can therefore be viewed as an Mitatistical mechanics. In the mean field approach, the separable
estimation problem in an incomplete/complete data framewaapproximation is achieved by replacing the statistical influence
and is a natural candidate for the expectation maximizatiof the neighbors of each pixel with their estimated means.
(EM) algorithm [8]. However, in most imaging applications)n our work, we use a mode-field rather than a mean-field
the high dimensionality of the densities involved make the E&pproximation, where the mode of the posterior density is
approach impractical. Geman and McClure [11] propose usingmputed using a MAP image estimation algorithm. We use a
a stochastic relaxation technigue, such as a Gibbs samplerseguential updating scheme to estimate both the image and the
evaluate the E-step of the EM algorithm. While this approadtyperparameter. Successive iterates of a MAP image estima-
provides a means of overcoming the intractability of the trugn algorithm are substituted in the mode-field approximation,
EM algorithm, the computational cost remains extremely higtvhich in turn is used to update the hyperparameter estimate.
Markov chain Monte Carlo (MCMC) methods [4] have also We present a brief summary of the problem formulation for
been used to solve the high dimensional integration involvédL estimation of the hyperparameter from incomplete data in
in ML estimation. Zhanget al. [39] and Saquiket al. [32] in- Section Il. We then describe our mean/mode field approach
corporate the MCMC method in EM algorithm to evaluate th® parameter estimation in Section Ill. We also describe how
expectation function at the E-step. Geyer and Thompson [18] optimal approximation can be found in special cases using
propose a Monte Carlo maximum likelihood method whicthe Gibbs—Bogoliubov-Feynman (GBF) bound [7]. We then
uses MCMC methods to approximate the likelihood functiodiescribe the application of this method to the problem of image
directly. The major disadvantage of the sampling methodstoration in Section IV. Finally, in Section V, we present the
is their high computational cost. Other estimation methodgsults of extensive Monte Carlo studies that examine the bias
have been studied that do not share the desirable properéied variance of this estimator for cases where the true value
of true ML estimation but have much lower computationaf 3 is known.
cost. Several generalized ML approaches have been described

[3], [19], [26] that make the simplifying approximation that

the ML estimate of3 and the MAP estimate of the image

can be found simultaneously as the joint maximizers of the _ o
joint density ofz andy. This approach works well in someA- Gibbs Priors for Image Estimation

situations, but the crudeness of the approximation results inWe will assume a homogeneous isotropic MRF model for
poor performance in general. The method of moments (MOM)e imagex, characterized by the Gibbs distribution

[11], [25] defines a statistical moment of the incomplete data .

that is ideally chosen to reflect the variability in the unob- _ 4 _

served image and to establish a one-to-one correspondence Plalf) = Z(B) exp{-fU(z)} @
between the moment value and the global hyperparameter.

Initial computational costs for this method are very large, bifith Gibbs energyU(z), partition functionZ($3), and global
the moment versus hyperparameter curve is independenthgPerparametes. The partition function is the scaling con-
the observed data and can be computed off line. For eadfnt

new data set the hyperparameter is determined by simply

comparing the computed statistic with the precomputed curve. z(p) = / exp{-pU(z)} dz. (5)
The major limitation in using this method is in finding a ¥

statistic with sufficient slope that the hyperparameter can prre, we indicate explicitly that the partition function is
reliably determined. In practice, it has been observed that t€pendent on the hyperparameter

method performs well only for relatively small values 8f  We restrict the Gibbs energy to pairwise interactions on a

[25]. Finally, a variational method is described in [1]. Thisecond-order (eight nearest-neighbor) system as follows:
approach leads to a procedure similar to, but simpler than,

the EM aIgonthm._Hoyvever, the cpmputatlonal cost remains Uz) = Z Z ki V (@i, ;) (6)
high, and few validation or experimental results have been T j>iJEN;
published for this method.

Here we return to the ML approach, but develop an approwhere N; denotes the set of eight nearest neighbors of pixel
imation that results in a reasonable computational cost. Thavith ~;; unity for horizontal and vertical neighbors and
major difficulty in computing a true ML estimate ¢f is in  1/+/2 for diagonal neighbors. The image sample space is
evaluating the multidimensional integrals over the complefeé = [0, z..x]" where N is the total number of pixels in
data sample spac&’, which occur in either evaluation of the image.

Il. BACKGROUND
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Fig. 2. Plot of the potential function¥ (x;, ;) versus(z; — x;) for the

(d) saturated quadratic.

The defining feature of a MRF i®(x;|x;, Vj # 1)

four Gibbs priors

Huber function:

P(z;|zj, 7 € N;). For the pairwise interaction model above,
the conditional density has the special form [24]

exp K —f3 Z ki V{(xi, x;)

P($i|$j, J € NZ) =

JEN;
/exp —/JZﬁijV(a:i, xj) ¢ dx;
*i JEN;
(7)

The specific potential functiond/(-, -), used in this work

are as follows.

Quadratic function:

Vi(ms, z5) = (2 — z;)°.

Va(zi, ;)

Log-quadratic:

Va(i, 25)

-0.4

-0.2 0 0.4 0.6 0.8 1

(d)
in (8): (a) quadratic, (b) Huber, (c) log-quadratic, and

0.2

Saturated-quadratic:

V4($i7 xj)

1 .
_ % (.’IZZ — a:j)Q, if |-Tz — .’17j| < 6
|ei — ;] — 2’ otherwise.
(z; — x;)?
(xi — ;)*

EICEry @

These four functions are representatives of three major
categories for image priors: strictly convel, J, semi-convex
(V»2), and nonconvex (s, V4) potential functions. They are
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illustrated in Fig. 2. All four can be used to model locally / Ulx) exp {n Plylz) — BU(x)) d
smooth images. However, the quadratic functian-) penal-  9In Z(y, 8) __ Jy (@) exp {ln Plyla) - fU ()}
izes the differences of neighboring pixels at an increasing rate, 93 / _

which tends to force the image to be smooth everywhere. ¥ exp{ln Plylz) — fU(z)} dw
The Huber functionV,(-) behaves as a quadratic function ==E[U(z)|y, Al (14)

when the difference of the neighboring pairs are small, but

applies a linear penalty when the differences are large; i.@here£[|3] and £[-ly, S]denote expectation with respect to
the rate of the penalty applied to intensity differences does iB€ Prior and posterior densities, respectively. It follows from
change beyond the threshaid Therefore, this prior does not(12)—-(14) that the ML estimate of from y is a root of the
differentiate substantially between slow monotonic changléelinood equation

and abrupt changes and consgqut_ently dpes not penalize.the E[U @)y, B] = E[U)|A]. (15)
presence of edges or boundaries in the image. The function

V3(-) was introduced in [17] and/4(-) in [11]. Both have  This equation can in principle be solved using an EM
saturating properties that actually decrease the rate of penaliyorithm [8], [11] as follows.

applied to intensity differences beyond a threshold determined
by 6. Consequently, they positively favor the presence of edges
in the image. Howeveryz(-) andV,(-) are nonconvex, which statisticU[y, 5] by finding
presents difficulties in computing global MAP estimates. URy, g®] = E[U()]y, M),

E-Step: Estimate the complete-data sufficient

_ o M-Step: Determing3**+1) as the solution of
B. Maximum Likelihood Hyperparameter

Estimation from Incomplete Data the equatiort[U(z)|4] = UMy, 5],

Given the observed incomplete data, an ML estimate Exact solution of this EM problem is impractical. Geman
of 3 can be found from the maximizer of the marginalize@nd McClure [11] note that a solution can be found using

likelihood function [8] stochastic sampling from the posterior and prior densities
to approximate the expectations. Due to the complexity of
P(y|B) =/ Py, z|3) dz sampling from the posterior, the computation cost remains
x unacceptable. Therefore, in [11], a second estimation method
_ is also described. This method of moments (MOM) simply
N / Plyle) P(z|3) dz requires the computation of a statisfi¢(y) of the data. The

/ exp {In P(ylz) — BU(z)} do parameter? is then chosen as a root of the equation
==t M(y) = €[M(y)|5]. (16)
/ exp{—pU(z)} dz
X

where the moment cun& M (y)| 5] is precomputed for a large

Z(y, B) range ofg and should be monotonic with respecfido ensure
= Z(B) ©) identifiability of the hyperparameter from the moment curve.
Unfortunately, this method tends to perform poorly, at least for
where statistics that we have considered, due to small gradients in the
moment curve, which result in high variance estimateg.of
Z(y, B) :/ exp {ln P(ylz) — pU(x)}dx  (10) In [3], [19], and [26], an alternative simplified approach is
A taken whereby, instead of maximizing with respecitover
is the partition function of the posterior densitf(z|y, 8). the marginalized density (9) is computed withe as the pair
Therefore {$, &} that jointly maximizeP(y, z|3) = P(y|z)P(z|3), as
follows:
In P(y|B) =In Z(y, ) — In Z(3) (11) (%, B} = arg max In P(y, =|3)
and the ML estimator of the hyperparameter is a root of the = arg m;;x {In P(y|z) + max In P(z|8)}. (17)
equation z 8

_ 9 1n P(y|B) ~ 910 Z(y, B) _ 910 Z(3) Some authors term this the generalized ML (GML) method

0 . (12) [26]. The optimization can be performed in a two-step algo-
B 7 a5 (12) Eith]m p p p alg
It is straightforward to verify that 3R — arg max Ply, x| B(k)] (18)
_ /9(’“"'1) = arg max Pz Al (29)
oln Z(8) AU(.’L’) exp{—pU(x)} dx g mg %3]
ap / exp {=BU(z)} dz Note that the first step is actually the MAP estimate zof
% given the current choice off, and the second step is the

A
=—-E[U(=)|A] (13) maximum likelihood estimate off using the current MAP
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estimate ofz as a direct (complete data) observationzofit ML hyperparameter estimator focusing on the problem of
is straightforward to show that the second step is equivalentitoage restoration from Gaussian data with a quadratic Gibbs
solving the equatio’[#*)] = £[U(x)|/3]. From the viewpoint prior. Unfortunately, this optimized approximation is not appli-
of statistical mechanics, GML gives an approximate solution t@ble to the general problem. For the general case, we provide
the likelihood in (15), which neglect| statistical fluctuations a heuristic development of an alternative approximation that
in the field £ and considers only the contribution of thecan be applied to problems with Gibbs priors for any of the
maximum term to integrals with respect to a Gibbs distributidiour potential functions in (8) with either the Gaussian or
[12]. As we shall see below, the mean field approach is f&oisson likelihood functions.
less restrictive than the GML approximation, which translates . o N ]
into significantly improved estimates @f when compared to A- Optimal Approximation of the Partition Function
GML. We can see from (11) that the true ML estimate/bis
In practice, direct computation of the GML estimate is stitompletely determined by the prior and posterior partition
difficult as the second step requires evaluation of the partitifunctions. Therefore, for the purposes of computing an ac-
function of the prior. This step is usually approximated usingurate ML estimate of3, the mean field approximations of
maximum pseudolikelihood (MPL) [3], [19], i.e., we replacehe prior and posterior Gibbs distributions should be chosen
the second step with to give the best approximations of their respective partition
Al e functions. We begin by describing our partition function opti-
D = arg max H pPaFah, je N, B).  (20) mization procedure for a restricted class of Gibbs distributions.
! We then apply this to approximation of the prior and posterior
We refer to this as the generalized maximum pseudolikelihodiktributions to develop the mean field approximated ML
(GMPL) method in the following. estimator of/3. The development below is based on that in
[7] in several places. We emphasize that it is the application
of this approximation to parameter estimation, rather than the
approximation itself, that is novel.
True ML estimation ofg is difficult because of the com- The approximation involves replacing the true Gibbs distri-
plexity and dimensionality of the joint density’(y, z|3). bution, P(x), with amean field referencaistribution, Py (z),
It is essentially impossible to compute the marginal densityhich is a separable function i
(partition functions) in (9) or expectations in (15) for each "y _ mf/, .
new data sey. One approach to simplifying this problem is Pla) ~ Purle) = 1:[ B (i), (21)

to approximate the multidimensional densities with separaqlgq the pixels are modeled as independent random variables.

joint d¢n5|tles egual to a prodgct of.one-qllmensmr?al (1-Lhhe choice of the mean field reference distribution is based
probability densities. The multidimensional integrals mvolvegn the following result

in computing marginal densities, partition functions, or mo- Theorem 1—Gibbs—Bogoliubov—Feynman Bound [Fhr
ments, can then be approximated with a product or sum of

1-D int Is with t 10 th 1-D pixel-wise densiti &' Gibbs distribution with partition functiorZ and Gibbs
-L Integrais with respect 1o these 1-L PIXEI-WISE AeNSIUeSy o0y 12 and any other Gibbs distribution with partition
Approximating Gibbs distributions using separable joi

density functions is the basis for the mean field theory Tunction Zyr and Gibbs energy¥yr, we have the following

Requality:
classical statistical mechanics [7]. The mean field theory was g y

I1l. MAXIMUM LIKELIHOOD HYPERPARAMETERESTIMATION
USING MEAN AND MODE FIELD APPROXIMATION

originally developed as a statistical mechanics tool for the Z > Zyr exp{—(E — Enr)ur} (22)
analysis of many body systems through approximation aspdere
set of single body systems. The basic idea is to focus on one def

el -1
particular particle (in our case a pixel site) in the system and (hir = Zyp /1[ ] exp (= Enr) dx. (23)
assume that the role of the neighboring particles (pixels) can berpeorem 1 states that if we useEny Gibbs distribution
approximated by an average field that acts on the tagged pagi-approximate the original Gibbs distribution, the quantity
cle. This approach, therefore, neglects the effects of statlstltzz';}\lIF exp {—(E — Exir)ur } Will never exceed the originat.
fluctuations in all pixels other than the current tagged one. Teg)nsequently, the mean field reference distribution that leads
corresponding joint description is simply the product of tha} the pest approximation of the original partition function,

for each individual particle or pixel. Mean field approximation;n pe found by maximizing the quantity on the right side of
has previously been applied in the image processing field g GBFE bound.

surface reconstruction [12], image segmentation [36], imageProposition 1: The partition functionZ can be best ap-

restoration [38], and motion estimation [37]. However, W8 qyimated through a mean field reference distribution with
bel!eve_th|s_|s 'Fhe first appllcapon of this approach to parametﬁértition function Zyr and Gibbs energ¥y e as
estimation in image processing.

In this section, we focus first on a restricted class of Gibbs Z ~ Zyr exp{—=(E = Enr)nr} (24)
distribution for which we develop an optimal mean fieldvhere Eyr maximizesZyr exp {—(F — Emr)umr}-
approximation. We use the GBF bound to select the mean fieldUnfortunately, a closed-form solution to this optimization
approximation, which leads to an optimal approximation of thgroblem exists only for a restricted class of Gibbs distributions.
partition function. Using this result we describe an “optimalThis includes the class of continuous statdéo-modelg2], to
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which we now apply Proposition 1. The auto-models have the AN 7 i)™ 32
form P(x) = Z~! exp {—FE(x)} where e+ AH; OAH; ~ (32)
Solving this gives
B(x)=> |wiGilz)+5 Y bija:ia:j] (25) AH; = " bijlay)™. (33)
@ JEN; JEN;

with b;; = b;; and the single pixels sample spagg € This is the value of the constadt H;, which maximizes the

[0, 1max]. The mean field reference distributiafyr(x) is right side of the GBF bound over the set of separable Gibbs
chosen in this case as a separable Gibbs distribution with meligtribution with energies of the form of (26).

field energy Eyr(x) of the form Substituting (33) into (27), we obtain the optimal local mean

field reference distribution for the auto-models

@ @ mf _

This reference distribution approximates the influence df (z:) =
neighboring pixels{z;, j € N;} by a constantAH;. We 1

now develop an optimal reference in the sense of choosingmt €Xp
AH; to maximize the right side of the GBF bound. !

Since the reference field is separable, i.Byp(z) =

I P (z,), we consider first the local mean field referencive .n.ote the optimal mean fielld Ioca_l den_sity is gquivalent
to fixing the values of the neighboring sites of in the

- a:zGZ(a:Z) +Z Z bij$i<$j>mf] } (34)

i JEN;

densit
y 1 Markov local conditional density at their mean field values,
PPi(g;) = i exp {—[z:Gi(x:) + AHz;]} (27) e, P(a:.i|(a_:j>mf, j€ Ny). _
h i Substituting (33) into (31), we obtain
wit
<E — EMF>MF :% Z Z bij<$i>mf<-’17j>mf
Z;nf I/ exp{—[a:iGi(a:i) +AHZa:Z]}da:Z (28) i jEN;
i mf mf
the corresponding local mean field partition function. As a —Z Z bij{w;)™ (i)
direct result of (27) and (28), the mean of the reference field, ¢ JeN:
i.e., the mean field value, is ==330 3 bizi)™(z)™. (35)
1 i JEN;
Amf _ . [ (XA . L .
()™ = Zmi /w _ wi exp {~[z:Gi(wi) + AHwi]} dw; The optimal approximation of the partition functidhis then
9 ln Zyr given by (36), shown at the bottom of the page.
= 2
OAH, Vi 9)
The value ofAH; that maximizes the right side of the GBFB. Hyperparameter Estimation Using
bound must satisfy an Optimal Approximation
0 The optimal mean field approximation mechanism devel-
0 = OAH, In (Zyir exp {—(E — Exip)ur}) oped in the previous subsection can be directly applied to
d1n Zyr g ) ML hyperparameter estimation in image restoration and re-
= oA, oam WE—Burlur}, Vi (80)  construction problems with the Gaussian likelihood function
We proceed with (1) and the quadratic Gibbs prid¥; (-, -) in (8). We can write
L mE \mf the Gibbs energies of the prior and posterior densities for this
(E' = Evrp)vr =5 Z Z bij{wi)™ (z;) specific example as, respectively
i JEN;
= > AH(z)™ (31) EYR(g) =pU(x)
i -3 sz — )2
where we use the independence of pixels in the reference field f z; ,,ENZR: o rij (@i = )
to simplify (z;z;)™ = (x;)™(z;)™F for i # j. By combining IR
(29) and (31) in (30), noting that each paie; )™ (x;)™* )
appears twice in the summation, and thgt= b;;, we get =p Z Z Riji = Z Z Rijdikj
i jJENFR 7 jEJ\r_PR
a<$‘>mf J i i
_ Amf v . Amf
JEN; and

Z = Zyr exp{—{(E — Enqr)mr}

= (H / exp {— szz(ﬂ?z) + x; Z bij<$j>mf] }da:z> (exp [% Z Z bij<$i>mf<ajj>mf]> (36)

JEN; i jeN;
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E(PO)(;E) =—In P(y|z) + U (x) The other approach is to compute the approximate prior
=1(y— Az)TC \(y — Az) and posterior expectations of the Gibbs prior eneiidyz),
2 ) as follows:
+/32 Z /iij(a:i—a:j) + K3
OENTE, i EU()ly, B = (U(@)F (48)
=Y F@)+>. > wming E[U(2)1B] = (U (@)1 (49)
i i jEJ\‘Z-PO

and substitute these into the likelihood equation (15)
) {U@)e = (U@t (50)

2
+ /3 E E KijTy — E E Kij TiTj
i jENFFR i jENFE

+ K (38) o equivalently

where (Unir(@)EQ = (U(@) - Unir () 22

vij = 5 [ATCT A (39) = (Unr(@)ie — (UE) — Unr(@)ie-  (B1)

and
This can be rewritten, using (35), (41), and (42), as

Fy(z;) =—[A"C yliz; + L [ATC 7' A]ux?. (40)
/ UPO(2;) exp {~LI(x;) — BUTO(2:)} da;

The superscriptsPR and PO denote prior and posterior, Z

respectively. The constant terfi§ and K are independent of p / exp {—LPO (z:) — puro (2:)} da;
z and3 and do not affect the choice &fH; or estimation of3. . ! !
PR ro H H i
N; _ andNi denote the prior and posterior neighborhoods _ Z Z /iij<$i>£?<$j>£?
of pixel <. T jentr
Clearly, both prior and posterior distributions belong to the !
class of auto-models discussed in the previous subsection. / UPR(z;) exp {—pUFR(2;)} da;
Therefore, we use the optimal choice AfH; from (33) in — Z @
(37) and (38), which gives the following mean field energy p / exp {—BUTR (2:)} da;
functions: o ’
PR PR
- Rig\Ti)mf \Tj)m (52)
By = > AL (@) + U@y (1) Z j@ZM i (b
' or equivalentl
ES =83 Ul (42) d y . oo
i Z S[Uz (xi)|<xj>111f ,J € Nz ' Y, /3]
where '
=3 > milmng wng
LIC(xi) =Fi(x)+2 Y vijwile;)nf (43) oeNeR
JENFC = EW ™ ) (zs) it 5 € NIR, 6]
UPC(ei) = Y migei =2 Y rymile)ng (44) '
JENFR JENPR - Z Z Rij @it (5 it - (53)
i JcNPR
UPR(z;) = it =2 iz LR, (45 JeN
i) jg;R g jg;R il - (45) In this paper, we adopt the latter approach, i.e., to compute

the estimate ofg by finding a root of (53). For a given

Here, (z;)79 and (z,)LR denote(z;)™f with respect to the mean field(z;)™f, 3 can be computed by finding a root of

posteridr i prior domitios respectively. this equation. Since the mean figld; )™ is itself dependent

Having developed the optimal mean field reference denSP? the value3, a recursive procedure that alternates between

ties, there are two alternative approaches to computing {FRIMPUtation of(z;)™" using the current value of and vice
approximate ML hyperparameter estimate. One is to compf@/Sa. 1S required. We return to the problem of computing the

the partition function approximation as solution in Section I1I-D.

Z(y, B) ~ 2 exp {(—(ETO) — ESLONEOY (46) €. Hyperparameter Estimation Using a
Z(B) %Zﬁpr) exp{_<E(PR) _ El(\fFR)>ﬁ§ (47) Generalized Approximation
The preceding development works only for the restricted
and then to compute the mean field approximated ML estimatiass of auto-Gibbs distributions of the form (25). We now
of 3 by finding the maximum ofog Z(y, 5)—log Z(3) based consider the more general case, and present a heuristic devel-
on the likelihood in (11). opment of a mean field reference that can be applied to both
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Poisson and Gaussian likelihoods with any of the four potential The generalized mean field reference system for a prior with
functions in (8). Consider the general Gibbs distribution, whichny of the potentials in (8) can then be written as
is to be approximated

) P (zl5)
exp —/3 Iii/'V(-’IZ'i, <‘/L’">m )
with conditional density JE;R J -
1 N '
Plzi|lz;, j € Ny) = = —Ei(zi; zj, j €N; 55 ‘
(.’L’ |.’L'J, JE ) ZZ eXP{ (.’L’ LjsJ € )} ( ) / exp { /3 Z ’iu .’IZ’Z, <$J>mf )} d‘/EZ
T; E]\rPR

where E;(z;; x5, 7 € N;) is the sum over all potential
functions inE(z) that include site and V; denotes the set of
neighboring pixel sites of. We again use a separable mea
field approximation

(61)

Eor the posterior distribution with a Poisson or Gaussian
likelihood and a prior with any of the potential functions in

_ 1 _ (8), the mean field reference can be written as (62), shown
Pur(z) = Z\MF P {=Br (@)} at the bottom of the page. LF9(x;) is defined in (43) for
= H P (z,) (56) the Gaussian likelihood. For the Poisson likelihood model (2),
we use
where we define the local mean field dens?t@%f_(a:i) to be LPO(x;) = In Pylzi; x5 = (z,)50, V5 #4). (63)
equal to the conditional density for each site given the mean
field of their neighbors, i.e., Having developed the generalized mean field reference
Pl mf system, we can compute the ML estimate (fby finding
() = (@i, {Z5\i)™) a root of (U(x))[@ = (U(x))L} as we did in (50)—(53) for
/ P(zi, (ws\)™) dr; the optimal case. It is easy to show that for any of the four
@ potential functions in (8)
= P(zilz; = (@)™, j € N; (57)
ik = >f )f | (Unip @) = > EUFC @) (w)hes j € NFO, g, B
IF exp {—E;" (z;; (x;)™, j € Ni)}  (58) i

(64)

Whe_r_e S\¢ de_notes a_lll sites except The corresponding ({7 () E = Z EUR (@) |()CR, j e NIR, g,
partition functionZ™f is then given by <

(65)
zM = / exp {—E™ (z;; (z;)™, j € N))}dz;.  (59)
z; where
Combining the local energy and partition functions gives the ro PR
overall mean field energy functio®r(x), and mean field Ui " (i) = Z Rig V(@is (25 me)
partition function Zyp JENFE
Evr(z Z B (a; ()™, j € Ny) and

UPB(z;) = ki V(xs, {z; 11;0 .
ZMF _ H Z;nf' (60) 2 ( ) ]E%;R J ( < J> f)
This mean field approximation can be applied to either tihe terms of U (z) — U (2)) L9 and(U (z) - U{;E(2)) TR in

prior, P(x|f3), or posterior,P(z|y, /), densities in Bayesian (51) are difficult to evaluate except for the case of the quadratic
inverse problems provided the densities are written in the foppotential function. However, we note that for the case where
of a Gibbs distribution. Clearly, this generalized mean fieldhe prior is an auto-model, if we use the posterior mean field,
reference system takes the same form as the optimal one {fey).?, in the place of(z;)"F in (51), then these two terms

the auto-models [see (34) and the comments that follow]. cancel. Applying this idea for the general case by dropping

exXp {—LPO /3 Z Iiz; .’IZ’Z, <$J>m?)}

JEJ\rPR

MF ($|117 B) = H (62)

‘ / exp{ LPO /3 Z "JU -7717 <$J>mf)}dajZ

JEArPR
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Fig. 3. Comparison of partition function approximation using MCMC sampling and mode field approximation. (a) Rigt2ofy, 3), the prior partition
function. (b) Plot oflog Z(y, ), the posterior partition function. (c) Plot dbg p(y|3) = log Z(y. 8) — log Z(3), whose maximum corresponds

to ML estimate of 3.

the second term on either side of (51), the equation reducesuisich can be interpreted as a general mean field approximation

/ U (a3) exp {=L77C (w5) = UL (i)} da

2.

i / exp {—=LFO(x;) — BUTO (2)} dus

/ UPO(2;) exp {—AUFO (2,)) dec

JE
We can rewrite (66) as
Y EWFC @@ s i € NPC g, Bl

=D U (@)land, j € NOR,

(66)

(67)

of the likelihood in (15). Note that this version of the mean
field approximated ML estimator is different from that derived
using the GBF bound, i.e., (53), even for the auto-models. As
we see below, methods that use the GBF bound outperform
those based on (67). This is not surprising given the optimal
nature of the first and heuristic nature of the second method.
However, in cases where the optimal approximation cannot be
found, the second method still performs exceptionally well in
comparison to other well-known methods.

D. Mean and Mode Field Approximations

In many imaging applications, we are more interested in
computing a MAP estimate of the image than a minimum mean
squared error estimate. These correspond, respectively, to the
mode and the mean of the posterior densities. Therefore, rather
than also computing the mean field of the posterior reference
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Fig. 4. Comparison of MCMC sampling and mode field approximation methods for solving the likelihood equation (£5)!(@)|y, 3]. (b) E[U(=x)|3].
(c) E[U(z)|y, 8] — E[U(=x)|B]. The function in (c) equals zero at the ML value gf

field, we replace the mean field withmaode-field This mode is 1lI-C, we refer to them as MFAML-Opt and MFAML-Gen,
computed using an iterative MAP estimation procedure. Notespectively.

that using the separable approximations described above, th&o summarize, we have developed an optimal mean field
mode of the original and reference fields are identical. We natference distribution for auto-models, of which the Gibbs
that this mode-field approximation is referred to as a saddieadratic prior and the Gibbs posterior formed by a Gaussian
point approximation in [38]. In cases where the posteridikelihood and a quadratic prior are special examples. Based
density is unimodal and symmetric, the mean and mode fig@d this mean field reference, we have provided a mechanism
approximations are identical. This would be the case féor the optimal approximation of partition functions and ex-
Gaussian data with a Gaussian prior on the image. For thectations. To facilitate the generalization of the methodology,
case where the single pixel sample space is not the entire nealalso propose a suboptimal approximation in which both the
line, or when the MRF prior is nonquadratic, then the modarior and posterior mean fields are replaced by the posterior
and mean field approximations will differ. This is also the casaode field.

for Poisson data, since the Poisson likelihood is asymmetric.To examine these approximation strategies, we conducted
We refer to the parameter estimation methods described abaweexperiment using MCMC sampling [4]. A sample image
as mode field approximated maximum likeliho@dFAML). was generated using the Metropolis algorithm for the quadratic
To distinguish the two approximations in Sections IlI-B angrior with 5 = 0.001 on a lattice of size 64x 64 with a
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single pixel sample space, [0, 100]. Dgtaere then generated
according to the equation= Az +mn, whereA is the blurring
function Opt 1 (defined in Section V-Aj is Gaussian noise
with zero mean and variancg® = 4. Using this data, we
then compared the functions computed using our mode fielc
approximations with those obtained using MCMC methods.
For each of the curves shown below, the MCMC sampling
method used the Metropolis algorithm with a 500 cycle burn-
in period. Averages were then computed from the next 100C
cycles. This procedure was repeated for each valug. affe
used different initialization points to check for convergence
after 1000 averages.

Shown in Fig. 3(a) and (b) are plots of the log-partition
function for the prior and posterior densities. In Fig. 3(c),
we plot log Z(y|3) — log Z(3) which is equal to the log
likelihood log P(y|3) [see (11)]. The value gf at which this
function attains its maximum is therefore the ML estimate.
We note that there is some displacement between the maxim
of the functions using the mode-field approximation and
MCMC sampling, but the difference is small. Since our
estimation procedure solves an approximated version of the
likelihood equation (15), rather than directly maximizing the
log-likelihood, we also plot the expected values of the Gibbs
energy with respect to the posterior and prior densities in
Fig. 4(a) and (b), respectively. Their differenédl/ (z|y, 3] —
E[U(x)|7] is shown in Fig. 4(c). Note from (15) that this
function should equal zero at the ML solution. Again, while
the mode-field approximation and MCMC sampling curves do
not exactly coincide, the ML solutions obtained using both
methods are very close. We note that we cannot draw strong ) _ _ _
conclusions regarding differences in bias and variance betwggh % Expetiment for image restoration from Gaussian data= 100,

) . . . g kernel Opt-2. Top row: left, original; right, noisy, blurred
the sampling method and mode-field approximation froRhta. Middle row: left, MAP with quadratic prior; right, MAP with Huber
these examples, since they are based on a single realizatid. Bottom row: left, MAP with log-quadratic prior; right, MAP with
of z and y. The results presented for our method in th%ahugl’:tﬁ;tqp\lﬁﬂrgt;pnor. All images shown above correspond to the estimated
following section involve averages over 50 realizations for
many different cases. Due to the high computational coBt Computing the MAP Image Estimate

!nvlol\(;edthln the utie dOf _the MCMC methOdS we could not For a Gibbs prior of the form (5), the MAP estimate is found
Include these methods in our comparisons. by maximizing over the log posterior density

IV. NUMERICAL METHODS

T(B) = arg max ¢ —% (y — Az) C; ' (y — Azx)
A. Combined MAP Image Estimation and z
ML Hyperparameter Estimation

Using the approximations described above, the MAP esti- -3 Z Z iV, zx) (68)
mate of the image and the ML estimate of the hyperparameter 7 k>j, kEN;

can be jointly computed using a two-step iteration, as followg,, the Gaussian likelihood, and as shown in (69), at the bottom
1) Initialize the imager* = «° and hyperparametgt* = of the next page, for the Poisson likelihood.
3°. Setk = 0. These functions are concave fér and V, but not for V3
2) Maximize P(zly; #*) to find z***. and V,. Gradient-based optimization will therefore lead only
3) Compute a new hyperparameter vaf#fé™! by solving to local maxima for the last two potential functions. However,
the approximated likelihood equation (53) or (67) using is widely accepted that for most practical applications a local
z**+1 as the current mode field. optimum is acceptable. We therefore restrict attention here to
4) Setk =k + 1, go to Step 2. local search methods, although the MFAML method described
In practice, neither Steps 2 or 3 need be iterated to convabove can be combined with any numerical procedure for
gence before moving to the next step. We have no convergegoenputing a MAP image estimate. Many computational meth-
proof for this method. However, in running the method for ads for solving large inverse problems in image processing
wide range conditions, we have never observed a case in whigtve been studied in recent years. These include Gauss—Siedel
the method does not converge. procedures (sequential coordinate descent algorithm) [6], con-
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TABLE |
MonNTE CARLO TEST (n = 50) COMPARING PERFORMANCE OF GENERALIZED MAXIMUM PSEUDOLIKELIHOOD (GMPL), THE METHOD OF MOMENTS
(MOM), AND THE Two MoODE FIELD APPROXIMATED ML M ETHODS (MFAML) (A * INDICATES THE ALGORITHM FAILED TO CONVERGE)

True 3 | 0.0004 | 0.0010 | 0.0040 [ 0.0100 [ 0.0400 [ 0.100
GMPL Mean 4.134c-4 [ 1.093e-3 | 7.742e-3 * * i
GMPL Bias (%) 3.35% | 9.30% | 93.6% * * *
GMPL STD (%) L74% | 1.60% | 6.49% * * *
MOM Mean 4.039¢-4 | 1.012e-3 | 4.175¢-3 | 1.154e-2 | 0.0775 | 0.3565
MOM Bias (%) 0.97% | 120% | 437% | 154% | 93.7% | 257 %
MOM STD (%) 2.13% | 3.21% 10.9% | 31.0% | 340% | 380 %

MEFAMI-Gen Mean 4.010c-4 | 1.009e-3 | 4.114-3 | 1.071e-2 | 0.0472 | 0.1241
MFAML-Gen Bias (%) 0.25% 0.89% 2.84% 7.11% 17.7% | 24.1%
MFAML-Gen STD (%) 1.64% 1.35% 1.63% 2.23% 3.98% 8.81%
MFAML-Opt Mean 4.153¢-4 | 1.004e-3 | 3.977e-3 | 9.526¢-3 | 0.0357 | 0.07842
MFAML-Opt Bias (%) 3.8% 0.42% | -0.572% | -4.74% | -10.7% | -21.58%
MEFAMI-Opt STD (%) 1.21% 1.37% 1.27% 2.51% 4.02% 9.02%

jugate gradient methods [27], [30], the method of iterated For the general approximation, we use the following method
conditional modes [3], iterated conditional average (ICA) [181p solve Step 3.

[25], and generalized EM methods. The performance of thesg3a] Compute the mean field approximated statistic
algorithms in terms of computation cost and convergence rate Uﬁfﬁ’l)(:c) defined as the current left hand side of
is highly problem dependent. We have previously found that the mean field likelihood equation (67)
preconditioned conjugate gradient methods produce favorable (k1) L

performance for image restoration and reconstruction problems Uy (%) = Z EULFC (@a)ahth, 5 e NOy, Bl

[27] and use this approach in the results presented below. i (72)
Note that this method includes the use of a penalty function

+1
to impose a nonnegativity constraint on the MAP estimate. [3b] Compute the new hyperparameter valgé*: by

solving the equation
C. Computing the Hyperparameter Value Z S[Upo(x<)|xk+?~ 4 = Uﬁ?;’l)(:c). (73)
The method that we use to implement Step 3 is an EM- P ’ SV '

like alg(_)rithm. W(_a adopte_d_ this approa_ch after finding prob- In Step [3b] of this EM-like algorithm, the new hyperpa-
lems with numerical stability when using a standard Nev\‘.émeter value is computed using one or more iterations of a

ton—Raphsqn procedur'e. Fpr hyperparameter estimation u ton—Raphson procedure. All integrals encountered were
thefmeanstfleldsapprfo>|<llmat'°n based on the GBF bound, W&\, ted numerically using an adaptive quadrature method
perform Step S as follows. 29]. We also use a scaling procedure to ensure that the

[3a] C&T%Ute the mean field approximated statistigingle pixel sample space is approximately [0, 1]. This can be
Uy () defined as the current left hand side ofchieved by a corresponding inverse scaling of the elements of
the mean field likelihood equation (53) the A operator in the likelihood function. This has the effect of
4D _ EUTO(x; @+1’ j e NPO y 3 avoiding large numerical errors when computing integrals con-

nr (@) Z U @)l 5 € Ny, ] taining integrands of the forraxp {—8 3=, cn. V (i, z;)}.

B okl kel .
Z Z Rijly X5 - 70 p, Computational Cost

i JEN;
1 The computational cost of the algorithm we describe above
[3b] Compute the new hyperparameter valgé+: by g highly problem dependent. We usually run 5-10 iterations

solving the equation of the conjugate gradient algorithm to update the MAP image
estimate for a given value g8, and then use one or two
> UM @) ()t 7 € Ni; B Newton—Raphson iterations to update the valueofWe
g typically repeat this procedure 10-20 times to achieve effective
-3 > kij(w) DRz ) PR = piED) (g, convergence in3. We have observed that the number of
i JEN: iterations required increases with both the degree of blurring

(71) and the variance of the additive noise. For image restoration

Z(3) = arg max Z - Z Aijzj+yiln Z Aijxj -p Z Z kieV (x5, xr) (69)
J J

i i k>5,kREN;
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TABLE I
MonNTE CARLO TEST oF MFAML-OPT AND MFAML-G EN PERFORMANCE AS A FUNCTION OF ADDITIVE NOISE VARIANCE
True 5 | o2 MFAML-Gen MEFFAML-Opt
mean | Bias (%) | Var (%) | mean | Bias (%) | Var (%)
0.001 4 1.009e-3 0.9% 1.35% 1.004e-3 0.42% 1.37%
16 | 1.053e-3 52.8% 1.39% 1.005e-3 0.47% 1.68%
36 | 1.111e-3 11.1% 1.85% | 9.863e-4 | -1.37% 1.99%
100 | 1.232¢-3 23.2% 3.83% | 8.844e-1 | -11.5% 2.19%
400 | 1.348¢-3 34.8% 10.4% | 7.450e-4 | -25.5% 12.1%
TABLE 1lI

RoBusTNESS OFMFAML-GEN AND MFAML-OPT TO DIFFERENT SMOOTHING OPERATORS

True 3x3 MFAML-Gen MEFAML-Opt

Jé] operator | mean | Bias (%) | Var (%) | mean | Bias (%) | Var (%)
0.004 | Opt 1 4.114e-3 2.84% 1.63% | 3.977e-3 | -0.572% 1.27%
Opt 2 | 9.821¢-3 145% 3.78% | 5.867¢-3 | 16.6% 2.07%
Opt 3 1.079%e-2 170% 3.31% | 5.840e-3 | 46.0% 2.14%
0.01 Opt 1 1.071e-2 | 7.11% 2.23% | 9.526¢-3 | -4.71% 2.51%
Opt 2 | 3.401e-2 240% 5.88% | 1.060e-2 | 5.96% 1.97%
Opt 3 | 3.628¢-2 262% 10.2% | 1.085e-3 | 8.48% 2.01%
0.04 Opt 1 0.0472 17.7% 3.89% 0.0357 -10.7% 4.02%
Opt 2 | 0.1030 | 157% | 87% | 0.0215 | 46.2% | 1.26%
Opt 3 0.1055 164% 9.71% 0.0225 44.1% 5.21%

with local blurring only, the dominant computational costform as the Gibbs energy function of the prior, computed over
are the Newton—Raphson iterations required for updating ttiee noisy imagey with an eight nearest neighbor interaction.
hyperparameter. On a SunSPARC 20/61 workstation, eachVe performed Monte Carlo studies for image restoration
iteration of the conjugate gradient MAP algorithm for as follows. For each value of the hyperparameter, 50 sample
256 x 256 pixel image requires only a few seconds. Eadmages were drawn from a specific prior using the Metropolis
iteration of the Newton—Raphson algorithm can take frordgorithm [24]. Each sampled image was then blurred by one
several seconds to several minutes because each iteratibthe following 3 x 3 kernels:

requires 3x 256 x 256 1-D numerical integrations. For 0.001 0.028 0.001

problems with Gaussian likelihoods and quadratic priors, we

can replace the numerical integrals with an error function Optl: |0.028 0.884 0.028

look-up table, thus reducing the per iteration cost to a few 0.001 0.028 0.001
seconds. 1 1 1
16 8 16
Opt 2: i1 1
V. PERFORMANCE STUDIES P ti 41; tl%
6 8 16

We have applied the mode field approximated maximug),
likelihood (MFAML) method to image restoration and recon-
struction. We present the results for image restoration below.
Application of this method to parameter estimation in positron
emission tomography (PET), where the data are Poisson, is

described n [.28] and [41]. We simply note here that we ha\f@ote that the degree of smoothing increases from Opt 1-3.
obseryed similar per_formance for Fhe PET problem to thﬁtseudorandom Gaussian noise with known variamceas
described below for image restoration. generated to contaminate each of the resulting blurred images.
] ) ) ) ) . The likelihood function for these noisy data take the form of
A. Estimator Bias and Variance Using Stochastic Sampling (1). The hyperparameters were estimated for each method of
We used extensive Monte Carlo simulations to evaluate theerest for each of the 50 noisy images. Since the original
performance of the new MFAML hyperparameter estimatoisiages are sampled from specific priors with known hyper-
in the problem of image restoration from blurred data witharameter values, we were able to calculate bias and variance
additive Gaussian noise. We have compared the performaaceoss the 50 resulting estimates.
of the MFAML methods described above with generalized A comparison of the performance of the various methods
maximum pseudolikelihood (GMPL) and the method of mder a range of values of is shown in Table I. The original
ments (MOM), for which the statistid/(y) takes the same images were generated using the Metropolis algorithm with the

Opt 3:

Q= Y~ Ol
Q= Y~ Ol

Q= Y~ Ol
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Fig. 6. Total squared error versysfor (a) quadratic and (b) Huber priors. Shown are fleurves for (c) quadratic and (d) Huber priors. A’‘indicates
the 5 value obtained using MFAML-Gen and “0” using MFAML-Opt (quadratic case only). Note the estimhteslues correspond approximately to
the minimum squared error.

guadratic prior and a single pixel sample space [0, 100]. Thefsem of MFAML exhibits lower bias than the general form,
were then blurred using Opt 1 and contaminated by zero meaith slightly larger variance and overall superior performance.
Gaussian noise with varianeg® = 4. All methods perform However, in practice these differences are small and lead to
best wheng is small and deteriorate &8 increases and the little noticeable difference in image quality when applied to
images become smoother. The GMPL method works only fogal images.

the smaller values of. As 3 increases, the two-step method, To test the robustness of the MFAML methods to noise,
which iterates between MAP estimation of the imagend we used the same set-up as in the comparative studies above
estimation of33, fails to converge. The MOM method performsand generated data for a range of additive noise variances. As
better in general, but g8 increases, the slope of the momenbefore, ensemble statistics were computed to determine the
curve decreases, leading to increased bias and varianceeffects of different noise levels on the bias and variance of
all cases, both the general and optimal forms of MFAMIZ. We summarize these results in Table II. Although we do
outperform both of the other techniques. The differences avbserve deterioration in the performance when noise variance
very clear for the cases whereis large, which correspondsincreases, both MFAML methods appear to perform well and
to the case of increasingly smooth images. For these Igtgeare stable even for very large additive noise variances.
values, MFAML shows approximately a tenfold reduction in The conditioning of the likelihood affects the degree of ill-
bias and variance relative to the MOM method. The optimpabsedness of the inverse problem, i.e., the conditioning of the
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operatorA determines our ability to recover the imagdrom space of the Boat image is [0, 255]. We generated Gaussian
the blurred data, which in turn affects our ability to accuratelyoise with a variance of 100 to contaminate the resulting
estimate. Results in Table Il show that as the degree dflurred Boat image. The images were then restored using MAP
blurring increases and the inverse problem becomes moreetimation for each of the four potential functions in (8) and
posed, performance of the MFAML methods deteriorates. Thige appropriate likelihood function. Images were reconstructed
bias in the estimator appears to be more affected than variapge a range of fixed values ofs and the total squared
by changes in the degree of blurring. Note also that in thigror between the original and restored image calculated.
example, there are more substantial differences in performangg: jmages were then reconstructed again with simultaneous
between the general and optimal MFAML methods than WagrAML estimation of 3. For the case of Gaussian noise
seen in Table I. For the Opt-2 and Opt-3 blurring kernelgg the quadratic prior we use both the MFAML-Gen and
GMPL does not converge and MOM is unable to identify thgyeanm-opt estimators. In all other cases we use only the

parameter due to the flatness of the moment curve. MFAML-Gen method.
o o _ The restored images for the cases whgrés estimated
B. Applications and Validations with Real Images are shown in Fig. 5. The corresponding curves showing the

In this experiment, we used thed3 blurring mask Opt 2 to restored image error as a function of hyperparameter are
blur the 256x 256 pixel Boat image. The single pixel sampleshown in Figs. 6 and 7. Note the log-scale on theaxis.
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