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Abstract
We describe methods for computing mean and variance

approximations to instantaneous and average rate estimates
obtained from continuous-time penalized ML dynamic PET
image reconstructions. The derivation is based on writing the
likelihood for the list-mode data as the limiting case of the
likelihood for binned sinogram data as the temporal bin width
goes to zero. We show that approximations of the mean and
covariance can then be computed for continuous-time penalized
ML estimates by exploiting spatio-temporal separability and the
use of Kronecker decompositions. The resulting expressions
are tractible forms that provide estimates of the mean and of
instantaneous and time-averaged covariance between any two
voxels and time instances.

I. INTRODUCTION

Maximum a posteriori (MAP) or penalized ML image
reconstruction methods combine accurate physical and
statistical modeling of the coincidence detection process
in positron emission tomography (PET) to produce images
with improved resolution and noise performances compared
to Þltered-backprojection methods. Spatial resolution and
noise properties of MAP reconstructions, as characterized
by the mean and variance of the reconstructed images, have
previously been investigated, e.g. [1], [2], [6]. However, there
is little or no work on the temporal resolution properties of
MAP images. This is mainly because dynamic imaging is
traditionally performed as a series of static reconstructions and
temporal resolution is determined by frame length.

In our work on dynamic PET image reconstruction from
list-mode data [4] we showed that continuous-time PET image
reconstruction was a tractable problem and investigated the
mean and variance of reconstructed images through Monte
Carlo simulations. In this paper we investigate the temporal
behavior of our list-mode penalized ML algorithm through
analytic approximations developed in [1] and [2]. We derive
computationally efÞcient approximate methods for estimation
of the mean and variance of dynamic reconstructions.

II. METHODS AND RESULTS

A. Log-likelihood Functions
We model the positron emissions in each voxel in the

volume as an inhomogeneous Poisson process. We denote
the rate function at voxel j by ηj(t) and parametrize it using
a set of basis functions so that ηj(t) =

∑
l wjlBl(t). It
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follows that the detection process at detector pair i is also an
inhomogeneous Poisson process with rate function ri(t) =∑

l(
∑

j pijwjl)Bl(t) where pij is the ijth element of the
system matrix P and denotes the probability of an event at voxel
j being detected at detector pair i. Using the likelihood function
of event arrival times in an inhomogeneous Poisson process,
we obtain the log-likelihood function of the arrival times as a
function of the coefÞcients as follows [4]:

Lcontinuous(w) =
np∑

i=1

xi∑

k=1

log

(
nb∑


=1

nv∑

j=1

pijwj
B
(aik)

)

−
np∑

i=1

(
nb∑


=1

(
nv∑

j=1

pijwj
)
∫ T

0

B
(t)dt

)
(1)

where np is the number of detector pairs, nv is the number of
voxels, nb is the number of temporal basis functions, xi is the
number of events at detector pair i and aik is the arrival time of
the kth event at detector pair i.

Computing the Fisher information matrix using this log-

likelihood function from −E(∂2L(w)
∂2(w) ) leads to an intractable

form. To overcome this difÞculty, we divide the scan duration
into N time bins and model our observation at each detector
pair as the N × 1 vector whose nth element is the number
of events observed during time bin n at that detector pair.
Therefore our observation at detector pair i is given by yi =
[y(1)

i , y
(2)
i . . . y

(N)
i ]T . When we concatenate the observation

vectors at all detector pairs into a single nd × N vector where
nd is the total number of detector pairs, our observation vector
becomes y =[y1

T y2
T . . .ynd

T]T.

The log-likelihood for the binned data is:

Lbin(w) =
np∑

i=1

N∑

n=1

y
(n)
i log

(
nb∑


=1

nv∑

j=1

pijwj


∫ tn

tn−1

B
(t)dt

)

−
np∑

i=1

(
nb∑


=1

(
nv∑

j=1

pijwj
)
∫ T

0

B
(t)dt

)
(2)

As bin-width approaches zero, the bin-mode log-likelihood
function given by (2), and therefore its maximizer, approach the
continuous-time log-likelihood and its maximizer respectively.
Therefore we can work with bin-mode data and extend these
results to the continous time case by making the bin width
approach zero.

The (i, n)th element of our observation vector y, (i.e. y(n)
i )

has a Poisson distribution with mean
∫ tn

tn−1
ri(t)dt where tn−1

and tn are the end points of time bin n. By substituting
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∑
l(

∑
j pijwjl)Bl(t) for the rate function ri(t) we can relate

the mean number of events at each spatiotemporal bin ȳ
(n)
i to

the parameters to be estimated as follows:

ȳ
(n)
i =

nv∑

j=1

nb∑

l=1

pij

[∫ tn

tn−1

Bl(t)dt

]
wjl (3)

Note the space-time separability in (3) which allows us to
write the mean of our observation vector in terms of the control
vertex vector w as follows:

y = (P ⊗ B)w (4)

Here w is the large vector containing the control vertex
vectors of all voxels. i.e. w = (w1

T w2
T . . .wnp

T )T . B is
the temporal sensitivity matrix whose (n, l)th element is given
by

∫ tn

tn−1
Bl(t)dt and ⊗ denotes the left Kronecker product.

B. Mean Estimation
A simple but reasonably accurate method for estimating

the mean in static (i.e. single frame) reconstructions is
to reconstruct noise-free data [1]. Even if the means are
non-integers, they can be formally substituted into the static
objective function and the optimization of that objective
function will give an estimate for the reconstruction mean.

The same approach in the dynamic case is not possible with
the continuous-time log-likelihood function because it is based
on the event arrival times rather than the total number of events
at each detector pair. However, the bin-mode approach allows
for a similar substitution in which the y

(n)
i Õs are replaced by

(possibly non-integer) ȳ
(n)
i =

∫ tn

tn−1
ri(t)dt. Substitution of

this into (3) together with the use of the mean value theorem,
allowing bin width to approach zero and removing terms not
dependent on w gives the following objective function whose
maximization results in a Þrst order estimate for the mean of
the reconstructed control vertices:

L(r(t),w) =
nd∑

i=1

∫ T

0

ri(t) log

(
nb∑


=1

nv∑

j=1

pijwj
B
(t)dt

)

−
np∑

i=1

(
nb∑


=1

nv∑

j=1

pijwj


∫ T

0

B
(t)dt

)
(5)

Unlike the static case, in which the rate functions are
integrated over disjoint intervals for each bin, here the values
of the rate functions at each time instant contribute to multiple
control vertices through weighting by the basis functions
Bl(t). A comparison with (1) reveals that maximization of
the continuous-time objective function falls into the general
category of maximizing an objective function of the form:

L(f(t),w) =
nd∑

i=1

∫ T

0

fi(t) log

(
nb∑


=1

nv∑

j=1

pijwj
B
(t)dt

)

−
np∑

i=1

(
nb∑


=1

nv∑

j=1

pijwj


∫ T

0

B
(t)dt

)
(6)

where f(t) is a vector valued function of time whose ith element
is given by fi(t) = ri(t) in the noiseless case and fi(t) =∑xi

k=1 δ(t − aik) in the noisy case. This result is intuitive
in the sense that when the rate functions at detector pairs are
known, a reconstruction using those rate functions gives a Þrst
order estimate for the mean. On the other hand, we can think
of the noisy situation (i.e. when we have a realization of the
inhomogeneous Poisson process instead of its rate function) as
one in which the rate functions are replaced by their estimates∑xi

k=1 δ(t − aik) corresponding to an impulse train at event
arrival times.

In summary, our procedure for estimating the mean is to
maximize (6) (or its penalized ML version with appropriate
penalties) and to use the resulting control vertex estimates ŵ
in η̂j(t) =

∑nb

l=1 ŵjlBl(t).

C. Variance Estimation

1) Variances of Instantaneous and Average Rate Estimates

The objective of instantaneous rate estimation is to estimate
average activity at a given voxel at a Þxed point in time
- i.e. the desired expression is ηj(t). In average rate
estimation, the objective is to estimate average activity at a
given voxel over a period of time i.e. the desired expression
is 1

(t2−t1)

∫ t2
t1

ηj(t)dt. Under our parametrized inhomogeneous
Poisson process model, the covariance between rate function
estimates at any two voxels j and k at any two time points tm
and tn (instantaneous) or averaged from t1 to t2 (average) can
be obtained via

cov (η̂j(tm), η̂k(tn)) = cov

(
nb∑

l=1

wjlBl(tm),
nb∑

l=1

wklBl(tn)

)

= b(tm)T Cwj ,wk
b(tn) (7)

cov

(∫ t2
t1

η̂j(t)dt

(t2 − t1)
,

∫ t2
t1

η̂k(t)dt

(t2 − t1)

)

=
1

(t2 − t1)2

(∫ t2

t1

b(t)
)T

Cwj ,wk

(∫ t2

t1

b(t)
)

(8)

where b(t) ≡ (B1(t) . . . Bnb
(t))T and Cwj ,wk

is the jkth

block submatrix of Cw ≡ cov(w).

From these expressions, or by simply observing
that rate function estimates are related to control
vertices deterministically, we conclude that an estimate
of Cw is necessary and sufÞcient for estimating the
variances/covariances of instantaneous or average rate
estimates at any pair of voxels at any pair of time points. Once
Cw is estimated, it can be used in (7) or (8) to obtain the
desired expressions.
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2) Penalized ML Control Vertex Covariance Matrix Estimation

In this subsection we will derive an approximation to Cw in
the context of penalized ML estimation. In our reconstruction
work [4] we added spatial and temporal roughness penalty
terms to the log-likelihood in order to enforce spatial and
temporal smoothness.

We used a spatial smoothing function equivalent to the
pair-wise quadratic penalty used previously in penalized ML
[8] and Bayesian estimation [5] of static PET images. Our
temporal roughness penalty was in the form of integrated

squared curvature. For voxel j this is
∫ {

∂2

∂u2 ηj(u)
}2

du.

Fortunately, for cubic splines this quantity is a quadratic form
of the control vertices ([7], pg. 238). We denote the symmetric
banded matrix of this quadratic form Q. Thus our spatial and
temporal smoothness penalties are

φ(w) =
∑

�

∑

j

∑

j′∈Nj ,j′>j

κjj′(wj� − wj′�)2 (9)

ρ(w) =
∑

j

∑

�1

∑

�2

wj�1Q�1�2wj�2 (10)

Both of these penalty terms are quadratic in the control
vertices and therefore can be put in the standard quadratic form:

φ(w) =
1
2
wT Rsw (11)

ρ(w) =
1
2
wT Rtw (12)

We will show and use the special factorization properties
of Rs and Rt later in the derivation. At this point we take
advantage of the Þxed observation vector size due to the bin-
mode approach in (2) and quadratic forms of both penalties
which allow us to adopt approximations similar to those in [1]:

Cw ≈ (F + βRs + γRt)−1F(F + βRs + γRt)−1 (13)

where F is the Fisher Information Matrix (FIM) given by F ≡
(P ⊗ B)T diag{ 1

y
(n)
i

}(P ⊗ B). The difÞculty in evaluating

the covariance matrix is in the matrix inversions and we will
use Fourier transform arguments as in [3] and [6] together with
properties of Kronecker products [9] to obtain an approximation
to Cw.

First we introduce the double index notation (j, l) to denote
((j − 1)nb + l) and note that the (k, l)(m, s)th element of the
nbnv × nbnv FIM is given by

F(k,l)(m,s) =
nd∑

i=1

N∑

n=1

pikpimA
(n)
l A

(n)
s

ȳ
(n)
i

(14)

where A
(n)
l ≡

∫ tn

tn−1
Bl(t)dt. Using this exact form of the FIM

together with the penalty terms in (13) makes the computation
of (F+βRs +γRt)−1 very difÞcult. Therefore we proceed by
making an approximation to the FIM very similar to that in [1]:

F ≈ D{κ(j,l)}D{v(j,l)}−1(P ⊗ B)T (15)

(P ⊗ B)D{v(j,l)}−1D{κ(j,l)}

where D{·} denotes a diagonal matrix and κ(j,l) and v(j,l) are
given by

κ(j,l) =

√√√√
nd∑

i=1

p2
ij

(∫ T

0

B2
l (t)dt
ri(t)

)
(16)

v(j,l) =

√√√√
nd∑

i=1

p2
ij

(∫ T

0
Bl(t)dt

)2

(17)

At this point we Þrst note that (P ⊗ B)T (P ⊗ B) =
(PT P ⊗ BT B) and observe that v(j,l) is separable into

v(j,l) = v
(s)
j v

(t)
l where v

(s)
j =

√∑nd

i=1 p
2
ij and v

(t)
l =

√(∑N
n=1(

∫ tn

tn−1
Bl(t)dt)2

)
. Superscripts (s) and (t) are used

to emphasize the fact that they are spatial and temporal terms
respectively. Hence our FIM approximation becomes

F ≈ D{κ(j,l)}
(
D{v(s)

j } ⊗ D{v(t)
l }

)−1

(PT P ⊗ BT B)
(
D{v(s)

j } ⊗ D{v(t)
l }

)−1
D{κ(j,l)}

= D{κ(j,l)}
[
[(D{v(s)

j }−1PT PD{v(s)
j }−1) ] ⊗

[D{v(t)
l }BT BD{v(t)

l }−1)]
]
D{κ(j,l)} (18)

where we again used the properties of the Kronecker product to
write the second part of the above equation.

Now we turn our attention to the other two terms in the
covariance matrix (13), βRs and γRt. It follows from (9)-(12)
that we can rewrite Rs and Rt as

Rs = S ⊗ I (19)

Rt = I ⊗ T (20)

where Sl′l′′ ≡ 2Ql′l′′ and Tj′′′ ≡ 2
∑

j∈Nj
κjj′ if j′ = j′′ and

−2κj′j′′ if j′ 	= j′′. The identity matrix in (19) is nb × nb and
the identity matrix in (20) is nv × nv .

We proceed by expressing βRs and γRt as follows

βRs = D{κ(j,l)}D{η(j,l)}(S ⊗ I)D{η(j,l)}D{κ(j,l)} (21)

γRt = D{κ(j,l)}D{ψ(j,l)}(I ⊗ T)D{ψ(j,l)}D{κ(j,l)} (22)

where
η(j,l) =

√
β/κ(j,l) (23)

ψ(j,l) =
√
γ/κ(j,l) (24)
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We can now express Cw in the following form:

Cw ≈ [F + D{κ(j,l)}D{η(j,l)}(S ⊗ I)D{η(j,l)}D{κ(j,l)}
+D{κ(j,l)}D{ψ(j,l)}(I ⊗ T)D{ψ(j,l)}D{κ(j,l)}]−1

F [F + D{κ(j,l)}D{η(j,l)}(S ⊗ I)D{η(j,l)}D{κ(j,l)}
+D{κ(j,l)}D{ψ(j,l)}(I ⊗ T)D{ψ(j,l)}D{κ(j,l)}]−1 (25)

where F is given by (18). In order to be able to diagonalize
the remaining terms after factoring out D{κ(j,l)} we make the
following approximation, similar to its static counterpart in [6]:

[(D{v
(s)
j }−1PT PD{v

(s)
j }−1) ⊗ (D{v

(t)
l }BT BD{v

(t)
l }−1) +

D{η(j,l)}(S ⊗ I)D{η(j,l)} + D{ψ(j,l)}(I ⊗ T)D{ψ(j,l)}]e(j,l)

≈
[(D{v

(s)
j }−1PT PD{v

(s)
j }−1) ⊗ (D{v

(t)
l }BT BD{v

(t)
l }−1) +

η2
(j,l)(S ⊗ I) + ψ2

(j,l)(I ⊗ T)]e(j,l) (26)

where e(j,l) is the unit vector in the (j, l)th control vertex. Now
we approximately diagonalize PT P and S ≡ CT C (since we
use pairwise quadratic penalties such a decomposition of Rs

is possible) using 2D-DFTs based on the assumption that they
are approximately block circulant. We will also diagonalize
BT B and T ≡ 2Q using 1D-DFTs assuming that they are
approximately circulant. Any nb × nb unitary matrix which
can approximately diagonalize both BT B and Q can also
be used. Approximate diagonalization leads to the following
expressions:

D{v(s)
j }−1PT PD{v(s)

j } ≈ QT
nv

D{λ(s)
j }Qnv

(27)

D{v(t)
l }−1BT BD{v(t)

l } ≈ QT
nb
D{λ(t)

l }Qnb
(28)

S ≈ QT
nv

D{µj}Qnv
(29)

T ≈ QT
nb
D{δl}Qnb

(30)

where Qnv
denotes the Kronecker form of the nv × nv 2D-

DFT matrix and Qnb
denotes the 1D-DFT matrix. Note that

the λ
(s)
j are exactly the same 2D-DFT coefÞcients used in the

static case [6]. Substitution of these diagonalizations together
with the approximations in (26) into (25) gives the following
result for the covariances of the control vertices (which form
the entries of Cw):

var(wj′l′) =
κ−2

(j′,l′)

nbnv

nv∑

j=1

nb∑

l=1

λ
(s)
j λ

(t)
l

(λ(s)
j λ

(t)
l + κ−2

(j,l)(βµj + γδl))2
(31)

cov(wj′l′ , wj′′l′′) = (32)

κ−1
(j′,l′)κ

−1
(j′′,l′′)e

T
(j′,l′)[Qnv

⊗ Qnb
]T L[Qnv

⊗ Qnb
]e(j′′,l′′)

where we used the unitary properties of Qnv
and Qnb

in (31)
and L is a diagonal matrix whose (j, l)th diagonal entry is given
by:
L(j,l)(j,l) =

λjλl

[λjλl + κ−2
(j′,l′)(βµj + γδl)][λjλl + κ−2

(j′′,l′′)(βµj + γδl)]
(33)

These last two equations indicate the procedure for
computing instantaneous or average activity estimate
covariances. We compute Cwj′ ,wj′′ using (32) (or (31) for the
diagonal terms when j′ = j′′), then substitute the result in (7)
or (8) to obtain the desired expression. The total computational
cost is 2 nv-point 2D-DFTs and 2 nb-point 1D-DFTs.

III. DISCUSSION

In order to evaluate the performance of our continuous-
time dynamic PET reconstruction algorithm [4], we derived
procedures for approximating means and variances of dynamic
average and instantaneous rate estimates. We used DFT
based diagonalizations as in [3], [6] to perform the matrix
inversions which would otherwise not be feasible except for
one-dimensional cases. This performance analysis allows us
to evaluate the performances of all dynamic reconstructions
in which the rate functions are parametrized by continuous
basis functions and penalty terms are quadratic and separable
in control vertices. This efÞcient analysis can be used
in comparing different dynamic reconstruction alogrithms as
well as comparing dynamic reconstructions versus static ones
without extensive Monte Carlo simulations.
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