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Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) are
techniques dedicated to the non-invasive detection of neural current flows
through the electromagnetic field they generate and that can be measured
outside the head. Though MEG and EEG were born in physics and electro-
physiology laboratories several decades ago, they have constantly evolved by
integrating new technological and methodological advances. In the neuropsy-
chology lab, EEG has rapidly been adopted as a technique to investigate the
timing and scalp topography of specific brain responses elicited by a stimulus.
Today, MEG and EEG set-ups integrate from several dozens to hundreds of
sensors distributed outside the head, which — once combined with models of
electromagnetics within brain and head tissues — allow the estimation of the
neural generators of these ‘brain waves’. This has given rise to techniques
for time-resolved electromagnetic brain mapping, which this chapter reviews
in more details with a pragmatic standpoint, and an emphasis on the exper-
imental benefits of accessing brain activation at the millisecond time scale.
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Introduction

Accessing brain activity non-invasively using neuroimaging techniques has been possi-
ble for about two decades and has continued to thrive from the technical and methodological
standpoints (K. J. Friston, 2009). With the ubiquitous availability of magnetic resonance
imaging (MRI) scanners in major hospitals and research centers, functional-MRI (fMRI)
has certainly become the modality-of-choice to approach the human brain in action. A well-
documented and thoroughly-discussed limitation of fMRI however, sits in the very physio-
logical origins of the signals accessible to the analysis. Indeed, fMRI is essentially sensitive
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to local fluctuations in blood oxygen levels and flow, which connexion to cerebral activity is
the object of very active scientific investigations and sometimes, controversies (Logothetis &
Pfeuffer, 2004; Logothetis & Wandell, 2004; Eijsden, Hyder, Rothman, & Shulman, 2009).
A more fundamental limitation of fMRI and metabolic techniques such as Positon Emission
Tomography (PET) is the lack of temporal resolution. In essence, the physiological changes
captured by these techniques fluctuate within a typical time scale of several hundreds of
milliseconds at best, which makes them excellent at mapping the regions involved in task
performance or resting-states (Fox & Raichle, 2007), but incapable of resolving the flow of
rapid brain activity that unfolds with time. Metaphorically speaking, metabolic and hemo-
dynamic techniques perform as very sensitive cameras that are able to capture low-intensity
signals using long aperture durations, hence a sluggish temporal resolution. This basic lim-
itation has become salient as new neuroscience questions emerge to investigate the brain
as an ensemble of complex networks that form, reshape and flush information dynamically
(Varela, Lachaux, Rodriguez, & Martinerie, 2001; Sergent & Dehaene, 2004; Werner, 2007).
An additional, though seemingly minor, limitation of these modalities consist in their oper-
ational environment: most scanners are installed in hospitals, with typically limited access
time but more importantly, necessitate that subjects lie supine in a narrow tunnel, with
loud noises generated by the acquisition processes. Such non-ecological environment is cer-
tainly detrimental to the subject’s comfort and therefore, limits the possibilities in terms of
stimulus presentation and real-time interaction with participants, which are central issues
in Social Neuroscience studies.

This chapter therefore describes how Electroencephalography (EEG) and Magnetoen-
cephalography (MEG) offer complementary alternatives to typical neuroimaging studies in
that respect. We will briefly review the basic, though very rich, methods of sensor data
analysis, which focus of the chronometry of so-called brain events. We will further empha-
size how MEG and EEG may be utilized as neuroimaging techniques, that is, how they
are capable to map dynamic brain activity and functional connectivity with fair spatial
resolution and unique rapid time scales. EEG recordings have been made possible in the
MRI environment, therefore leading to multimodal data acquisition and analysis (Laufs,
Daunizeau, Carmichael, & Kleinschmidt, 2008). This has brought up interesting discussions
and results on e.g., rapid phenomena such as epileptiform events and the electrophysiological
counterpart of BOLD resting-state fluctuations (Mantini, Perrucci, Gratta, Romani, & Cor-
betta, 2007). MEG and EEG data acquired with high-density sensor arrays also stand by
themselves as functional neuroimaging techniques: this is the realm of electromagnetic brain
mapping (Salmelin & Baillet, 2009). It is indeed interesting to note that MEG instruments
are being delivered to prominent functional neuroimaging clinical and research centers who
are willing to expand their investigations beyond the static, functional cartography of the
brain. This chapter offers a pragmatic review of this rapidly evolving field.

MEG/EEG Principles and Instrumentation
Physiological sources of electromagnetic fields

All electrical currents produce electromagnetic fields, and our body is inundated by
currents of all sorts. The muscles and the heart are two well-known and strong sources
of electrophysiological currents, qualified as ‘animal electricity’ by early scientists like Luigi
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Galvani, who were able to evidence such phenomena more than 200 years ago. The brain also
sustains ionic current flows within and across cell assemblies, with neurons as the strongest
generators. The architecture of the neural cell — as decomposed into dendritic branches and
tree, soma and axon — conditions the paths taken by the tiny intracellular currents flowing
within the cell. The relative complexity and large variety of these current pathways can
be simplified by looking at the cell from some distance: indeed, these elementary currents
instantaneously sum into a net primary current flow, which can be well described as a small,
straight electrical dipole conducting current from a source to a sink (Fig.1). Intracellular
current sources are twofold in a neuron: 1) axon potentials, which generate fast discharges of
currents, and 2) slower excitatory and inhibitory post-synaptic potentials (E/I PSPs), which
create an electrical imbalance between the basal, apical dendritic tree and/or the cell soma.
Fach of these two categories of current sources generates electromagnetic fields, which can
be well captured by local electrophysiological recording techniques. The amount of current
being generated by a single cell is however too small to be detected several centimeters away
and outside the head. Detecting electrophysiological traces non invasively is conditioned to
two main factors: 1) that the architecture of the cell is propitious to give rise to a large net
current, and 2) that neighboring cells would drive their respective intracellular currents with
a sufficient degree of group synchronization so that they build-up and reach levels detectable
at some distance. Fortunately, a great share of neural cells possesses a longitudinal geometry;
these are the pyramidal cells in neocortical layers ITI/III and V. Also, neurons are grouped
into assemblies of tightly interconnected cells. Therefore it is likely that PSPs be identically
distributed across a given assembly, with the immediate benefit that they build-up efficiently
to drive larger levels of currents, which in turn generate electromagnetic fields that are strong
enough to be detected outside the head (Fig.1).

Neurons in assemblies are also likely to fire volleys of action potentials with a fair degree of
synchronization. However the very short duration of each action potential firing — typically
a few milliseconds — makes it very unlikely that they sufficiently overlap in time to sum-up to
a massive current flow. Though smaller in amplitude, PSPs sustain with typical durations —
a few tens to hundreds of milliseconds — that make temporal and amplitude overlap build-up
more efficiently within the cell ensemble.

Interestingly, though PSPs were thought originally to impress only rather slow fluctuations
of currents, recent experimental and modeling evidence demonstrate they are capable of also
generating fast spiking activity (Murakami & Okada, 2006). One might assume that these
latter may be at the origins of the very high-frequency brain oscillations (that is, up to 1KHz)
captured by MEG (Cimatti et al., 2007). Indeed, mechanisms of active ion channeling within
dendrites would further contribute to larger amplitudes of primary currents than initially
predicted (Murakami & Okada, 2006). Hence neocortical columns consisting of as few as
50,000 pyramidal cells with an individual current density of 0.2 pA.m, would induce a net
current density of 10 nA.m at the assembly level. This is the typical source strength that
can be detected using MEG and EEG. Other neural cell types, such as Purkinje and stellate
cells are structured with less favorable morphology and/or density than pyramidal cells.
It is therefore expected that their contribution to MEG/EEG surface signals is less than
neocortical regions. Published models and experimental data however report regularly on
the detection of cerebellar and deeper brain activity using MEG or EEG (Tesche, 1996; Jerbi
et al., 2007; Attal et al., 2009).
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Cellular currents are therefore the primary contributors to MEG/EEG surface signals.
These current generators operate in a conductive medium and therefore impress a secondary
type of currents that circulate through the head tissues (including the skull bone) and loop
back to close the electrical circuit (Fig.1). Consequently, it is key to the methods attempting
to localize the primary current sources to discriminate these latter from the contributions of
secondary currents to the measurements. Modeling the electromagnetic properties of head
tissues is critical in that respect. Before reviewing this important aspect of the MEG /EEG
realm, we shall first discuss the basics of MEG/EEG instrumentation.

10 ms

apical
dendrites
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dendrites

(a) (b)

Figure 1. Basic electrophysiological principles of MEG and EEG. (a) Large neural cells — just like
this pyramidal neuron from cortex layer V — drive ionic electrical currents. These latter are essentially
impressed by the difference in electrical potentials between the basal and apical dendrites or the cell
body, which is due to a blend of excitatory and inhibitory post-synaptic potentials (PSP), which
are slow (>10 ms) relatively to axon potentials firing and therefore sum-up efficiently at the scale of
synchronized neural ensembles. These primary currents can be modeled using an equivalent current
dipole, here represented by a large black arrow. The electrical circuit of currents is closed within
the entire head volume by secondary, volume currents shown with the dark plain lines. Additionally,
magnetic fields are generated by the primary and secondary currents. The magnetic field lines
induced by the primary currents are shown using dashed lines arranged in circles about the dipole
source. (b) At a larger spatial scale, the mass effect of currents due to neural cells sustaining similar
PSP mixtures add up locally and behave also as an current dipole (shown in red). This primary
generator induces secondary currents (shown in yellow) that travel through the head tissues. They
eventually reach the scalp surface where they can be detected using pairs of electrodes in EEG.
Magnetic fields (in green) travel more freely within tissues and are less distorted than current flows.
They can be captured using arrays of magnetometers in MEG. The distribution of blue and red colors
on the scalp illustrates the continuum of magnetic and electric fields and potentials distributed at
the surface of the head.

Instrumentation

EEG instrumentation. Basic EEG sensing technology is extremely mature and rela-
tively cost-effective, thanks to its wide distribution in the clinical world. The basic principles
of EEG consist of the measurement of differences in electrical potentials between couples
of electrodes. Two typical set-ups are available: 1) Bipolar electrode montages, where elec-
trodes are arranged in pairs. Hence electrical potential differences are measured relatively
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within each electrode pairs; 2) Monopolar electrode montages, where voltage differences are
measured relatively to a unique reference electrode. Electrodes may be manufactured us-
ing multiple possible materials: Silver/silver chloride compounds are the most common and
excel in most aspects of the required specifications: low impedance (from 1 to 20 KQ) and
relatively wide frequency responses (from direct currents to ideally the KHz range). The
contact with the skin is critical to signal quality. Skin preparation is essential and the time
required is commensurate to the number of electrodes used in the montage. The skin needs
to be lightly abraded and cleansed before a special conductive medium — a paste, generally
— is applied between the skin and the electrode.

Advanced EEG solutions are constantly being proposed to research investigators and
include essentially: 1) A greater number of sensors (up to 256, typically; see Fig. 4); 2)
Faster sampling rates (~5KHz on all channels); 3) Facilitated electrode positioning and
preparation (with spongy electrolyte contacts or active ‘dry’ electrodes); and 4) Multimodal
compatibility (whereby EEG can be recorded concurrently to MEG or fMRI). In that respect,
EEG remains one of the very few brain sensing technologies that are capable of bridging
multiple environments: from very high to ultra-low magnetic fields, and may also be used
in ambulatory mode. The ideal EEG laboratory however requires that recordings take place
in a room with walls containing conducting materials, as a Faraday cage, for the reduction
of electrostatic interferences.

Though electrodes may be glued to the subject’s skin, more practical solutions exist

for short-term subject monitoring: electrodes are inserted into elastic caps or nets that can
be adapted to the subject’s head in a reasonable amount of time (Fig. 2).
Subject preparation is indeed a factor of importance when using EEG. Electrode application
to position digitization — an optional step if source imaging is not required by the experiment
— require about 30 minutes from well-trained operators. Conductivity bridges, impedance
drifts — due to degradation of the contact gel — and relative subject discomfort (when using
caps on hour-long recordings) are also important factors to consider when designing an
EEG experiment. Most advanced EEG systems integrate tools for the online verification of
electrode impedances. Typical amplitudes of ongoing EEG signals range between 0.1 to 5
uv.

MEG instrumentation. Ieart biomagnetism was the first to be evidenced experi-
mentally by (Baule & McFee, 1963) and Russian groups, followed in Chicago, and then
in Boston, by David Cohen who contributed significant technological improvements in the
late 1960s. The first low-noise MEG recording followed immediately in 1971 when Cohen
reported on spontaneous oscillatory brain activity (a-rhythm), just like Hans Berger did
with EEG about 40 years before. The seminal technique was revolutionized in 1969 by the
introduction of extremely sensitive current detectors developed by James Zimmerman at the
Massachusetts Institute of Technology: the superconducting quantum interference devices
(SQUIDs). Once coupled to magnetic pick-up coils, these detectors are able to capture the
minute variations of electrical currents induced by the flux of magnetic fields through the
coil. Magnetometers — a pick-up coil paired with a current-detector — are therefore the
building blocks of MEG sensing technology. Because of the very small scale of the magnetic
fields generated by the brain, signal-to-noise (SNR) is a key issue in MEG technology. The
superconducting sensing technology involved requires cooling at -269°C(-452F). About 70
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Figure 2. Typical MEG and EEG equipment. Top left: An elastic EEG cap with 60 electrodes.
Top right: An MEG system, which can be operated both in seated upright (bottom left) and supine
horizontal (bottom right) positions. EEG recordings can be performed concurrently with the MEG’s,
using magnetically-compatible electrodes and wires. Illustrations adapted courtesy of Elekta.

liters of liquid helium are necessary on a weekly basis to keep the system up to performance.
Liquid nitrogen is not considered as an alternative because of the relatively higher thermal
noise levels it would allow in the circuitry of current detectors. Ancillary refrigeration — e.g.,
using liquid nitrogen just like in MR systems — is not an option either, for the main reason
that MEG sensors need to be located as close to the head as possible. Hence interleaving
another container between the helium-cooled sensors and the subject would increase the dis-
tance between the sources and the measurement locations, therefore decreasing SNR. Some
MEG sites currently experiment solutions to recycle some of the helium that naturally boils
off from the MEG gantry. This approach is optimal if gas liquefaction equipment is available
in the proximity of the MEG site. Under the best circumstances, this technique allows the
recuperation and re-utilization of about 60% to 90% of the original helium volume.

Thermal insulation is obviously a challenge in terms of safety of the subject, limited boil-off
rate and minimal distance to neural sources. The technology involved uses thin sheets of
fiberglass separated with vacuum, which brings the pick-up coils only a couple of centime-
ters away from the head surface, with total comfort to the subject. The MEG instrument
therefore consists of a rigid helmet containing the sensors, supplemented by a reservoir of
liquid helium. Though the MEG equipment is obviously not ambulatory, most commercial
systems can operate with subjects in seated (upright) and horizontal (supine) positions (Fig.
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Figure 3. Scales of magnetic fields in a typical MEG environment (in femto- Tesla), compared to
equivalent distance measures (in meters) and relative sound pressure levels. A MEG instrument
probe therefore deals with a range of environmental magnetic fields of about 10 to 12 orders of
magnitude, most of which consist of nuisances and perturbations masking the brain activity.

2). Having these options is usually well-appreciated by investigators in terms of alternatives
for stimulus presentation, subject comfort, etc.

Working with ultra-sensitive sensors is problematic though as these latter are very
good at picking up all sorts of nuisances and electromagnetic perturbations generated by
external sources. The magnetically-shielded room (MSR) has been an early major improve-
ment to MEG sensing technology. All sites in urban areas contain the MEG equipment
inside the walls of an MSR, which is built from a variety of metallic alloys. Most metals
are successful at capturing radio-frequency perturbations. Mu-metal (a nickel-iron alloy) is
one particular material of choice: its high magnetic permeability makes it very effective at
screening external static or low-frequency magnetic fields. The attenuation of electromag-
netic perturbations through the MSR walls is colossal and makes MEG recordings possible,
even in noisy environments like hospitals (even near MRI suites) and in the vicinity of road
traffic.

Stimulus presentation in the MSR, especially when it requires external devices, needs
to be considered carefully to avoid introducing supplementary electromagnetic perturba-
tions. Fortunately, MEG centers can benefit from most of the equipment available to fMRI
studies, as it is specified along the same constraints regarding magnetic compatibility. There-
fore, audio and video presentations can be performed using electrostatic transducers and
beams of videoprojection. Electrical stimulation for somatosensory mapping generates ar-
tifacts of short durations that do not overlap with the earliest brain responses (>20ms
latency). They can be advantageously replaced by air puffs delivery.

As timing is critical in MEG (and EEG), all stimulation solutions need to be driven through
a computer with well-characterized timing features. For instance, some electrostatic trans-
ducers eventually conduct sound through air tubes, thereby with delays in the tens of mil-
liseconds range that need to be properly characterized. Refresh rates of video presentation
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need to be as short as possible to ensure quasi-immediate display.

The technology involved in MEG sensing, the weekly helium refills, and the materials
building the MSR, make MEG a costly piece of equipment. Exciting recent developments
however contribute to constant progress in cost-effectiveness, practicality and the future of
MEG sensing science.

Active shielding solutions for instance are available commercially. They consist in picking-up
the external magnetic fields from outside the MSR and compensate for their contribution
to MEG sensors in real time. The immediate benefit is in MSRs of reduced size and weight
and in consequence, price.

The depletion of the global stock of helium is a well-documented fact that concerns multiple
technology fields, beyond MEG (MRI refrigeration, space rocket propulsion, state-of-the-art
video and TV displays and yes, party balloons among others). The immediate consequence
of this looming shortage is a steady price increase, hence growing operational costs for MEG.
Though alternative helium resources may well not be exploited as of today, the future of bio-
magnetism is certainly in alternative sensing technologies. High-temperature magnetometers
are being developed and are based on radically-different principles than the low-temperature
physics of current MEG systems (Savukov & Romalis, 2005; Pannetier-Lecoeur et al., 2009).
SNR and sensitivity to the lower frequency range of the electromagnetic spectrum have long
been issues with these emerging technologies, which were primarily designed for nuclear
magnetic resonance measurements. It appears they now have considerably matured and are
ready for MEG prototyping at a larger scale.

Today’s MEG commercial systems are organized in whole-head sensor arrays arranged
in a rigid helmet covering most of the head surface but the face area. MEG signals are
recorded from about 300 channels, which sometimes consist of pairs of magnetometers to
form physical gradiometers (Haméldinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993).
These latter are less sensitive to far-field sources, which are supposed to originate from
distant generators (e.g., road traffic, elevators, heartbeats). An important benefit of MEG
systems is the possibility to record EEG from dense arrays of electrodes (>60) simulta-
neously, thereby completing the electromagnetic signature of neural currents. Additional
analog channels are usually available for miscellaneous recordings (heart monitoring (ECG),
muscle activity (EMG), eye movements (EOG), respiration, skin conductance, subject’s
responses, etc.). Sampling rate can reach up to 5KHz on all channels with a typical instru-
mental noise level limited to a few fT/vHz. One femto-Tesla (1fT) is 10~'°T. Ongoing
brain signals measured with MEG are on the range of about 10-50 fT/v/Hz (Fig. 3), with
a relatively rapid decay in amplitude as frequency increases.

MEG has substantial benefits with respect to EEG: 1) while EEG is strongly degraded
by the heterogeneity in conductivity within head tissues (e.g., insulating skull vs. conducting
scalp), this effect is extremely limited in MEG, resulting in greater spatial discrimination
of neural contributions. This has important implications for source modeling as we shall
see below; 2) Subject preparation time is reduced considerably; 3) Measures are absolute,
i.e. they are not dependent on the choice of a reference; 4) Subject’s comfort is improved
as there is no direct contact of the sensors on the skin. Installation of new MEG systems is
presently steadily growing within research and clinical centers (about 200 worldwide).

MEG/EEG experiments can be run with the subjects in supine or seated positions.
A caveat however concerns EEG recording in supine position, which may rapidly lead to
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Figure 4. On the benefits of a larger number of sensors: (a) 3D rendering of a subject’s scalp
surface with crosshair markers representing the locations of 151 axial gradiometers as MEG sensors
(coil locations are from the VSM MedTech 151 Omega System). (b) Interpolated field topography
onto the scalp surface 50 ms following the electric stimulation of the right index finger. The fields
reveal a strong and focal dipolar structure above the contralateral central cortex. (c¢) The number
of channels has been evenly reduced to 27. Though the dipolar pattern is still detected, its spatial
extension is more smeared — hence the intrinsic spatial resolution of the measurements has been
degraded — due to the effect of interpolation between sensors, which are now quite distant from the
maxima of the evoked magnetic field pattern.

subject discomfort because occipital electrodes become painful pressure points. The quiet,
room-size and fairly open environment of the MSR and Faraday cages (relatively to MRI
bores), make it more friendly to most subjects. Care givers may accompany subjects during
the experiment.

Scenarios of most typical MEG/EEG sessions

A successful MEG or EEG study is a combination of quality instrumentation, careful
practical paradigm design, and well-understood preprocessing and analysis methods inte-
grated in efficient software tools. We shall review these latter aspects in this section.

Subject preparation

We have already discussed the basics of EEG preparation to ensure that contact of
electrodes with skin is of quality and stable. Additional precautions should be taken for
an MEG recording session as any magnetic material carried by the subject would cause
major MEG artifacts. It is therefore recommended that the subject’s compatibility with
MEG be rapidly checked by recording and visually inspecting their spontaneous resting
activity, prior to EEG preparation and proceeding any further into the experiment. Large
artifacts due to metallic and magnetic parts (coins, credit cards, some dental retainers, body
piercing, bra supports, etc.) or particles (make-up, hair spray, tattoos) can be readily and
visually detected as they cause major low-frequency deflections in MEG traces. They are
usually emphasized with respiration and/or eye blinks and/or jaw movements. Some causes
of artifacts may not be easily circumvented: Research volunteers may have participated in
an fMRI study, sometimes months before the MEG session. Previous participation to an
MRI session is likely to have caused strong, long-term magnetization of e.g., dental retainers,
which generally brings the MEG session to a premature close. On site demagnetization may
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be attempted using ‘degaussing’ techniques — usually using a conventional magnetic tape
eraser, which attenuates and scrambles magnetization — with limited chances of success
though.

Subjects are subsequently encouraged to change to wear a gown or scrubs before
completing their preparation. If EEG is recorded with MEG, electrode preparation should
follow the conventional principles of good EEG practice. Additional leads for EOG, ECG,
EMG may then be positioned. In state-of-the-art MEG systems, head-positioning (HPI)
coils are taped to the subject’s head to detect its position with respect to the sensor array
while recording. This is critical as, though head motion is not encouraged, it is very likely
to occur within and in between runs, especially with young children and some patients. The
HPIs drive a current at some higher (~ 300Hz) frequency that is readily detected by the
MEG sensors at the beginning of each run. Each of the HPI coil can then be localized
within seconds with millimeter accuracy. Some MEG systems feature the possibility for
continuous head-position monitoring during the very recording and off-line head movement
compensation (Wehner, Haméldinen, Mody, & Ahlfors, 2008).

Head-positioning is made possible after the locations of the HPI coils are digitized
prior to sitting the subject under the MEG array (Fig. 5). The distance between HPI
pairs is then checked for consistency and independently by the MEG system, which is a
fundamental step in the quality control of the recordings. Noisy sensors or environment
and badly secured HPI taping are sources of discrepancies between the moment of subject
preparation and the actual MEG recordings and should be attended. If advanced source
analysis is required, additional 3D digitization of anatomical fiducial points is necessary to
ensure that subsequent registration to the subject’s MRI anatomical volume is successful
and accurate (see below). A minimum of 3 fiducial points should be localized: they usually
sit by the nasion and left and right peri-auricular points (Fig. 5). To reduce ambiguity in
the detection of these points in the MR volume data, they can be marked using vitamin
E pills or any other solid marker that is readily visible in T1-weighted MR images, if MRI
is scheduled right after the MEG session. Digitization of EEG electrode locations is also
mandatory for accurate, subsequent source analysis. Overall, about 15 minutes are required
for subject preparation for an MEG-only session, which can extend up to about 45 minutes
if simultaneous high-density EEG is required.

Paradigm design

The time dimension accessible to MEG/EEG offers some considerable variety in the
design of experimental paradigms for testing virtually any basic neuroscience hypothesis.
Managing this new dimension is sometimes puzzling for investigators with an fMRI neu-
roimaging background as MEG/EEG allows to manipulate experimental parameters and
presentations in the real time of the brain, not at the much slower pace of hemodynamic
responses.

In a nutshell, MEG/EEG experimental design is conditioned on the type of brain
responses of foremost interest to the investigator: evoked, induced or sustained. The most
common experimental design by far is the interleaved presentation of transient stimuli rep-
resenting multiple conditions to be tested. In this design, stimuli of various categories and
valences (pictures, sounds, somatosensory electric pulses or air puffs, or their combination,
etc.) are presented in sequence with various inter stimulus interval (ISI) durations. ISIs are
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Figure 5. Multimodal MEG/MRI geometrical registration. (a) 3 to 5 head-positioning indicators
(HPI) are taped onto the subject’s scalp. Their positions, together with 3 additional anatomical
fiducials (nasion, left and right peri-auricular points (NAS, LPA and RPA, respectively)) are digitized
using a magnetic pen digitizer. (b) The anatomical fiducials need to be detected and marked in the
subject’s anatomical MRI volume data: they are shown as white dots in this figure, together with 3
optional, additional points defining the anterior and posterior commissures and the interhemispheric
space, for the definition of Talairach coordinates. (c) These anatomical landmarks henceforth define
a geometrical referential in which the MEG sensor locations and the surface envelopes of the head
tissues (e.g., the scalp and brain surface, segmented from the MRI volume) are co-registered. MEG
sensors are shown as squares positioned about the head. The anatomical fiducials and HPI locations
are marked using dark dots.

typically much shorter than in fMRI paradigms and range from a few tens of milliseconds
to a few seconds.

The benefit of the high temporal resolution of MEG/EEG is twofold in that respect: 1) it
allows to detect and categorize the chronometry of effects occurring after stimulus presen-
tation (evoked or induced brain responses), and 2) it provides leverage to the investigator
to manipulate the timing of stimulus presentation to emphasize the very dynamics of brain
processes.

The first category of experimental designs is the most typical and has a long history of
scientific investigations in the characterization of the specificity of certain brain responses to
certain stimulus categories (sounds, faces, words, novelty detection, etc.) as we shall discuss
in greater details below.

The second category of designs aims at pushing the limits of the dynamics of brain processes:
a typical situation would consist in better understanding how brain processes unfold and
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may be conditional to a hierarchy of sequences in the treatment of stimulus information
from e.g., primary sensory areas to its cognitive evaluation. This may be well exemplified
by paradigms such as oddball rapid serial visual presentation (RSVP, (Kranczioch, Debener,
Herrmann, & Engel, 2006) and see Fig. 6), or when investigating time-related effects such as
the attentional blink (Sergent, Baillet, & Dehaene, 2005; Dux & Marois, 2009). Steady-state
brain responses triggered by sustained stimulus presentations belong also to this category.
Here, a stimulus with specific temporal encoding (e.g., visual pattern reversals or sound
modulations at a well-defined frequency) is presented and may trigger brain responses locked
to the stimulus presentation rate or some harmonics. This approach is sometimes called
‘frequency-tagging’ (of brain responses). This has led to a rich literature of steady-state
brain responses in the study of multiple brain systems (Ding, Sperling, & Srinivasan, 2006;
Bohoérquez & Ozdamar, 2008; Parkkonen, Andersson, Hamaélidinen, & Hari, 2008; Vialatte,
Maurice, Dauwels, & Cichocki, 2009) and new strategies for brain computer interfaces (see
e.g., (Mukesh, Jaganathan, & Reddy, 2006)).

As a beneficial rule of thumb for stimulus presentation in MEG/EEG paradigms, it
is important to randomize the ISI durations as much as possible for most paradigms, to
minimize the effect of stimulus occurrence expectancy from the subjects. Indeed, this latter
triggers brain activity patterns that have been well characterized in multiple EEG studies
(Clementz, Barber, & Dzau, 2002; Mnatsakanian & Tarkka, 2002) and which may bias both
the subsequent MEG /EEG and behavioral responses (e.g., reaction times) to stimulation.

Data acquisition

A typical MEG/EEG session consists of usually several runs. A run is a series of ex-
perimental trials. A trial is an experimental event whereby a stimulus has been presented to
a subject, or the subject has performed a predefined action, within a certain condition of the
paradigm. Trials and runs certainly vary in duration and length depending on experimental
contingencies, but it is certainly a good advice to try to keep these numbers relatively low. It
is most beneficial to the subject’s comfort and vigilance to keep the duration of a run under
10 minutes, and preferably 5 minutes. Longer runs augment the participant’s fatigue, which
most commonly results in more frequent eye blinks, head movements and poorer compliance
to the task instructions. For the same reasons, it is not recommended that a full session
lasts longer than about 2 hours. Communication with the subject is made possible at all
times via two-way intercom and video monitoring.

Setting the data sampling rate is the first parameter to decide upon when starting an
MEG/EEG acquisition. Most recent systems can reach up to 5KHz per channel, which is
certainly doable but leads to large data files that may be cumbersome to manipulate off-line.
The sampling rate parameter is critical as it conditions the span of the frequency spectrum
of the data. Indeed, this latter is limited in theory to half the sampling rate, while good
practice would rather consider it is limited to about one third of the sampling frequency.
As we shall see below, a vast majority of studies target brain responses that are evoked by
stimulation and revealed after trial averaging. Most of these responses have a typical half-
cycle of about 20ms and above, hence a characteristic frequency of 100Hz. A sampling rate
of 300 to 600Hz would therefore be a safe choice. As briefly discussed above, high-frequency
oscillatory responses in the brain have however been evidenced in the somatosensory cortex
and may reach up to about 900Hz (Cimatti et al., 2007). They therefore necessitate higher
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target

Stimulus presentation = 50ms
Inter-stimulus interval = 50ms

Figure 6. A typical event-related paradigm design for MEG/EEG. The experiment consists of the
detection of a visual ‘oddball’. Pictures of faces are presented very rapidly to the participants every
100ms, for a duration of 50ms and an ISI of 50ms. In about 15% of the trials, a face known to
the participant is presented. This is the target stimulus and the participant needs to count the
number of times he/she has seen the target individual among the unknown, distracting faces. Here,
the experiment consisted of 4 runs of about 200 trials, hence resulting in a total of 120 target
presentations. Typical surface data and source imaging for this paradigm are displayed in Figs. 8
and 13, respectively.

sampling rates of about 3 to 5KHz. Storage and file handling issues may arise though, as
every minute of recording corresponds to about 75MB of data, sampled at 1KHz on 300
MEG and 60 EEG channels.

During acquisition, MEG and EEG operators shall proceed to basic quality controls
of the recordings. So called ‘bad channels’ may be readily detected because of evident larger
noise amounts in the traces, and shall be addressed (by e.g., posing more gel under the
electrode or tuning the deficient MEG channel).

Filters may be applied during the recording, though only with caution. Indeed, band-
pass filters for display only are innocuous to subsequent analysis, but most MEG/EEG
instruments feature filters that are applied definitely to the actual data being recorded. The
investigator shall be well aware of these parameters, which may transform into roadblocks to
the analysis of some components of interest in the signals. A typical example is a low-pass
filter applied at 40Hz, which prohibits subsequent access to any upper frequency ranges.
Notch filters are usually applied during acquisition to attenuate power line contamination
at 50 or 60Hz, though without preventing possible nuisances at some harmonics. Low-pass
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anti-aliaging filters are generally applied by default during acquisition — before analog-to
digital conversion of signals — and their cutoff frequency is conditioned to the data sampling
rate: it is conventionally set to about a third of the sampling frequency.

As a general recommendation, it is suggested to keep filtering to the minimum required
during acquisition — i.e. anti-aliasing and optionally, a high-pass filter set at about 0.3Hz
to attenuate slow DC drifts, if of no interest to the experiment — because much can be
performed off-line during the pre-processing steps of signal analysis, which we shall review
now.

Data pre-processing

The frequency spectrum of MEG/EEG data is rich and complex. Multiple processes
take place simultaneously and engage neural populations at various spatial, temporal and
frequency scales (Varela et al., 2001). The purpose of data pre-processing is to enhance the
levels of signals of interest, while attenuating nuisances or even rejecting some episodes in
the recordings that are tarnished by artifacts. In the following subsections, it is presupposed
that the investigator is able to specify — even at a crude level of details — the basic temporal
and frequency properties of the signals of interest carrying the effects being tested in the
experiment. In a nutshell, it is important to target upfront, a well-defined range of brain
dynamics in the course of the design of the paradigm and of the analysis pipeline.

Digital filtering

As briefly discussed above, data filtering is a conceptually simple, though powerful
technique to extract signals within a predefined frequency band of interest. This off-line data
pre-processing step is the realm of digital filtering: an important and sophisticated subfield
of electrical engineering (Hamming, 1983). Applying a filter to the data presupposes that
the information carried by signals will be mostly preserved, to the benefit of attenuating
other frequency components of supposedly, no interest.

Not every digital filter is suitable to the analysis of MEG/EEG traces. Indeed, the
performances of filters are defined from basic characteristics such as the attenuation outside
the bandpass of the frequency response, stability, computational efficiency and most impor-
tantly, the introduction of phase delays. This latter is a systematic by-product of filtering
and some filters may be particularly inappropriate in that respect: infinite impulse response
(TITR) digital filters are usually more computationally efficient than finite impulse response
(FIR) alternatives, but with the inconvenient of introducing non-linear frequency-dependent
phase delays; hence some non-equal delays in the temporal domain at all frequencies, which
is unacceptable for MEG/EEG signal analysis where timing and phase measurements are
crucial. FIR filters delay signals in the time domain equally at all frequencies, which can be
conveniently compensated for by applying the filter twice: once forward and once backward
on the MEG/EEG time series (Oppenheim, Schafer, & Buck, 1999). Note however some
possible edge effects of the FIR filter at the beginning and end of the time series, and the
necessity of a large number of time samples when applying filters with low high-pass cut-
off frequencies (as the length of the filter’s FIR increases). Hence it is generally advisable
to apply digital high-pass filters on longer episodes of data, such as on the original ‘raw’
recordings, before these latter are chopped into epochs of shorter durations about each trial
for further analysis.
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Figure 7. Digital band-pass filtering applied to spontaneous MEG data during an interictal epileptic
spike event (total epoch of 700ms duration, sampled at 1KHz). The time series of 306 MEG sensors
are displayed using a butterfly plot, whereby all waveforms are overlaid within the same axes. The
top row displays the original data with digital filters applied during acquisition between 1.5 and
330Hz. The bottom row is a pre-processed version of the same data, band-passed filtered between
2 and 30Hz. Note how this version of the data better reveals the epileptic event occurring about
time t=0ms. The corresponding sensor topographies of MEG measures are displayed to the right.
The gray scale display represents the intensity of the magnetic field captured at each sensor location
and interpolated over a flattened version of the MEG array (nose pointing upwards). Note also how
digital band-pass filtering strongly alters the surface topography of the data, by revealing a simpler
dipolar pattern over the left temporo-occipital areas of the array.

Bringing more details to the discussion would reach outside the scope of this book. The
investigator should nevertheless be well aware of the potential pitfalls of analysis techniques
in general, and of digital filters in particular. Although commercial software tools are well
equipped with adequate filter functions, in-house or academic software solutions should be
first evaluated with great caution.

Advanced data correction techniques

Despite all the precautions to obtain clean signals from EEG and MEG sensors, elec-
trophysiological traces are likely to be contaminated by a wide variety of artifacts. These
include other sources than the brain and primarily the eyes, the heart, muscles (head or
limb motion, muscular tension due to postural discomfort or fatigue), electromagnetic per-
turbations from other devices used in the experiment and leaking power line contamination,
etc. The key challenge is that most of these factors of nuisance contribute to MEG/EEG
recordings with significantly more power than ongoing brain signals (a factor of about 50
for heartbeats, eye-blinks and movements, see Fig.3). Whether experimental trials contam-
inated by artifacts need to be discarded requires that these latter be properly detected in
the first place.

The literature of methods for tackling noise detection, attenuation and correction is too
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immense to be properly covered in this chapter. In a nutshell, the chances of detecting and
correcting artifacts are higher when these latter are monitored by a dedicated measurement.
Hence electrophysiological monitoring (ECG, EOG, EMG, etc.) is strongly encouraged in
most experimental settings. Some MEG solutions use additional magnetic sensors located
away from the subject’s head to capture the environmental magnetic fields inside the MSR.
Adaptive filtering techniques may then be applied quite effectively (Haykin, 1996).

The resulting additional recordings may also be used as artifact templates for visual or auto-
matic inspection of the MEG /EEG data. For steady-state perturbations, which are thought
to be independent of the brain processes of interest, empirical statistics obtained from a
series of representative events (e.g., eye-blinks, heartbeats) are likely to properly capture
the nuisance they systematically generate in the MEG/EEG recordings. Approaches like
principal or independent component analysis (PCA and ICA, respectively) have proven to
be effective in that respect for both conventional MEG/EEG and simultaneous EEG /fMRI
recordings (Nolte & Hamaéldinen, 2001; Pérez, Guijarro, & Barcia, 2005; Delorme, Sejnowski,
& Makeig, 2007; Koskinen & Vartiainen, 2009). Modality-specific noise attenuation tech-
niques, like signal space separation and alike (SSS), have been proposed for MEG (Taulu,
Kajola, & Simola, 2004). They basically consist in designing software spatial filters that at-
tenuate sources of nuisance that originate from outside a virtual spherical volume designed
to contain the subject’s head within the MEG helmet.

Ultimately, the decision whether episodes contaminated by well-identified artifacts
need to be discarded or corrected belongs to the investigator. Some scientists design their
paradigms so that the number of trials is large enough that a few may be discarded without
putting the analysis to jeopardy.

Epoch averaging: evoked responses across trials

An enduring tradition of MEG/EEG signal analysis consists in enhancing brain re-
sponses that are evoked by a stimulus or an action, by averaging the data about each event
— defined as an epoch — across trials. The underlying assumption is that there exist some
congsistent brain responses that are time-locked and so-called 'phase-locked’” to a specific
event (again e.g., the presentation of a stimulus or a motor action). Hence, it is straight-
forward to enhance these responses by proceeding to epoch averaging across trials, under
the assumption that the rest of the data is inconsistent in time or phase with respect to the
event of interest. This simple practice has permitted a vast amount of contributions to the
field of event-related potentials (in EEG, ERP) and fields (in MEG, ERF) (Handy, 2004;
Niedermeyer & Silva, 2004).

Trial averaging necessitates that epochs be defined about each event of interest (e.g.
the stimulus onset, or the subject’s response, etc.). An epoch has a certain duration, usually
defined with respect to the event of interest (pre and post-event). Averaging epochs across
trials can be conducted for each experimental condition at the individual and the group
levels. This latter practice is called ‘grand-averaging’ and has been made possible originally
because electrodes are positioned on the subject’s scalp according to montages, which are
defined with respect to basic, reproducible geometrical measures taken on the head. The
international 10-20 system was developed as a standardized electrode positioning and naming
nomenclature to allow direct comparison of studies across the EEG community (Niedermeyer
& Silva, 2004). Standardization of sensor placement does not exist in the MEG community,
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as the sensor arrays are specific to the device being used and subject heads fit differently
under the MEG helmet. Therefore, grand or even inter-run averaging is not encouraged in
MEG at the sensor level without applying movement compensation techniques, or without
at least checking that limited head displacements occurred between runs. Note however that
trial averaging may be performed on the source times series of the MEG or EEG generators.
In this latter situation, typical geometrical normalization techniques such as those used in
fMRI studies need to be applied across subjects and are now a more consistent part of the
MEG/EEG analysis pipeline.

Once proper averaging has been completed, measures can be taken on ERP/ERF
components. Components are defined as waveform elements that emerge from the baseline
of the recordings. They may be characterized in terms of e.g., relative latency, topography,
amplitude and duration with respect to baseline or a specific test condition. Once again, the
ERP/ERF literature is immense and cannot be summarized in these lines. Multiple reviews
and textbooks are available and describe in great details the specificity and sensitivity of
event-related components. In the context of Social Neuroscience, let us just cite some recent
MEG and EEG studies concerning: emotion face perception (Vuilleumier & Pourtois, 2007),
gaze (George & Conty, 2008; Holmes, Mogg, Garcia, & Bradley, 2010), visual induction of
emotions (Rudrauf et al., 2009) and imitation tasks (Biermann-Ruben et al., 2008), among
many others.

Phase-locked ERP/ERF components capture only the part of task-related brain re-
sponses that repeat consistently in latency and phase with respect to an event. One might
however question the physiological origins and relevance of such components in the frame-
work of oscillatory cell assemblies, as a possible mechanism ruling most basic electrophysi-
ological processes (Gray, Konig, Engel, & Singer, 1989; Silva, 1991; David & Friston, 2003;
Vogels, Rajan, & Abbott, 2005). This has led to a fair amount of controversy, whereby
evoked components would rather be considered as artifacts of event-related, induced phase
resetting of ongoing brain rhythms, mostly in the alpha frequency range ([8,12]Hz) (Makeig
et al., 2002). Under this assumption, epoch averaging would only provide a secondary
and poorly specific window on brain processes: this is is certainly quite severe. Indeed,
event-related amplitude modulations — hence not phase effects — of ongoing alpha rhythms
have been reported as major contributors to the slower event-related components captured
by ERP/ERF’s (Mazaheri & Jensen, 2008). Some authors associate these modulations
of event-related amplitudes to local enhancements/reductions of event-related synchroniza-
tion/desynchronization (ERS/ERD) within cell assemblies. The underlying assumption is
that as the activity of more cells tends to be synchronized, the net ensemble activity will
build up to an increase in signal amplitude (Pfurtscheller & Silva, 1999).

Epoch averaging: induced responses across trials

Massive event-related cell synchronization is not guaranteed to take place with con-
sistent temporal phase with respect to the onset of the event. It is therefore relatively
easy to imagine that averaging trials when such phase jitters occurs across event repetitions
would lead to decreased effect sensitivity. This assumption can be further elaborated in the
theoretical and experimental framework of distributed, synchronized cell assemblies during
perception and cognition (Varela et al., 2001; Tallon-Baudry, 2009). The seminal works
by Gray and Singer in cat vision have shown that synchronization of oscillatory responses
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Figure 8. Event-related, evoked MEG surface data in a visual oddball RSVP paradigm (Fig. 6).
The data was interpolated between sensors and projected on a flattened version of the MEG channel
array. Shades of gray represent the inward and outward magnetic fields picked-up outside the head
during the [120, 300] ms time interval following the presentation of the target face object. The spatial
distribution of magnetic fields over the sensor array is usually relatively smooth and reveals some
characteristic shape patterns that indicate that brain activity is rapidly changing and propagating
during the time window. A much clearer insight can be provided by source imaging, as illustrated
Fig. 13.

of spatially distributed cell ensembles is a way to establish relations between features in
different parts of the visual field (Gray et al., 1989). These authors evidenced that these
phenomena take place in the gamma range (|[40,60]Hz) — i.e., a upper frequency range — of
the event-elated responses. These results have been confirmed by a large number of subse-
quent studies in animals and implanted electrodes in humans, which all demonstrated that
these event-related responses could only be captured with an approach to epoch averaging
that would be robust to phase jitters across trials (Tallon-Baudry, Bertrand, Delpuech, &
Permier, 1997; Rodriguez et al., 1999).

More evidence of gamma-range brain responses detected with EEG and MEG scalp tech-
niques are being reported as analysis techniques are being refined and distributed to a
greater community of investigators (Hoogenboom, Schoffelen, Oostenveld, Parkes, & Fries,
2006). It is striking to note that as a greater number of investigations are conducted, the
frequency range of gamma responses of interest is constantly expanding and now reaches
between [30,100|Hz and above. As a caveat, this frequency range is also most favorable to
contamination from muscle activity, such as phasic contractions or micro-saccades, which
may also happen to be task-related (Yuval-Greenberg & Deouell, 2009; Melloni, Schwiedrzik,
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Wibral, Rodriguez, & Singer, 2009). Therefore great precautions must be brought to rule
out possible confounds in that matter.

An additional interesting feature of gamma responses for neuroimagers is that there
is a growing body of evidence showing that they tend to be more specifically coupled to the
hemodynamics responses captured in fMRI than other components of the electrophysiolog-
ical responses (Niessing et al., 2005; Lachaux et al., 2007; Koch, Werner, Steinbrink, Fries,
& Obrig, 2009).

Because induced responses are mostly characterized by phase jitters across trials,
averaging MEG/EEG traces in the time domain would be detrimental to the extraction of
induced signals from the ongoing brain activity (David & Friston, 2003). A typical approach
to the detection of induced components once again builds on the hypothesis of systematic
emission of event-related oscillatory bursts limited in time duration and frequency range.
Time-frequency decomposition (TFD) is a methodology of choice in that respect, as it
proceeds to the estimation of instantaneous power in the time-frequency domain of time
series. TFD is insensitive to variations of the signal phase when computing the average
signal power across trials. TFD is a very active field of signal processing and one of the core
tools for TFD is wavelet signal decomposition. Wavelets feature the possibility to perform
the spectral analysis of non-stationary signals, which spectral properties and contents are
evolving with time (Mallat, 1998). This is typical of phasic electrophysiological responses
for which Fourier spectral analysis is not adequate because it is based on signal stationarity
assumptions (Kay, 1988).

Hence, even though the typical statistics of induced MEG /EEG signal analysis is the
trial mean (i.e. sample average), it is performed with a different measure: the estimation
of short-term signal power, decomposed in time and frequency bins. Several academic and
commercial software solutions are now available to perform such analysis (and the associated
inference statistics) on electrophysiological signals.

New trends and methods: connectivity/complexily analysis

The analysis of brain connectivity is a rapidly evolving field of Neuroscience, with sig-
nificant contributions from new neuroimaging techniques and methods (Bandettini, 2009).
While structural and functional connectivity has been emphasized with MRI-based tech-
niques (Johansen-Berg & Rushworth, 2009; K. Friston, 2009), the time resolution of
MEG/EEG offers a unique perspective on the mechanisms of rapid neural connectivity
engaging cell assemblies at multiple temporal and spatial scales.

We may summarize the research taking place in that field by mentioning two ap-
proaches that have developed somewhat distinctly in the recent years, though we might
predict they will ultimately converge with forthcoming research efforts. We shall note that
most of the methods summarized below are also applicable to the analysis of MEG/EEG
source connectivity and are not restricted to the analysis of sensor data. We further em-
phasize that connectivity analysis is easily fooled by confounds in the data, such as volume
conduction effects — i.e., smearing of scalp MEG/EEG data due to the distance from brain
sources to sensors and the conductivity properties of head tissues, as we shall discuss below
— which need to be carefully evaluated in the course of the analysis (Nunez et al., 1997;
Marzetti, Gratta, & Nolte, 2008).

The first strategy has inherited directly from the compelling intracerebral recording
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results demonstrating that cell synchronization is a central feature of neural communica-
tion (Gray et al., 1989). Signal analysis techniques dedicated to the estimation of signal
interdependencies in the broad sense have been largely applied to MEG/EEG sensor traces.
Contrarily to what is appropriate to the analysis of fMRI’s slow hemodynamics, simple cor-
relation measures in the time domain are thought not to be able to capture the specificity
of electrophysiological signals, which components are defined over a fairly large frequency
spectrum. Coherence measures are certainly amongst the techniques the most investigated
in MEG/EEG, because they are designed to be sensitive to simultaneous variations of power
that are specific to each frequency bin of the signal spectrum (Nunez et al., 1997). There is
however a competitive assumption that neural signals may synchronize their phases, without
the necessity of simultaneous, increased power modulation (Varela et al., 2001). Wavelet-
based techniques have therefore been developed to detect episodes of phase synchronization
between signals (Lachaux, Rodriguez, Martinerie, & Varela, 1999; Rodriguez et al., 1999).
Connectivity analysis has also been recently studied through the concept of causality,
whereby some neural regions would influence others in a non-symmetric, directed fashion
(Gourévitch, Bouquin-Jeanneés, & Faucon, 2006). The possibilities to investigate directed
influence between not only pairs, but larger sets of time series (i.e. MEG/EEG sensors or
brain regions) are vast and are therefore usually ruled by parametric models. These latter
may either be related to the definition of the time series (i.e. through auto-regressive model-
ing for Granger-causality assessment (Lin et al., 2009)), or to the very underlying structure
of the connectivity between neural assemblies (i.e., through structural equation modeling
(Astolfi et al.; 2005) and dynamic causal modeling (David et al., 2006; Kiebel, Garrido,
Moran, & Friston, 2008)).

The second approach to connectivity analysis pertains to the emergence of complex
networks studies and associated methodology. Complex networks science is a recent branch
of applied mathematics that provides quantitative tools to identify and characterize patterns
of organization among large inter-connected networks such as the Internet, air transporta-
tion systems, mobile telecommunication. In neuroscience, this strategy rather concerns the
identification of global characteristics of connectivity within the full array of brain signals
captured at the sensor or source levels. With this methodology, the concept of the brain
connectome has recently emerged, and encompasses new challenges for integrative neuro-
sciences and the technology, methodology and tools involved in neuroimaging, to better
embrace spatially-distributed dynamical neural processes at multiple spatial and temporal
scales (Sporns, Tononi, & Kotter, 2005; Deco, Jirsa, Robinson, Breakspear, & Friston, 2008).
From the operational standpoint, brain ‘connectomics’ is contributing both to theoretical
and computational models of the brain as a complex system (Honey, Kotter, Breakspear, &
Sporns, 2007; Izhikevich & Edelman, 2008), and experimentally, by suggesting new indices
and metrics — such as nodes, hubs, efficiency, modularity, etc. — to characterize and scale the
functional organization of the healthy and diseased brain (Bassett & Bullmore, 2009). This
type of approaches is very promising, and calls for large-scale validation and maturation to
connect with the well-explored realm of basic electrophysiological phenomena.

Electromagnetic source imaging

The quantitative analysis of MEG/EEG sensor data is a source of vast possibilities to
characterize time-resolved brain activity. Some studies however may require a more direct
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assessment of the anatomical origins of the effects detected at the sensor level. It is also
likely that some effects may not even be revealed using scalp measures, because of severe
mixing and smearing due to the relative large distance from sources to sensors and volume
conduction effects.

Electromagnetic source imaging addresses this issue by characterizing these latter
elements (the head shape and size, relative position and properties of sensors, noise statistics,
etc.) in a principled manner and by suggesting a model for the generators responsible for the
signals in the data. Ultimately, models of electrical source activity are produced and need
to be analyzed in a multitude of dimensions: amplitude maps, time/frequency properties,
connectivity, etc., using statistical assessment techniques. The rest of this chapter details
most of the steps required, while skipping technical details, which can be found in the
references cited.

MEG/EEG source estimation as a modeling problem
Forward and inverse modeling

From a methodological standpoint, MEG/EEG source modeling is referred to as an
‘inverse problem’, an ubiquitous concept, well-known to physicists and mathematicians in
a wide variety of scientific fields: from medical imaging to geophysics and particle physics
(Tarantola, 2004). The inverse problem framework helps conceptualize and formalize the
fact that, in experimental sciences, models are confronted to observations to draw specific
scientific conclusions and/or estimate some parameters that were originally unknown. Pa-
rameters are quantities that might be changed without fundamentally violating and thereby
invalidating the theoretical model. Predicting observations from a model with a given set
of parameters is called solving the forward modeling problem. The reciprocal situation
where observations are used to estimate the values of some model parameters is the inverse
modeling problem.

In the context of brain functional imaging in general, and MEG/EEG in particular, we
are essentially interested in identifying the neural sources of external signals observed outside
the head (non invasively). These sources are defined by their locations in the brain and their
amplitude variations in time. These are the essential unknown parameters that MEG/EEG
source estimation will reveal, which is a typical incarnation of an inverse modeling problem.
Forward modeling in the context of MEG/EEG consists in predicting the electromagnetic
fields and potentials generated by any arbitrary source model, that is, for any location,
orientation and amplitude parameter values of the neural currents. In general, MEG/EEG
forward modeling considers that some parameters are known and fixed: the geometry of
the head, conductivity of tissues, sensor locations, etc. This will be discussed in the next
section.

As an illustration, take a single current dipole as a model for the global activity of the
brain at a specific latency of an MEG averaged evoked response. We might choose to let the
dipole location, orientation and amplitude as the set of free parameters to be inferred from
the sensor observations. We need to specify some parameters to solve the forward modeling
problem consisting in predicting how a single current dipole generates magnetic fields on the
sensor array in question. We might therefore choose to specify that the head geometry will
be approximated as a single sphere, with its center at some given coordinates (see Fig. 9).
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Figure 9. Modeling illustrated: (a) Some unknown brain activity generates variations of magnetic
fields and electric potentials at the surface of the scalp. This is illustrated by time series representing
measurements at each sensor lead. (b) Modeling of the sources and of the physics of MEG and EEG.
As naively represented here, forward modeling consists of a simplification of the complex geometry
and electromagnetic properties of head tissues. Source models are presented with colored arrow
heads. Their free parameters — e.g., location, orientation and amplitude — are adjusted during the
inverse modeling procedure to optimize some quantitative index. This is illustrated here in (c), where
the residuals — i.e., the absolute difference between the original data and the measures predicted by
a source model — are minimized.

A fundamental principle is that, whereas the forward problem has a unique solution

in classical physics (as dictated by the causality principle), the inverse problem might accept
multiple solutions, which are models that equivalently predict the observations.
In MEG and EEG, the situation is critical: It has been demonstrated theoretically by von
Helmoltz back in the XIX* century that the general inverse problem that consists in finding
the sources of electromagnetic fields outside a volume conductor has an infinite number
of solutions. This issue of non-uniqueness is not specific to MEG/EEG: geophysicists for
instance are also confronted to non-uniqueness in trying to determine the distribution of
mass inside a planet by measuring its external gravity field the globe. Hence theoretically,
an infinite number of source models equivalently fits any MEG and EEG observations, which
would make them poor techniques for scientific investigations. Fortunately, this question has
been addressed with the mathematics of ill-posedness and inverse modeling, which formalize
the necessity of bringing additional contextual information to complement a basic theoretical
model.

Hence the inverse problem is a true modeling problem. This has both philosophical
and technical impacts on approaching the general theory and the practice of inverse problems
(Tarantola, 2004). For instance, it will be important to obtain measures of uncertainty on
the estimated values of the model parameters. Indeed, we want to avoid situations where a
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large set of values for some of the parameters produce models that equivalently account for
the experimental observations. If such situation arises, it is important to be able to question
the quality of the experimental data and maybe, falsify the theoretical model.

lll-posed inverse problems. The non-uniqueness of the solution is a situation where
an inverse problem is said to be ill-posed. In the reciprocal situation where there is no
value for the system’s parameters to account for the observations, the data are said to be
inconsistent (with the model). Another critical situation of ill-posedness is when the model
parameters do not depend continuously on the data. This means that even tiny changes on
the observations (e.g., by adding a small amount of noise) trigger major variations in the
estimated values of the model parameters. This is critical to any experimental situations,
and in MEG/EEG in particular, where estimated brain source amplitudes are sought not to
‘jump’ dramatically from millisecond to millisecond.

The epistemology and early mathematics of ill-posedness have been paved by Jacques

Hadamard in (Hadamard, 1902), where he somehow radically stated that problems that are
not uniquely solvable are of no interest whatsoever. This statement is obviously unfair to
important questions in science such as gravitometry, the backwards heat equation and surely
MEG/EEG source modeling.
The modern view on the mathematical treatment of ill-posed problems has been initiated
in the 1960’s by Andrei N. Tikhonov and the introduction of the concept of regularization,
which spectacularly formalized a Solution of ill-posed problems (Tikhonov & Arsenin, 1977).
Tikhonov suggested that some mathematical manipulations on the expression of ill-posed
problems could make them turn well-posed in the sense that a solution would exist and pos-
sibly be unique. More recently, this approach found a more general and intuitive framework
using the theory of probability, which naturally refers to the uncertainty and contextual a
priori inherent to experimental sciences (see e.g., (Tarantola, 2004)).

As of 2010, more than 2000 journal articles referred in the U.S. National Library of
Medicine publication database to the query {(MEG OR EEG) AND source’. This abundant
literature may be considered ironically as only a small sample of the infinite number of so-
lutions to the problem, but it is rather a reflection of the many different ways MEG/EEG
source modeling can be addressed by considering additional information of various nature.
Such a large amount of reports on a single, technical issue has certainly been detrimental to
the visibility and credibility of MEG/EEG as a brain mapping technique within the larger
functional brain mapping audience, where the fMRI inverse problem is reduced to the well-
posed estimation of the BOLD signal (though it is subject to major detection issues).
Today, it seems that a reasonable degree of technical maturity has been reached by electro-
magnetic brain imaging using MEG and/or EEG. All methods reduce to only a handful of
classes of approaches, which are now well-identified. Methodological research in MEG /EEG
source modeling is now moving from the development of inverse estimation techniques, to
statistical appraisal and the identification of functional connectivity. In these respects, it is
now joining the concerns shared by other functional brain imaging communities (Salmelin

& Baillet, 2009).

Modeling the electromagnetics of head tissues
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Models of neural generators. MEG/EEG forward modeling requires two basic models
that are bound to work together in a complementary manner: a physical model of neural
sources, and a model that predicts how these sources generate electromagnetic fields outside
the head. The canonical source model of the net primary intracellular currents within a
neural assembly is the electric current dipole. The adequacy of a simple, equivalent current
dipole (ECD) model as a building block of cortical current distributions was originally
motivated by the shape of the scalp topography of MEG/EEG evoked activity observed
(Fig. 8). This latter consists essentially of (multiple) so-called ‘dipolar distributions’ of
inward /outward magnetic fields and positive /negative electrical potentials. From a historical
standpoint, dipole modeling applied to EEG and MEG surface data was a spin-off from the
considerable research on quantitative electrocardiography, where dipolar field patterns are
also omnipresent, and where the concept of ECD was contributed as early as in the 1960s
(Geselowitz, 1964).

However, although cardiac electrophysiology is well captured by a simple ECD model
because there is not much questioning about source localization, the temporal dynamics
and spatial complexity of brain activity may be more challenging. Alternatives to the
ECD model exist in terms of the compact, parametric representation of distributed source
currents. They consist either of higher-order source models called multipoles (Jerbi, Mosher,
Baillet, & Leahy, 2002; Jerbi et al., 2004) — also derived from cardiographic research (Karp,
Katila, Saarinen, Siltanen, & Varpula, 1980) — or densely-distributed source models (Wang,
Williamson, & Kaufman, 1992). In the latter case, a large number of ECD’s are distributed in
the entire brain volume or on the cortical surface, thereby forming a dense grid of elementary
sites of activity, which intensity distribution is determined from the data.

To understand how these elementary source models generate signals that are measur-
able using external sensors, further modeling is required for the geometrical and electromag-
netic properties of head tissues, and the properties of the sensor array.

Modeling the sensor array. The details of the sensor geometry and pick-up technol-
ogy are dependent on the manufacturer of the array. We may however summarize some
fundamental principles in the next following lines.

We have already reviewed how the sensor locations can be measured with state-of-
the-art MEG and EEG equipment. If this information is missing, sensor locations may be
roughly approximated from montage templates, but this will be detrimental to the accu-
racy of the source estimates (Schwartz, Poiseau, Lemoine, & Barillot, 1996). This is critical
with MEG, as the subject is relatively free to position his/her head within the sensor array.
Typical 10/20 EEG montages offer less degrees of freedom in that respect. Careful consid-
eration of this geometrical registration issue using the solutions discussed above (HPI, head
digitization and anatomical fiducials) should provide satisfactory performances in terms of
accuracy and robustness.

In EEG, the geometry of electrodes is considered as point-like. Advanced electrode
modeling should include the true shape of the sensor (that is, a ‘flat’ cylinder), but it is
generally acknowledged that the spatial resolution of EEG measures is coarse enough to ne-
glect this factor. One important piece of information however is the location of the reference
electrode — i.e., nasion, central, linked mastoids, etc. — as it defines the physics of a given
set of EEG measures. If this information is missing, the EEG data can be re-referenced with
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respect to the instantaneous arithmetic average potential (Niedermeyer & Silva, 2004).

In MEG, the sensing coils may also be considered point-like as a first approximation, though
some analysis software packages include the exact sensor geometry in modeling. The com-
putation of the total magnetic flux induction captured by the MEG sensors can be more
accurately modeled by the geometric integration within their surface area. Gradiometer ar-
rangements are readily modeled by applying the arithmetic operation they mimic, combining
the fields modeled at each of its magnetometers.

Recent MEG systems include sophisticated online noise-attenuation techniques such
as: higher-order gradient corrections and signal space projections. They contribute signif-
icantly to the basic model of data formation and therefore need to be taken into account
(Nolte & Curio, 1999).

Modeling head tissues. Predicting the electromagnetic fields produced by an elemen-
tary source model at a given sensor array requires another modeling step, which concerns a
large part of the MEG/EEG literature. Indeed, MEG/EEG ‘head modeling’ studies the in-
fluence of the head geometry and electromagnetic properties of head tissues on the magnetic
fields and electrical potentials measured outside the head.

Given a model of neural currents, the physics of MEG/EEG are ruled by the theory

of electrodynamics (Feynman, 1964), which reduces in MEG to Maxwell’s equations, and
to Ohm’s law in EEG, under quasistatic assumptions. These latter consider that the prop-
agation delay of the electromagnetic waves from brain sources to the MEG/EEG sensors
is negligible. The reason is the relative proximity of MEG/EEG sensors to the brain with
respect to the expected frequency range of neural sources (up to 1KHz) (Haméléinen et al.,
1993). This is a very important, simplifying assumption, which has immediate consequences
on the computational aspects of MEG/EEG head modeling.
Indeed, the equations of electro and magnetostatics determine that there exist analytical,
closed-form solutions to MEG/EEG head modeling when the head geometry is considered
as spherical. Hence, the simplest, and consequently by far most popular model of head
geometry in MEG/EEG consists of concentric spherical layers: with one sphere per major
category of head tissue (scalp, skull, cerebrospinal fluid and brain).

The spherical head geometry has further attractive properties for MEG in particular.
Quite remarkably indeed, spherical MEG head models are insensitive to the number of shells
and their respective conductivity: a source within a single homogeneous sphere generates
the same MEG fields as when located inside a multilayered set of concentric spheres with
different conductivities. The reason for this is that conductivity only influences the distri-
bution of secondary, volume currents that circulate within the head volume and which are
impressed by the original primary neural currents. The analytic formulation of Maxwell’s
equations in the spherical geometry shows that these secondary currents do not generate any
magnetic field outside the volume conductor (Sarvas, 1987). Therefore in MEG, only the
location of the center of the spherical head geometry matters. The respective conductivity
and radius of the spherical layers have no influence on the measured MEG fields. This is not
the case in EEG, where both the location, radii and respective conductivity of each spherical
shell influence the surface electrical potentials.

This relative sensitivity to tissue conductivity values is a general, important difference be-
tween EEG and MEG.
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A spherical head model can be optimally adjusted to the head geometry, or restricted

to regions of interest e.g., parieto-occipital regions for visual studies. Geometrical registra-
tion to MRI anatomical data improves the adjustment of the best-fitting sphere geometry
to an individual head.
Another remarkable consequence of the spherical symmetry is that radially oriented brain
currents produce no magnetic field outside a spherically symmetric volume conductor. For
this reason, MEG signals from currents generated within the gyral crest or sulcal depth are
attenuated, with respect to those generated by currents flowing perpendicularly to the sulcal
walls. This is another important contrast between MEG and EEG’s respective sensitivity
to source orientation (Hillebrand & Barnes, 2002).

Finally, the amplitude of magnetic fields decreases faster than electrical potentials’
with the distance from the generators to the sensors. Hence it has been argued that MEG
is less sensitive to mesial and subcortical brain structures than EEG. Experimental and
modeling efforts have shown however that MEG can detect neural activity from deeper
brain regions (Tesche, 1996; Attal et al., 2009).

Though spherical head models are convenient, they are poor approximations of the
human head shape, which has some influence on the accuracy of MEG/EEG source esti-
mation (Fuchs, Drenckhahn, Wischmann, & Wagner, 1998). More realistic head geometries
have been investigated and all require solving Maxwell’s equations using numerical meth-
ods. Boundary Element (BEM) and Finite Element (FEM) methods are generic numerical
approaches to the resolution of continuous equations over discrete space. In MEG /EEG, ge-
ometric tessellations of the different envelopes forming the head tissues need to be extracted
from the individual MRI volume data to yield a realistic approximation of their geometry
(Fig. 10).

In BEM, the conductivity of tissues is supposed to be homogeneous and isotropic within
each envelope. Therefore, each tissue envelope is delimited using surface boundaries defined
over a triangulation of each of the segmented envelopes obtained from MRI.

FEM assumes that tissue conductivity may be anisotropic (such as the skull bone and the
white matter), therefore the primary geometric element needs to be an elementary volume,
such as a tetrahedron (Marin, Guerin, Baillet, Garnero, & Meunier, 1998).

The main obstacle to a routine usage of BEM, and more pregnantly of FEM, is the
surface or volume tessellation phase. Because the head geometry is intricate and not always
well-defined from conventional MRI due to signal drop-outs and artifacts, automatic segmen-
tation tools sometimes fail to identify some important tissue structures. The skull bone for
instance, is invisible on conventional T1-weighted MRI. Some image processing techniques
however can estimate the shape of the skull envelope from high-quality T1-weighted MRI
data (Dogdas, Shattuck, & Leahy, 2005). However, the skull bone is a highly anisotropic
structure, which is difficult to model from MRI data. Recent progress using MRI diffusion-
tensor imaging (DTI) helps reveal the orientation of major white fiber bundles, which is also
a major source of conductivity anisotropy (Haueisen et al., 2002).

Computation times for BEM and FEM remain extremely long (several hours on a con-
ventional workstation), and are detrimental to rapid access to source localization following
data acquisition. Both algorithmic (Huang, Mosher, & Leahy, 1999; Kybic, Clerc, Faugeras,
Keriven, & Papadopoulo, 2005) and pragmatic (Ermer, Mosher, Baillet, & Leah, 2001; Dar-
vas, Ermer, Mosher, & Leahy, 2006) solutions to this problem have however been proposed to
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Figure 10. Three approaches to MEG/EEG head modeling: (a) Spherical approximation of the
geometry of head tissues, with analytical solution to Maxwell’s and Ohm’s equations; (b) Tessellated
surface envelopes of head tissues obtained from the segmentation of MRI data; (c) An alternative
to (b) using volume meshes — here built from tetrahedra. In both (b) and (c) Maxwell’s and Ohm’s
equations need to be solved using numerical methods: BEM and FEM, respectively.

make realistic head models more operational. They are available in some academic software
packages.

Finally, let us close this section with an important caveat: Realistic head modeling
is bound to the correct estimation of tissues conductivity values. Though solutions for
impedance tomography using MRI (Tuch, Wedeen, Dale, George, & Belliveau, 2001) and
EEG (Goncalves et al., 2003) have been suggested, they remain to be matured before en-
tering the daily practice of MEG/EEG. So far, conductivity values from ex-vivo studies
are conventionally integrated in most spherical and realistic head models (Geddes & Baker,
1967).

MEG/EEG source modeling

For clarity purposes, we will not attempt to formalize in a general, overly technical
way, the classes of approaches to MEG/EEG source estimation. We will rather adopt a
pragmatic standpoint, observing that two main chapels have developed quite separately:
the localization and the imaging approaches respectively (Salmelin & Baillet, 2009). Our
purpose here is to mark methodological landmarks and stress on differences, similarities,
and their respective assets.

Source localization vs. source imaging. The localization approach to MEG /EEG source
estimation considers that brain activity at any time instant is generated by a relatively small
number (a handful, at most) of brain regions. Fach source is therefore represented by an
elementary model, such as an ECD, that captures local distributions of neural currents.
Ultimately, each elementary source is back projected or constrained to the subject’s brain
volume or an MRI anatomical template, for further interpretation. In a nutshell, localization
models are essentially compact, in terms of number of generators involved and their surface
extension (from point-like to small cortical surface patches).
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The alternative imaging approaches to MEG/EEG source modeling were originally
inspired by the plethoric research in image restoration and reconstruction in other domains
(early digital imaging, geophysics, and other biomedical imaging techniques). The resulting
image source models do not yield small sets of local elementary models but rather the dis-
tribution of ‘all’ neural currents. This results in stacks of images where brain currents are
estimated wherever elementary current sources had been previously positioned. This is typ-
ically achieved using a dense grid of current dipoles over the entire brain volume or limited
to the cortical gray matter surface. These dipoles are fixed in location and generally, orien-
tation, and are homologous to pixels in a digital image. The imaging procedure proceeds to
the estimation of the amplitudes of all these elementary currents at once. Hence contrarily
to the localization model, there is no intrinsic sense of distinct, active source regions per se.
Explicit identification of activity issued from discrete brain regions usually necessitates com-
plementary analysis, such as empirical or inference-driven amplitude thresholding, to discard
elementary sources of non-significant contribution according to the statistical appraisal. In
that respect, MEG/EEG source images are very similar in essence to the activation maps
obtained in fMRI, with the benefit of time resolution however (see Fig. 11).

Figure 11. Inverse modeling: the localization (a) vs. imaging (b) approaches. Source modeling
through localization consists in decomposing the MEG/EEG generators in a handful of elementary
source contributions; the simplest source model in this situation being the equivalent current dipole
(ECD). This is illustrated here from experimental data testing the somatotopic organization of
primary cortical representations of hand fingers. The parameters of the single ECD have been
adjusted on the [20, 40] ms time window following stimulus onset. The ECD was found to localize
along the contralateral central sulcus as revealed from the 3D rendering obtained after the source
location has been registered to the individual anatomy. In the imaging approach, the source model is
spatially-distributed using a large number of ECD’s. Here, a surface model of MEG /EEG generators
was constrained to the individual brain surface extracted from T1-weighted MR images. Elemental
source amplitudes are interpolated onto the cortex, which yields an image-like distribution of the
amplitudes of cortical currents.

The following subsections further detail these two respective approaches.

Dipole fitting: The localization approach. As discussed above, early quantitative source
localization research in electro and magnetocardiography had promoted the equivalent cur-
rent dipole as a generic model of massive electrophysiological activity. Before efficient esti-
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mation techniques and software were available, electrophysiologists would empirically solve
the MEG/EEG forward and inverse problems to characterize the neural generators respon-
sible for experimental effects detected on the scalp sensors.

This approach is exemplified in (Wood, Cohen, Cuffin, Yarita, & Allison, 1985), where
terms such as ‘waveform morphology’ and ‘shape of scalp topography’ are used to discuss
the respective sources of MEG and EEG signals. This empirical approach to localization
has considerably benefited from the constant increase in the number of sensors of MEG and
EEG systems (Fig. 4).

Indeed, surface interpolation techniques of sensor data have gained considerable popularity
in MEG and EEG research (Perrin, Pernier, Bertrand, Giard, & Echallier, 1987): investi-
gators now can routinely access surface representations of their data on an approximation
of the scalp surface — as a disc, a sphere — or on the very head surface extracted from the
subject’s MRI. (Wood et al., 1985) — like many others — used the distance between the min-
imum and maximum magnetic distribution of the dipolar-looking field topography to infer
the putative depth of a dipolar source model of the data.

Computational approaches to source localization attempt to mimic the talent of elec-
trophysiologists, with a more quantitative benefit though. We have seen that the current
dipole model has been adopted as the canonical equivalent generator of the electrical activ-
ity of a brain region considered as a functional entity. Localizing a current dipole in the
head implies that 6 unknown parameters be estimated from the data: 3 for location per
se, 2 for orientation and 1 for amplitude. Therefore, characterizing the source model by a
restricted number of parameters was considered as a possible solution to the ill-posed inverse
problem and has been attractive to many MEG/EEG scientists. Without additional prior
information besides the experimental data, the number of unknowns in the source estimation
problem needs to be smaller than that of the instantaneous observations for the inverse prob-
lem to be well-posed, in terms of uniqueness of a solution. Therefore, recent high-density
systems with about 300 sensors would theoretically allow the unambiguous identification of
50 dipolar sources; a number that would probably satisfy the modeling of brain activity in
many neuroscience questions.

It appears however, that most research studies using MEG/EEG source localization bear a
more conservative profile, using much fewer dipole sources (typically < 5). The reasons for
this are both technical and proper to MEG/EEG brain signals as we shall now discuss.

Numerical approaches to the estimation of unknown source parameters are gener-
ally based on the widely-used least-squares (LS) technique which attempts to find the set
of parameter values that minimize the (square of the) difference between observations and
predictions from the model (Fig. 9). Biosignals such as MEG/EEG traces are naturally con-
taminated by nuisance components (e.g., environmental noise and physiological artifacts),
which shall not be explained by the model of brain activity. These components however,
contribute to some uncertainty on the estimation of the source model parameters. As a toy
example, let us consider noise components that are independent and identically-distributed
on all 300 sensors. One would theoretically need to adjust as many additional free parame-
ters in the inverse model as the number of noise components to fully account for all possible
experimental (noisy) observations. However, we would end up handling a problem with
300 additional unknowns, adding to the original 300 source parameters, with only 300 data
measures available.
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Hence, and to avoid confusion between contributions from nuisances and signals of
true interest, the MEG/EEG scientist needs to determine the respective parts of interest
(the signal) versus perturbation (noise) in the experimental data. The preprocessing steps
we have reviewed in the earlier sections of this chapter are therefore essential to identify,
attenuate or reject some of the nuisances in the data, prior to proceeding to inverse modeling.
Once the data has been preprocessed, the basic LS approach to source estimation aims at
minimizing the deviation of the model predictions from the data: that is, the part in the
observations that are left unexplained by the source model.

Let us suppose for the sake of further demonstration that the data is idealistically

clean from any noisy disturbance, and that we are still willing to fit 50 dipoles to 300 data
points. This is in theory an ideal case where there are as many unknowns as there are
instantaneous data measures. However we shall discuss that unknowns in the models do
not all share the same type of dependency to the data. In the case of a dipole model,
doubling the amplitude of the dipole doubles the amplitude of the sensor data. Dipole
source amplitudes are therefore said to be linear parameters of the model. Dipole locations
however do not depend linearly on the data: the amplitude of the sensor data is altered
non-linearly with changes in depth and position of the elementary dipole source. Source
orientation is a somewhat hybrid type of parameter. It is considered that small, local dis-
placements of brain activity can be efficiently modeled by a rotating dipole source at some
fixed location. Though source orientation is a non-linear parameter in theory, replacing a
free-rotating dipole by a triplet of 3 orthogonal dipoles with fixed orientations is a way to
express any arbitrary source orientation by a set of 3 — hence linear — amplitude parameters.
Non-linear parameters are more difficult to estimate in practice than linear unknowns. The
optimal set of source parameters defined from the LS criterion exists and is theoretically
unique when sources are constrained to be dipolar (see e.g. (Badia, 2004)). However in prac-
tice, non-linear optimization may be trapped by suboptimal values of the source parameters
corresponding to a so-called local-minimum of the LS objective. Therefore the practice of
multiple dipole fitting is very sensitive to initial conditions e.g., the values assigned to the
unknown parameters to initiate the search, and to the number of sources in the model, which
increases the possibility of the optimization procedure to be trapped in local, suboptimal
LS minima.
In summary, even though localizing a number of elementary dipoles corresponding to the
amount of instantaneous observations is theoretically well-posed, we are facing two issues
that will drive us to reconsider the source-fitting problem in practice: 1) The risk of over-
fitting the data: meaning that the inverse model may account for the noise components in
the observations, and 2) non-linear searches that tend to be trapped in local minima of the
LS objective.

A general rule of thumb when the data is noisy and the optimization principle is ruled
by non-linear dependency is to keep the complexity of the estimation as low as possible.
Taming complexity starts with reducing the number of unknowns so that the estimation
problem becomes overdetermined. In experimental sciences, overdeterminacy is not as crit-
ical as underdeterminacy. From a pragmatic standpoint, supplementary sensors provide
additional information and allow the selection of subsets of channels, which may be less
contaminated by noise and artifacts.

The early MEG/EEG literature is abundant in studies reporting on single dipole
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source models. The somatotopy of primary somatosensory brain regions (Okada, Tanen-
baum, Williamson, & Kaufman, 1984; Meunier, Lehéricy, Garnero, & Vidailhet, 2003), pri-
mary, tonotopic auditory (Zimmerman, Reite, & Zimmerman, 1981) and visual (Lehmann,
Darcey, & Skrandies, 1982) responses are examples of such studies where the single dipole
model contributed to the better temporal characterization of primary brain responses.
Later components of evoked fields and potentials usually necessitate more elementary source
to be fitted. However, this may be detrimental to the numerical stability and significance of
the inverse model. The spatio-temporal dipole model was therefore developed to localize the
sources of scalp waveforms that were assumed to be generated by multiple and overlapping
brain activations (Scherg & Cramon, 1985). This spatio-temporal model and associated op-
timization expect that an elementary source is active for a certain duration — with amplitude
modulations — while remaining at the same location with the same orientation. This is typ-
ical of the introduction of prior information in the MEG/EEG source estimation problem,
and this will be further developed in the imaging techniques discussed below.

The number of dipoles to be adjusted is also a model parameter that needs to be
estimated. However it leads to difficult, and usually impractical optimization (Waldorp,
Huizenga, Nehorai, Grasman, & Molenaar, 2005). Therefore the number of elementary
sources in the model is often qualitatively assessed by expert users, which may question
the reproducibility of such user-dependent analyses. Hence, special care should be brought
to the evaluation of the stability and robustness of the estimated source models. With all
that in mind, source localization techniques have proven to be effective, even on complex
experimental paradigms (see e.g., (Helenius, Parviainen, Paetau, & Salmelin, 2009)).

Signal classification and spatial filtering techniques are efficient alternative approaches
in that respect. They have gained considerable momentum in the MEG/EEG community
in the recent years. They are discussed in the following subsection.

Scanning techniques: Spatial filters, beamformers and signal classifiers. The inherent

difficulties to source localization with multiple generators and noisy data have led signal
processors to develop alternative approaches, most notably in the glorious field of radar and
sonar in the 1970’s. Rather than attempting to identify discrete sets of sources by adjusting
their non-linear location parameters, scanning techniques have emerged and proceeded by
systematically sifting through the brain space to evaluate how a predetermined elementary
source model would fit the data at every voxel of the brain volume. For this local model
evaluation to be specific of the brain location being scanned, contributions from possible
sources located elsewhere in the brain volume need to be blocked. Hence, these techniques
are known as spatial-filters and beamformers (the simile is a virtual beam being directed
and ‘listening’ exclusively at some brain region).
These techniques have triggered tremendous interest and applications in array signal pro-
cessing and have percolated the MEG/EEG community at several instances (e.g., (Spencer,
Leahy, Mosher, & Lewis, 1992) and more recently, (Hillebrand, Singh, Holliday, Furlong, &
Barnes, 2005)). At each point of the brain grid, a narrow-band spatial filter is formed and
evaluates the contribution to data from an elementary source model — such as a single or a
triplet of current dipoles — while contributions from other brain regions are ideally muted,
or at least attenuated. (Veen & Buckley, 1988) is a technical introduction to beamformers
and excellent further reading.
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It is sometimes claimed that beamformers do not solve an inverse problem: this is a
bit overstated. Indeed, spatial filters do require a source and a forward model that will be
both confronted to the observations. Beamformers scan the entire expected source space
and systematically test the prediction of the source and forward models with respect to
observations. These predictions compose a distributed score map, which should not be mis-
interpreted as a current density map. More technically — though no details are given here
— the forward model needs to be inverted by the beamformer as well. It only proceeds
iteratively by sifting through each source grid point and estimating the output of the cor-
responding spatial filter. Hence beamformers and spatial filters are truly avatars of inverse
modeling.

Beamforming is therefore a convenient method to translate the source localization
problem into a signal detection issue. As every method that tackles a complex estimation
problem, there are drawbacks to the technique:

1. Beamformers depend on the covariance statistics of the noise in the data. These
latter may be estimated from the data through sample statistics. However, the number of
independent data samples that are necessary for the robust — and numerically stable — esti-
mation of covariance statistics is proportional to the square of the number of data channels,
i.e. of sensors. Hence beamformers ideally require long, stationary episodes of data, such as
sweeps of ongoing, unaveraged data and experimental conditions where behavioral station-
arity ensures some form of statistical stationarity in the data (e.g., ongoing movements).
(Cheyne, Bakhtazad, & Gaetz, 2006) have suggested that event-related brain responses can
be well captured by beamformers using sample statistics estimated across single trials.

2. They are more sensitive to errors in the head model. The filter outputs are typically
equivalent to local estimates of SNR. However this latter is not homogeneously distributed
everywhere in the brain volume: MEG/EEG signals from activity in deeper brain regions or
gyral generators in MEG have weaker SNR than in the rest of the brain. The consequence
is side lobe leakages from interfering sources nearby, which impede filter selectivity and
therefore, the specificity of source detection (Wax & Anu, 1996);

3. Beamformers may be fooled by simultaneous activations occurring in brain regions
outside the filter pass-band that are highly correlated with source signals within the pass-
band. External sources are interpreted as interferences by the beamformer, which blocks
the signals of interest because they bear the same sample statistics than the interference.

Signal processors had long identified these issues and consequently developed multi-

ple signal classification (MUSIC) as an alternative technique ((Schmidt, 1986)). MUSIC
assumes that signal and noise components in the data are uncorrelated. Strong theoretical
results in information theory show that these components live in separate, high-dimensional
data subspaces, which can be identified using e.g., a PCA of the data time series (Golub,
1996). (J. C. Mosher, Baillet, & Leahy, 1999) is an extensive review of signal classification
approaches to MEG and EEG source localization.
However, the practical aspects of MUSIC and its variations remain limited by their sensitiv-
ity in the accurate definition of the respective signal and noise subspaces. These techniques
may be fooled by background brain activity, which signals share similar properties with the
event-related responses of interest. An interesting side application of MUSIC-like powerful
discrimination ability though has been developed in epilepsy spike-sorting (Ossadtchi et al.,
2004).
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In summary, spatial-filters, beamformers and signal classification approaches bring us
closer to a distributed representation of the brain electrical activity. As a caveat, the results
generated by these techniques are not an estimation of the current density everywhere in
the brain. They represent a score map of a source model — generally a current dipole —
that is evaluated at the points of a predefined spatial lattice, which sometimes leads to
misinterpretations. The localization issue now becomes a signal detection problem within
the score map (J. Mosher, Baillet, & Leahy, 2003). The imaging approaches we are about to
introduce now, push this detection problem further by estimating the brain current density
globally.

Distributed source imaging. Source imaging approaches have developed in parallel to
the techniques discussed above. Imaging source models consist of distributions of elementary
sources, generally with fixed locations and orientations, which amplitudes are estimated at
once. MEG/EEG source images represent estimations of the global neural current intensity
maps, distributed within the entire brain volume or constrained at the cortical surface.

Source image supports consist of either a 3D lattice of voxels or of the nodes of the
triangulation of the cortical surface. These latter may be based on a template, or preferably
obtained from the subject’s individual MRI and confined to a mask of the grey matter.
Multiple academic software packages perform the necessary segmentation and tessellation
processes from high-contrast T1-weighted MR image volumes.

As discussed earlier in this chapter, the cortically-constrained image model derives
from the assumption that MEG/EEG data originates essentially from large cortical as-
semblies of pyramidal cells, with currents generated from post-synaptic potentials flowing
orthogonally to the local cortical surface. This orientation constraint can either be strict
(Dale & Sereno, 1993) or relaxed by authorizing some controlled deviation from the surface
normal (Lin, Belliveau, Dale, & Hamalainen, 2006).

In both cases, reasonable spatial sampling of the image space requires several thou-

sands (typically ~ 10000) of elementary sources as depicted Fig. 12. Consequently, though
the imaging inverse problem consists in estimating only linear parameters, it is dramatically
underdetermined.
Just like in the context of source localization where e.g., the number of sources is a restric-
tive prior as a remedy to ill-posedness, imaging models need to be complemented by a priori
information. This is properly formulated with the mathematics of regularization as we shall
now briefly review.

Adding priors to the imaging model can be adequately formalized in the context of
Bayesian inference where solutions to inverse modeling satisfy both the fit to observations —
given some probabilistic model of the nuisances — and additional priors. From a parameter
estimation perspective, the maximum of the a posteriori probability distribution of source
intensity, given the observations could be considered as the ‘best possible model’. This
maximum a posteriori (MAP) estimate has been extremely successful in the digital image
restoration and reconstruction communities. (Geman & Geman, 1984) is a masterpiece
reference of the genre. The MAP is obtained in Bayesian statistics through the optimization
of the mixture of the likelihood of the noisy data — i.e., of the predictive power of a given
source model — with the a priori probability of a given source model.

We do not want to detail the mathematics of Bayesian inference any further here as this
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Figure 12. The cortical surface, tessellated at two resolutions, using: (a,b) 10,034 vertices (20,026
triangles with 10 mm? average surface area) and (c,d) 79,124 vertices (158,456 triangles with 1.3
mm? average surface area).

would reach outside the objectives of this chapter. Specific recommended further reading
includes (Demoment, 1989), for a Bayesian discussion on regularization and (Baillet, Mosher,
& Leahy, 2001), for an introduction to MEG/EEG imaging methods, also in the Bayesian
framework.

From a practical standpoint, the priors on the source image models may take multiple
faces: promote current distributions with high spatial and temporal smoothness, penalize
models with currents of unrealistic, non-physiologically plausible amplitudes, favor the ad-
equation with an fMRI activation maps, or prefer source image models made of piecewise
homogeneous active regions, etc. An appealing benefit from well-chosen priors is that it
may ensure the uniqueness of the optimal solution to the imaging inverse problem, despite
its original underdeterminacy.

Because relevant priors for MEG/EEG imaging models are plethoric, it is important
to understand that the associated source estimation methods usually belong to the same
technical background. Also, the selection of image priors can be seen as arbitrary and
subjective an issue as the selection of dipoles in the source localization techniques we have
reviewed previously. Comprehensive solutions for this model selection issue are now emerging
and will be briefly reviewed further below.

The free parameters of the imaging model are the amplitudes of the elementary source
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currents distributed on the brain’s geometry. The non-linear parameters (e.g., the elemen-
tary source locations) now become fixed priors as provided by anatomical information. The
model estimation procedure and the very existence of a unique solution strongly depend on
the mathematical nature of the image prior.

A widely-used prior in the field of image reconstruction considers that the expected
source amplitudes be as small as possible on average. This is the well-described minimum-
norm (MN) model. Technically speaking, we are referring to the L2-norm; the objective cost
function ruling the model estimation is quadratic in the source amplitudes, with a unique
analytical solution (Tarantola, 2004). The computational simplicity and uniqueness of the
MN model has been very attractive in MEG/EEG early on (Wang et al., 1992).

The basic MN estimate is problematic though as it tends to favor the most superficial brain
regions (e.g., the gyral crowns) and underestimate contributions from deeper source areas
(such as sulcal fundi) (Fuchs, Wagner, Kéhler, & Wischmann, 1999).

As a remedy, a slight alteration of the basic MN estimator consists in weighting each elemen-
tary source amplitude by the inverse of the norm of its contribution to sensors. Such depth
weighting yields a weighted MN (WMN) estimate, which still benefits from uniqueness and
linearity in the observations as the basic MN (Lin, Witzel, et al., 2006).

Despite their robustness to noise and simple computation, it is relevant to question the
neurophysiological validity of MN priors. Indeed — though reasonably intuitive — there is no
evidence that neural currents would systematically match the principle of minimal energy.
Some authors have speculated that a more physiologically relevant prior would be that the
norm of spatial derivatives (e.g., surface or volume gradient or Laplacian) of the current
map be minimized (see LORETA method in (Pascual-Marqui, Michel, & Lehmann, 1994)).
As a general rule of thumb however, all MN-based source imaging approaches overestimate
the smoothness of the spatial distribution of neural currents. Quantitative and qualitative
empirical evidence however demonstrate spatial discrimination of reasonable range at the
sub-lobar brain scale (Darvas, Pantazis, Kucukaltun-Yildirim, & Leahy, 2004; Sergent et al.,
2005) (Fig. 13).

Most of the recent literature in regularized imaging models for MEG /EEG consists in
struggling to improve the spatial resolution of the MN-based models (see (Baillet, Mosher,
& Leahy, 2001) for a review) or to reduce the degree of arbitrariness involved in selected
a generic source model a priori (Mattout, Phillips, Penny, Rugg, & Friston, 2006; Stephan,
Penny, Daunizeau, Moran, & Friston, 2009). This results in notable improvements in theo-
retical performances, though with higher computational demands and practical optimization
issues.

As a general principle, we are facing the dilemma of knowing that all priors about the
source images are certainly abusive, hence that the inverse model is approximative, while
hoping it is just not too approximative. This discussion is recurrent in the general context
of estimation theory and model selection as we shall discuss in the next section.

Appraisal of MEG/EEG source models

Throughout this chapter, we have been dealing with modeling, and modeling implies
dealing with uncertainty. MEG/EEG source estimation has uncertainty everywhere: data
are complex and contaminated with various nuisances, source models are simplistic, head
models have approximated geometries and conductivity properties, the choice of priors has
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Figure 13. Distributed source imaging of the [120,300] ms time interval following the presentation
of the target face object in the visual RSVP oddball paradigm described in Fig. 6. The images show
a slightly smoothed version of one participant’s cortical surface. Colors encode the contrast of MEG
source amplitudes between responses to target versus control faces. Visual responses are detected
by 120ms and rapidly propagate anteriorly. By 250 ms onwards, strong anterior mesial responses
are detected in the cingular cortex. These latter are the main contributors of the brain response to
target detection.

its share of subjectivity, etc.

It is therefore reasonable to question how sensitive the numerical methods at stake are
to these possible sources of errors and bias. This concerns the appraisal of the source
model, which general methodology has been adapted to MEG /EEG just recently and is now
achieving significant maturity.

Confidence intervals. We have discussed how fitting dipoles to a data time segment
may be quite sensitive to initial conditions and therefore, subjective. Similarly, imaging
source models suggest that each brain location is active, potentially. It is therefore important
to evaluate the confidence one might acknowledge to a given model. In other words, we are
now looking for error bars that would define a confidence interval about the estimated values
of a source model.

Signal processors have developed a principled approach to what they have coined as
‘detection and estimation theories’ (Kay, 1993). The main objective consists in understand-
ing how certain one can be about the estimated parameters of a model, given a model for
the noise in the data. The basic approach consists in considering the estimated parameters
(e.g., source locations) as distributed through random variables. Parametric estimation of
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error bounds on the source parameters consists in estimating their bias and variance.

Bias is an estimation of the distance between the true value and the expectancy of estimated
parameter values due to perturbations. The definition of variance follows immediately.
Cramer-Rao lower bounds (CRLB) on the estimator’s variance can be explicitly computed
using an analytical solution to the forward model and given a model for perturbations (e.g.,
with distribution under a normal law). In a nutshell, the tighter the CRLB, the more confi-
dent one can be about the estimated values. (J. C. Mosher, Spencer, Leahy, & Lewis, 1993)
have investigated this approach using extensive Monte-Carlo simulations, which evidenced
a resolution of a few millimeters for single dipole models. These results were later confirmed
by phantom studies (Leahy, Mosher, Spencer, Huang, & Lewine, 1998; Baillet, Riera, et
al., 2001). CRLB increased markedly for two-dipole models, thereby demonstrating their
extreme sensitivity and instability.

Recently, non-parametric approaches to the determination of error bounds have greatly

benefited from the commensurable increase in computational power. Jackknife and boot-
strap techniques proved to be efficient and powerful tools to estimate confidence intervals on
MEG/EEG source parameters, regardless of the nature of perturbations and of the source
model.
These techniques are all based on data resampling approaches and have proven to be exact
and efficient when a large-enough number of experimental replications are available (Davison
& Hinkley, 1997). This is typically the case in MEG/EEG experiments where protocols are
designed on multiple trials. If we are interested e.g., in knowing about the confidence inter-
val on a source location in a single-dipole model from evoked averaged data, the bootstrap
will generate a large number (typically > 500) of surrogate average datasets, by randomly
choosing trials from the original set of trials and averaging them all together. Because the
trial selection is random and from the complete set of trials, the corresponding sample distri-
bution of the estimated parameter values is proven to converge toward the true distribution.
A pragmatic approach to the definition of a confidence interval thereby consists in identify-
ing the interval containing e.g., 95% of the resampled estimates (see Fig. 14, (Baryshnikov,
Veen, & Wakai, 2004; Darvas et al., 2005; McIntosh & Lobaugh, 2004)).

These considerations naturally lead us to statistical inference, which questions hy-
pothesis testing.

Statistical inference. Questions like: ‘How different is the dipole location between these
two experimental conditions?’ and ‘Are source amplitudes larger in such condition that in
a control condition?’ belong to statistical inference from experimental data. The basic
problem of interest here is hypothesis testing, which is supposed to potentially invalidate
a model under investigation. Here, the model must be understood at a higher hierarchical
level than when talking about e.g., an MEG/EEG source model. It is supposed to address
the neuroscience question that has motivated data acquisition and the experimental design
(Guilford, P., & Fruchter, B., 1978).

In the context of MEG/EEG, the population samples that will support the inference are
either trials or subjects, for hypothesis testing at the individual and group levels, respectively.

As in the case of the estimation of confidence intervals, both parametric and non-
parametric approaches to statistical inference can be considered. There is no space here for
a comprehensive review of tools based on parametric models. They have been and still are
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Figure 14. The bootstrap procedure yields non parametric estimates of confidence intervals on
source parameters. This is illustrated here with data from a study of the somatotopic cortical
representation of hand fingers. Ellipsoids represent the resulting 95% confidence intervals on the
location of the ECD, as a model of the 40 ms (a) and 200 ms (b) brain response following hand
finger stimulation. Ellipsoid gray levels encode for the stimulated fingers. While in (a) the respective
confidence ellipsoids do not overlap between fingers, they considerably increase in volume for the
secondary responses in (b), thereby demonstrating that a single ECD is not a proper model of brain
currents at this later latency. Note similar evaluations may be drawn from imaging models using
the same resampling methodology.

extensively studied in the fMRI and PET communities — and recently adapted to EEG and
MEG (Kiebel, Tallon-Baudry, & Friston, 2005) — and popularized with software toolboxes
such as SPM (K. Friston, Ashburner, Kiebel, Nichols, & Penny, 2007).

Non-parametric approaches such as permutation tests have emerged for statistical infer-
ence applied to neuroimaging data (Nichols & Holmes, 2002; Pantazis, Nichols, Baillet, &
Leahy, 2005). Rather than applying transformations to the data to secure the assumption
of normally-distributed measures, non-parametric statistical tests take the data as they are
and are robust to departures from normal distributions.

In brief, hypothesis testing forms an assumption about the data that the researcher
is interested about questioning. This basic hypothesis is called the null hypothesis, HO, and
is traditionally formulated to translate no significant finding in the data e.g., ‘There are
no differences in the MEG/EEG source model between two experimental conditions’. The
statistical test will express the significance of this hypothesis and evaluate the probability
that the statistics in question would be obtained just by chance. In other words, the data
from both conditions are interchangeable under the HO hypothesis. This is literally what
permutation testing does. It computes the sample distribution of estimated parameters
under the null hypothesis and verifies whether a statistics of the original parameter estimates
was likely to be generated under this law.

We shall now review rapidly the principles of multiple hypotheses testing from the
same sample of measurements, which induces errors when multiple parameters are being
tested at once. This issue pertains to statistical inference both at the individual and group
levels. Samples therefore consist of repetitions (trials) of the same experiment in the same
subject, or of the results from the same experiment within a set of subjects, respectively.
This distinction is not crucial at this point. We shall however point at the issue of spa-
tial normalization of the brain across subjects either by applying normalization procedures
(Ashburner & Friston, 1997) or by the definition of a generic coordinate system onto the
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cortical surface (Fischl, Sereno, & Dale, 1999; Mangin et al., 2004) (Fig. 5).

The outcome of a test will evaluate the probability p that the statistics computed

from the data samples be issued from complete chance as expressed by the null hypothesis.
The investigator needs to fix a threshold on p a priori, above which HO cannot be rejected,
thereby corroborating HO. Tests are designed to be computed once from the data sample so
that the error — called the type I error — consisting in accepting HO while it is invalid stays
below the predefined p-value.
If the same data sample is used several times for several tests, we multiply the chances
that we commit a type I error. This is particularly critical when running tests on sensor
or source amplitudes of an imaging model as the number of tests is on the order of 100
and even 10,000, respectively. In this latter case, a 5% error over 10,000 tests is likely to
generate 500 occurrences of false positives by wrongly rejecting HO. This is obviously not
desirable and this is the reason why this so-called family-wise error rate (FWER) should be
kept under control.

Parametric approaches to address this issue have been elaborated using the theory of
random fields and have gained tremendous popularity through the SPM software (K. Friston
et al., 2007). These techniques have been extended to electromagnetic source imaging but
are less robust to departure from normality than non-parametric solutions. The FWER in
non parametric testing can be controlled by using e.g., the statistics of the maximum over
the entire source image or topography at the sensor level (Pantazis et al., 2005).

The emergence of statistical inference solutions adapted to MEG/EEG has brought
electromagnetic source localization and imaging to a considerable degree of maturity that
is quite comparable to other neuroimaging techniques (see Fig. 15 for an example). Most
software solutions now integrate sound solutions to statistical inference for MEG and EEG
data, and this is a field that is still growing rapidly.

Emergent approaches for model selection. While there is a long tradition of consider-
ing inverse modeling as an optimization problem — i.e. designate the solution to an inverse
problem as the source model corresponding to the putative global maximum of some ade-
quacy functional — there are situations where, for empirical and/or theoretical reasons, the
number of possible solutions is just too large to ensure this goal can be reached. This kind
of situations calls for a paradigm shift in the approach to inverse modeling, which animates
vivid discussions in the concerned scientific communities (Tarantola, 2006).

In MEG and EEG more specifically, we have admitted that picking a number of
dipoles for localization purposes or an imaging prior to insure uniqueness of the solution has
its (large) share of arbitrariness. Just like non parametric statistical methods have bene-
fited from the tremendous increase of cheap computational power, Monte-Carlo simulation
methods are powerful computational numerical approaches to the general problem of model
selection.

Indeed, a relevant question would be to let the data help the researcher decide whether any
element from a general class of models would properly account for the data, with possibly
predefined confidence intervals on the admissible model parameters.

These approaches are currently emerging from the MEG/EEG literature and have
considerable potential (David et al., 2006; Mattout et al., 2006; Daunizeau et al., 2006). It
is likely however that the critical ill-posedness of the source modeling problem be detrimental
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Figure 15. MEG functional connectivity and statistical inference at the group level illustrated: Jerbi
et al. (2007) have revealed a cortical functional network involved in hand movement coordination
at low frequency (4Hz). The statistical group inference first consisted on fitting for each trial in
the experiment, a distributed source model constrained to the individual anatomy of each of the 14
subjects involved. The brain area with maximum coherent activation with instantaneous hand speed
was identified within the contralateral sensorimotor area (white dot). The traces at the top illustrate
excellent coherence in the [3,5|Hz range between these measurements (hand speed in green and M1
motor activity in blue). Secondly, the search for brain areas with activity in significant coherence
with M1 revealed a larger distributed network of regions. All subjects were coregistered to a brain
surface template in Talairach normalized space with the corresponding activations interpolated onto
the template surface. A non-parametric t-test contrast was completed using permutations between
rest and task conditions (p<0.01).

to the efficiency of establishing tight bounds on the admissible model parameters. Further,
these techniques are still extremely demanding in terms of computational resources.

Conclusions: a pragmatic point of view

Throughout this chapter, we have stumbled into many pitfalls imposed by the ill-posed

nature of the MEG/EEG source estimation problem. We have tried to give a pragmatic point
of view on these difficulties.
It is indeed quite striking that despite all these shortcomings, MEG/EEG source analysis
might reveal exquisite relative spatial resolution when localization approaches are used ap-
propriately, and — though being of relative poor absolute spatial resolution — imaging models
help the researchers tell a story on the cascade of brain events that have been occurring in
controlled experimental conditions. From one millisecond to the next, imaging models are
able to reveal tiny alterations in the topography of brain activations at the scale of a few
millimeters.

An increasing number of groups from other neuroimaging modalities have come to
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realize that beyond mere cartography, temporal and oscillatory brain responses are essential
keys to the understanding and interpretation of the basic mechanisms ruling information
processing amongst neural assemblies. The growing number of EEG systems installed in MR,
magnets and the steady increase in MEG equipments demonstrate an active and dynamic
scientific community, with exciting perspectives for the future of multidisciplinary brain
research.
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