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Abstract
Localization error bounds are presented for both EEG

and MEG as graphical error contours for a 37 sensor
arrangement. Both one and two dipole cases were exam-
ined for all possible dipole orientations and locations
within a head quadrant. The results show a strong depen-
dence on absolute dipole location and orientation. The
results also show that fusion of the EEG and MEG mea-
surements into a combined model reduces the lower bound.
A Monte-Carlo simulation was performed to check the
tightness of the bounds for a selected case. The simple
head model, the white and relatively low power noise, and
the few relatively strong dipoles were all selected in this
study as optimistic conditions to establish possibly funda-
mental resolution limits for any localization effort.

1.0 Introduction

Electroencephalograms (EEG) and magnetoencephalo-
grams (MEG) are non-invasive methods of studying the
functional activity of the human brain with millisecond
temporal resolution. Much of the work in EEG and MEG
in the last few decades has been focused on estimating the
properties of the internal localized sources of the fields
from the external measurements. The most straightforward
model for describing the surface evoked potential or the
external evoked magnetic field is the single equivalent cur-
rent dipole. In [10], we reviewed the many variations of
this dipole model and its extensions to multiple dipoles
and time epochs. Each of the models, both in EEG and
MEG, contains a transfer function or lead field model to
relate each dipole’s intensity, orientation, and location to
the externally measured fields. The general inverse prob-
lem is to find the three location parameters and the three
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moment parameters that comprise the unknown parameters
for each dipole.

The simplest head model in use is a set of homogeneous
spherical shells, for which the MEG model is straightfor-
ward and the EEG model is still tractable. Although a
dipole comprises six parameters, the focus of most
research has been on the accuracy of determining the three
location parameters. Direct analysis of the localization
error is complicated by the nonlinearity of the location
parameters, the sensitivity to the moment orientation, the
moment intensity, the background noise power, the orien-
tation and spatial extent of the sensors, and the absolute
position of the dipole. Consequently, most studies and
comparisons were restricted to specialized dipole locations
or sensor positions. The error results were generally estab-
lished by experimental data or by Monte Carlo analysis.
More recently, dipoles implanted in patients have been
used in an attempt to determine localization errors in MEG
[3] and to compare localization errors between EEG and
MEG [5]. The results of [5] have particularly lead to recent
controversy, with the study criticized on methodological
grounds in [8],[18].

Our analysis of dipole localization error for MEG and
EEG is based on the well-known Cramer-Rao Lower
Bound (CRLB). The CRLB provides a lower bound on the
variance of any unbiased estimator of the location and
other model parameters. By deriving a closed-form expres-
sion for the bound, we can compute it efficiently for a
much wider range of conditions than can studies based on
Monte-Carlo simulations or experimental data. The bounds
are useful only if they are relatively tight (i.e. if they are
not overly optimistic compared with the true localization
error variances) and if the estimators employed have rela-
tively small biases. To demonstrate the usefulness of the
bounds, we present a Monte Carlo simulation which indi-
cates that the CRLBSs, in most cases of interest, give rea-
sonably accurate predictions of actual localization error
variances. Preliminary results of this analysis are presented
in [9], and a more comprehensive analysis with more array
configurations will be presented in [1 1].

The CRLB gives surprisingly large lower bounds, even
under fairly optimistic assumptions. Since modeling errors



tend to degrade, rather than improve, performance, these
results indicate that the accuracy of dipole localization
based on single time epochsis often limited by the inhierent
ill-posed nature of the problem. The models used here are
some of the simplest in use. In general, more complicated
models would be more prone to modeling esrors and could
have more parameters to estimate. Consequentdy, the
bounds presented here may pose fundamental limits on
EEG and MEG localization performance.

2.0 Forward Models

By the superposition of electromagnetic sources, we can
always separate the intensity of the sources as a linear term,
whether we are considering these simple EEG and MEG
spherical models or any other combination of head and
source model. The vector of measured samples at time j
can be modeled as
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where A(j) represents the general column vector of
surface potential or magnetic ficld measurements, or a
combination of both. Column vectors ! and g are both
concatenations of the parameters for p dipoles,
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The vector J; represents the three-dimensional location of
the ith current dipole, and g; represents the corresponding
three-dimensional dipole moment. G(I;) represents the
“gain transfer” matrix for the ith dipole, which relates the
dipoles’” moments to the vector of measurements and has a
nonlinear dependence on the dipole locations.

2.1 Four Concentric Sphere Model for EEG

The EEG dipole model is the more complex of the two
models, and assumptions must be made for the conductivi-
ties and shell thicknesses. In this paper we use the four con-
centric sphere model. For a single dipole model at point ;,
each element in (1) of the column vector of surface poten-
tial measurements represents the voltage at a single surface
point p and is expressed as the inner product of the (3 x 1)
gain vector g, and the (3 x 1) dipole moment vector ¢:

Vo) = 8,7 .p)a (EQ2)

where for clarity we show the dependence of the gain
vector on both the dipole location and sensor position. The

151

gain matrix G(J) for a single dipole is the concatenation of
the gain vectors for all sensor positions p.

For a dipole on the z-axis, the potential on the surface of
the four sphere model referenced to infinity is derived
in [6]. In [11],£13], we extend this rather lengthy formula
for other dipole locations by applying rotation transforma-
tions to the basic formulas. The form of (2) explicitly
shows that the voltage has a nonlinear dependence on the
dipole and electrode locations and a linear dependence on
the dipole moment.

Fig. 1 shows the four spheres with their respective radii
and conductivities. Overlaid on the spheres are the sensor
locations for the 37 channel pattern. The conductivities and
radii shown were taken from [6]. We note that the relatively
thin skull thickness, 4 mm in this case, gives favorable val-
ues for dipole localization; thicker skulls will produce
higher error bounds.

TOP VIEW

FIGURE 1. Arrangement for 37 sensors over
the surface of the head.

2.2 Biot-Savart Law for MEG

Compared with its EEG counterpart, the MEG model
for the dipole in a sphere with radially oriented sensors is
quite simple. Radially oriented dipoles produce no mag-
netic field outside the concentric conducting spheres,
regardless of the number of spheres we consider, and return
volume currents produce no external magnetic fields in the
radial direction. Sarvas [12] provides a thorough derivation
of the general MEG formulas, then presents the simplifica-
tions that result for the spherically symmetric head model
with radially oriented sensors.

For radially oriented sensors, the measured field is a rel-
atively simple function of only the tangential components
of the dipole moments. We restrict ourselves to the radially
oriented sensors, primarily for simplicity in presentation.



This model has been extensively reviewed and published in
the recent literature, and we present only a brief summary
to clarify the terminology in relation to our model. The
radially oriented MEG sensor coil is assumed to make a
point measurement of the radial magnetic field. For a
dipole located at J;, the scalar radial magnetic field B(p) can
be expressed as the inner product of gain vector gp and the
dipole moment g,

Bp)=gs'(l,p)q , (EQ3)

for sensor coil location p. For the case of the spherical head
model and the radial sensor measurements, this gain vector
is a special case of the Biot-Savart law and can be
expressed as

rxl

Ho
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where the coordinate system is assumed to be head
centered, r is the unit radial orientation of the sensor coil,
Mg is the permeability of free space, and “ x  denotes the
vector cross product. The MEG gain matrix G(;) for a
single dipole is the concatenation of all gain vectors for all
sensor locations.

g ,p) = ( (EQ4)

3.0 Cramer-Rao Lower Bounds

We follow a formulation similar to [14], with the excep-
tion that our data is real and with the enhancement that our
manifold is multidimensional. We define D as the partials
of the gain matrix with respect to the location parameters,
and we arrange the p moments at the jth time slice into a
block diagonal matrix,

1,84, () 0

X()= (EQ5)
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We then form the Fisher Information Matrix, analyti-
cally invert, and extract the lower bound formulas for the
location parameters, paralleling the work of [14]. In [9],
[11], we more explicitly detail the steps, but space restricts
us here to state only the result for a single time slice and
equal intensity dipoles,

0

CRLB() = é[(nxn)f PEDX)1™,  (BQ6)
where all moments in X, have been scaled to unity
(“normalized”) and their common intensity of Q brought
outside the matrix.

This lower bound is a function of both the dipole’s loca-
tion and its orientation. Since this study restricted the
dipoles to the tangential plane, we need only consider the
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single parameter @ that denotes the relative angle of the
dipole in this plane. At each location of interest, we “scan”
the dipole over all possible orientations, searching for the
best and worst orientations, as well as recording the aver-
age lower bound over all angles.

Fig. 2 presents such a scan for two different array cases.
The “dense” array case represents a dipole near the edge of
a spatially limited array, and the “upper hemisphere” array
case represents a dipole in the middle of an extensive array.
We see a strong dependency on the dipole orientation for
one situation and relatively little dependency for the other.
We retain three values from these curves: the best (lowest)
RMS error, the worst, and the average over all angles.

Exror vs. Dipole Moment Angle
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FIGURE 2. Error lower bound as a function of

the angle the dipole makes in the tangential
plane, for two different array cases.
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4.0 EEG and MEG Analysis Example

Fig. 1 displays the array patterns used here with relation
to the spherical model. The pattern is symmetric about the
z-axis, which runs through the center of the array. Because
of this high degree of symmetry, we restrict our analysis
region to the positive x-z plane. The error results in this
plane can then be inferred by symmetry for the entire upper
hemisphere.

To set the dipole intensity at a physically plausible level,
we reviewed other experimental and phantom studies.
In [4], a relatively strong dipole was estimated to have a
dipole intensity of 2.1 yAcm (21 nA-m). In (5], an
implanted dipole of 16 mm length was stimulated with
4 pA current, for an equivalent 64 nA-m current dipole. We
wished to establish a baseline dipole intensity of the proper
order of magnitude that was readily scaled to other intensi-
ties, and that appeared physically plausible. We selected
10 nA-m as our dipole intensity.



The selection of a standard deviation for the noise is not
immediately obvious, in part because of the widespread
practice of averaging experimental data. In theory, we
could average the trials until the noise is reduced to any
arbitrary low value. In this EEG/MEG comparison, the
noise standard deviation is in units of either volts or teslas,
respectively; thus we cannot easily set a standard deviation
general to both sensor types as we did with the dipole
intensity.

A dipole of intensity 10 nA-m near the cerebral spinal
fluid layer can generate a field that peaks roughly at 350 fT
in MEG sensors, or at 4 1V in nearby EEG sensors, for the
sensor patterns and model examined in this paper. In
research such as that of [7], the standard deviation is
expressed as a percentage of the peak, approximately 10
percent. This definition roughly translates into similar
SNRs examined in [1], [15], [17]. We therefore, somewhat
arbitrarily, set the MEG noise standard deviation to 35 fT
and the EEG noise standard deviation to 0.4 4V, to reflect
this 10:1 ratio. We compare with [3], who had a stated
noise level of 50 fT after averaging 200 trials. We note the
difficulty in extracting absolute noise levels from other
reports for comparison because of the widespread practice
of normalizing the noise standard deviation into the field
levels.

4.1 Single Tangential Dipole

In this study, we arranged three rings of sensors, with
each spaced in increments of 12 degrees from the z-axis
and each containing 6, 12, and 18 sensors, respectively, for
a total of 37 sensors, as displayed in Fig. 1. The MEG sen-
sors were oriented radially. This pattern approximates that
of commercially available 37-channel MEG instruments.

We calculated the lower bound for a single dipole
located anywhere in the positive x-z plane (y = 0). The
dipole was stepped along at 1 mm intervals within the brain
sphere. At each location, the moment angle was stepped in
1 degree increments from O to 179 degrees, and at each
angle the RMS lower bound was calculated. The average
RMS lower bound was calculated over all 180 degrees, and
the best and worst angles were located. At these extrema,
either a minimization or a maximization algorithm was ini-
tiated to refine the estimate of the best and the worst RMS
errors, respectively. Three different bounds were retained
for each location point in the grid, representing the best,
average, and worst RMS errors.

Fig. 3 and Fig. 4, respectively, show the EEG and MEG
case for the single dipole restricted to the tangential plane.
The best and worst displays differed primarily at the edges
of the array. The overall effect is a relatively small error
region directly under the array where the errors would be
desirable.
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Average sidv (cm): tan. dipole, EEG, Four-sphere modsl, 37 electrode
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FIGURE 3. Average EEG error lower bound
for 37 sensor array, for a single dipole.

Avenge stdv.(om): MEG, Four-sphese model, 37 coils

Z axis (cm)

10

X axis (em)

FIGURE 4. Average MEG error lower bound
for 37 sensor array, for a single dipole.

4.2 Two Tangential Dipoles

We now examine the rapid degradation in performance
that occurs by introducing a second dipole. For simplicity
in examining the effect of an additional dipole on the local-
ization accuracy of the original dipole, we fixed the loca-
tion of the second dipole on the z-axis at z = 7.5 cm,
directly under the center of the array. Both dipoles had
equal intensity Q, so all results are directly scalable to any
other arbitrary intensity. By the symmetry of the location of
the additional dipole on the z-axis, we can restrict our anal-
ysis region to the positive x-z plane and infer the results for
the remainder of the upper hemisphere.

As in the single dipole studies, the first dipole was
stepped along on a 1 mm grid within the positive x-z plane.
At each location point, the angles of both of the dipoles
were stepped in 10degree increments from 0 to 170
degrees, resulting in a grid of 18 by 18 different angle com-
binations. For each angle pair, the RMS error bounds for
the first dipole were calculated as defined by (6). The aver-
age errors were then calculated from this two-dimensional



grid of error bounds, and the best and worst angle pairs
were found. At these grid point extrema, a Nelder-Meade
simplex minimization or maximization algorithm was initi-
ated to refine the estimate of the best or worst RMS error
bounds.

Fig. 5 and Fig. 6, respectively, show the best and worst
MEG RMS error bounds of a dipole when an additional
dipole of equal intensity was placed on the z-axis at
z=17.5 cm. The EEG bounds were not dramatically differ-
ent in appearance, and space limitations prevent their pre-
sentation here. We can see that, in almost all regions, the
dipole’s error bound is at least double those in the single
dipole study. In the worst case, we also found that it is
impossible to place two dipoles on the z-axis in the same
orientation and still resolve them. This perfect array ambi-
guity is a consequence of the three perfectly symmetric
rings of sensors. The best orientation pair is generally
dipoles oriented orthogonal to each other, and the general
overall accuracy region is greatly reduced from that of any
of the other sensor patterns.

Best stdv.(cm): MEG, two dipoles, Four-sphere model, 37 coils

MEQG coil locations

Z axis (cm)

X axis (¢m)

FIGURE 5. Best error lower bound for 37 MEG
sensor array, for a one dipole, when a second
dipole is fixed at z=7.5cm. EEG results were
comparable.

5.0 Monte Carlo Simulation

For each point on a 5 mm grid across the positive quad-
rant of the x-z plane, we positioned a dipole in the best
moment orientation as found by our CRLB analysis. We
synthesized the single dipole forward model across the
array using the same dipole intensity as in the analysis,
then added 100 realizations of zero mean white Gaussian
noise at the sensors, using a random number generator with
the same standard deviation as that used in the analysis. We
then estimated the dipole location parameters for each
noise realization using the Nelder-Meade nonlinear least-
squares approach described in [10].

From the locations estimated for each of the 100 data
sets at each dipole location, we computed the RMS loca-
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Womst stdv.(cm): MEG, two dipoles, Four-sphere model, 37 coils
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FIGURE 6. Worst error lower bound for 37
MEG sensor array, for one dipole, when a
second dipole is fixed at z=7.5cm. EEG
results were comparable.

tion error for that position. Fig. 7 presents the results, along
with the corresponding CRLB analytic results. The overall
result is a confirmation of both the MEG CRLB formulas
and evidence that the least-squares estimator comes very
close to meeting the CRLB.

Monte Carlo RMS vector length(cm), tang dipole 4 sphere, 37 MEG sensors
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FIGURE 7. Monte Carlo results for 100 trials, at
each point on a 5mm grid.

6.0 EEG and MEG Fusion

The field pattern generated by a dipole across an array
of EEG sensors roughly peaks along the axis of the dipole
moment. In contrast, the MEG pattern peaks to the sides of
the dipole moment, roughly perpendicular to the EEG pat-
tern. In this study, we assume that both the EEG and MEG
data are acquired, and we observe the improvement gener-
ated by this diversity in the information content. The sensor
pattern was the same as that in the 37 sensor system, except
that here we have a total of 74 measurements for the two
combined sensor systems. The analysis procedure was
identical to that in the other studies. Unlike the other stud-



ies, the results do not scale with arbitrary dipole intensity
and noise variance, because both the EEG and MEG noise
must be considered simultaneously. To bring the two
modalities into relatively scaled units, we multiplied one of
the arrays by the ratio of the two noise variances, which
introduces a more complex relationship between standard
deviation, dipole intensity, and noise variances.

Fig. 8 shows fusion of a dipole restricted to the tangen-
tial plane. In the regions directly below the center of the
array, an improvement occurs simply because there is twice
as many measurement points. In the deeper regions, the
EEG sensors have obviously improved the response near
the center, and both sensor modalities have greatly
improved the other deep regions.

Average stdv.(cm): HEG/MBG fused, 37 electrodes and 37 coils
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FIGURE 8. Fusion of EEG and MEG
measurements.

This analysis confirms the hypotheses of [2], [4], [16]
concerning the potential for directly combining EEG and
MEG measurements into an overall superior resolution
ability, unachievable by either modality alone. One exten-
sion of this study would be to augment fixed MEG sensor
arrays with a smaller array of EEG sensors to determine
whether similar improvements could be obtained.
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