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ABSTRACT

Among the many methods for modeling cortical interactions
using EEG and MEG data, Multivariate Autoregressive(MVAR)
functional connectivity measures have the advantage of pro-
viding parametric directional and frequency specific informa-
tion. While MVAR models have been successfully applied to
depth electrode data, they are more difficult to use with exter-
nal EEG and MEG data since they are not robust to the cross-
talk between cortical regions that may arise because of the
limited spatial resolution of EEG/MEG inverse procedures.
Here we describe a modified beamforming approach for pro-
cessing EEG/MEG data, designed to eliminate cross-talk be-
tween cortical regions. The output of the beamformer is then
used to estimate the coefficients of an MVAR model of cor-
tical interactions. We illustrate this method using simulated
dynamic MEG data.

1. INTRODUCTION

Modeling distributed dynamical interactions or functional con-
nectivity between cortical regions is a key issue in under-
standing neural interactions in the human brain. Many dif-
ferent methods have been proposed to model functional con-
nectivity including spectral coherence and phase synchroniza-
tion. These methods characterize the strength of the inter-
action, but provide no directional information and are typi-
cally nonparametric so have relatively poor frequency resolu-
tion. Multivariate autoregressive (MVAR) time series meth-
ods adopt a parametric approach giving improved frequency
resolution and are also able to establish the directionality of
interactions using the concept of Granger causality [1] [2] [3].

MVAR methods have been used to characterize functional
connectivity from depth electrode measurements [4]. While
these methods extend in principle to external EEG and MEG
measurements, their utility is limited by their sensitivity to
linear cross-talk. If applied to raw EEG and MEG data, MVAR
models would be unable to distinguish between true regional
connectivity within the brain and the simple linear cross-talk
between sensor measurements that results from the broad spa-
tial sensitivity of the sensors. To better localize cortical ac-
tivity, inverse procedures can be used to compute images of
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current density in the cerebral cortex. Inverse methods in-
clude dipole fitting, beamforming, and cortically constrained
imaging. Of these, linearly constrained minimum variance
(LCMV) beamforming and linear regularized minimum norm
imaging are the most widely used. The limited resolution of
minimum norm imaging leaves substantial cross-talk between
regions, even after reconstruction, as we demonstrate below.
Consequently MVAR models may not generally perform well
when used in conjunction with linear imaging methods, al-
though examples of their combined use can be found in the
literature [5].

LCMV beamformers have higher resolution than mini-
mum norm imaging, at least in the case where cortical sources
are focal. However, the design criterion of minimizing output
power can result in signal cancellation between interacting re-
gions when signals exhibit coherent behavior. It follows that
standard LCMV beamformers can produce partial cancella-
tion of the coherent signals that we are looking for and hence
are not suitable for use in combination with MVAR modeling;
again we demonstrate this below. Here we describe a modi-
fied LCMV approach in which we use additional nulling con-
straints to prevent cross-talk between regions. Furthermore
we use a set of eigenvector constraints to make the methods
robust to specification of the precise location and extent of the
cortical sources of interest. We demonstrate this procedure in
application to simulated MEG data.

2. METHODS

2.1. The MVAR Model

The MVAR model is a straightforward extension of the uni-
variate autoregressive time series model to multiple time se-
ries, which incorporates interactions between the time series.
With x(t) = [x1(t), . . . , xp(t)]T representing a p-dimensional
time series, the MVAR model can be expressed as:

x(t) + A(1)x(t − 1) + · · · + A(m)x(t − m) = n(t) (1)

Here n(t) = [n1(t), n2(t), . . . , np(t)]T is a zero mean uncor-
related noise vector with covariance matrix Σ and the A(k)’s
are the p × p AR coefficient matrices. The coefficients for
a particular data set are estimated by solving a multivariate
version of the Yule-Walker equations.

After fitting the MVAR model, multivariate spectral anal-
ysis can be performed by transforming (1) into the frequency



domain [3]:

x(f) = A−1(f)n(f) = H(f)n(f) (2)

Where vector x(f) represents the Fourier transform of the
time series and H(f) is a p × p transfer function matrix,

H(f) ≡ [A(f)]−1 ≡
[

m∑
k=0

A(k)e−2πikf

]−1

(3)

Using this general form, a number of different functional
connectivity metrics can be computed: Granger Causality [4],
the Directed Transfer Function [2] , and Partial Directed Co-
herence [3].

The Directed transfer function (DTF) [2] and Partial Di-
rected Coherence (PDC) [3] are functional connectivity mea-
sures which are frequency dependent matrix functions of the
transfer function matrix. The (i, j)-th entry of the matrix rep-
resents a measure of the interaction from source i to source
j. They are defined using the elements of H(f) or its inverse
A(f) as follows:

DTF2
ij(f) =

|Hij(f)|2
p∑

k=1

|Hik(f)|2
PDC2

ij(f) =
A2

ij(f)
p∑

k=1

A2
kj(f)

(4)

2.2. The Standard LCMV Beamformer

The LCMV beamformer is a spatial filtering technique first
applied in radar and sonar signal processing [6] and has been
widely used in the analysis of EEG and MEG data [7]. LCMV
spatial filters minimize the variance or power at the filter out-
put subject to passing signals from a cortical region of interest
with unit gain. In this way the LCMV beamformer can adap-
tively select the coefficients of the filter to reduce the noise in
the output that is independent of the signal of interest, while
passing the desired signal through the filter without attenua-
tion. The LCMV beamformer design problem is formulated
as:

min
w(qi)

tr[wT (qi)C(x)w(qi)] subject to wT (qi)g(qi) = 1 (5)

where C(x) denotes the spatial covariance matrix of the data
and g(qi) denotes the sensitivity or gain vector for a unit cur-
rent dipole source centered at the cortical region of interest.

The LCMV beamforming method has an inherent signal
cancellation problem: when a source correlated with the sig-
nal of interest is present, the filter will adapt to use the cor-
related signal to cancel some fraction of the signal of interest
[7]. Consequently, the beamformer in its standard form is of
limited use in investigating cortical interactions, where corre-
lation between regions is assumed to be present.

2.3. A Nulling Beamformer to Avoid Signal Cancellation

To eliminate the cancellation effect, one has to make sure that
the filter output at one source location will not be affected by
the other sources. This can be achieved by using additional
nulling constraints, i.e. the zero response conditions at those
locations have to be satisfied:

wT (qi)g(qj) = 0 with j �= i (6)

Combining these nulling constraints with the unit response
condition of the traditional LCMV, the beamformer design
problem can be written using the gain matrix G = [g(q0) · · ·g(qs)]
as:

min
w(qi)

tr[wT (qi)C(x)w(qi)] subject to w(qi)
T G = fT

i (7)

where fi represents the i-th column vector of an identity ma-
trix, and s is the number of sources.

This minimization problem is readily solved using La-
grange multipliers [7]:

w(qi) = C−1(x)G[GT C−1(x)G]−1fi (8)

The output of this new beamformer method is explicitly con-
strained to avoid cross-talk or signal cancellation between
each of the s cortical regions of interest and should therefore
be suitable for use to assess functional connectivity using the
MVAR model.

2.4. Eigenvector Constraints for Distributed Sources

Our proposed beamformer method works well for point sources
on the cortex. However, in reality, broad cortical regions can
be active in response to specific sensory or cognitive chal-
lenges. This raises the possibility of self cancellation if the
actual location and extent of the source produces a signal at
the EEG/MEG array that is substantially different from that
of the point source model. To overcome this problem, we use
eigenvector constraints [6].

The idea is to represent the potential range of measure-
ments at the array for a distributed source by first generating
the forward gain matrix for all source locations in a tesselated
cortical patch that represents the region of interest. Instead of
placing a point constraint at each location, we use a limited
number of constraints based on a least squares approximation
to the desired response:

min
w(qi)

||wT (qi)A− rd||2 (9)

where A = [g(q1) · · ·g(qk)] is the lead field matrix for all k
locations on a single patch source, rd is the desired response
vector for these k locations, which is a vector of one for the
region of interest and all zeroes for the other regions.

To limit the number of constraints to a small number l
for each patch, a rank l approximation of A is used from its
singular value decomposition (SVD) A = UΣV†:

AL = ULΣLV†
L (10)

ΣL is an l×l diagonal matrix with the l largest singular values
of A, and UL and VL are matrices containing the l singular
vectors of U and V corresponding to the singular values in
ΣL.

By replacing A in (9) with AL, the solution of the mini-
mization problem is:

wT (qi)UL = r†dVLΣ−1
L (11)

By applying these constraints to each of the s regions of in-
terest, a group of s× l constraints are generated for designing



the beamformer; again the weights of the spatial filter are ob-
tained using Lagrange multipliers. A different beamformer is
designed for each region of interest, and the outputs of the s
beamformers serve as the input for the MVAR model.

2.5. Tests for Significance

To investigate specific cortical interactions it is common to in-
tegrate the DTF over a frequency band of interest; in the fol-
lowing simulation we investigate an approximate beta band
by integrating from 12-30 Hz. This results in a single s × s
DTF matrix which represents an estimate of the strength of in-
teraction between each region in the beta band. To assess the
significance of these interactions, i.e. whether the detected
regional interactions could have occurred by chance, we use
a permutation test [4]. In this work we assume that the data
consist of multichannel MEG measurements corresponding to
multiple repetitions (or ”epochs”) of the same condition. Data
covariances are computed over short time intervals averaged
over multiple epochs. The exchangeability condition required
to use the permutation test is as follows: the signals from each
region are independent under the null hypothesis of no inter-
actions between these regions. Consequently, we can learn
the null distribution for the DTF by randomly permuting the
epoch indices separately for each region of interest and re-
peating the MVAR analysis. We can then use this null distri-
bution to threshold the computed DTF measures at a chosen
significance level. Furthermore, it is straightforward to use
the permutation test to control for errors in multiple hypoth-
esis testing (one per matrix element) by using the maximum
distribution to set the threshold. Note that this permutation
test will not work if the source signals are estimated from
methods where there is cross-talk between sources. The rea-
son is that the permutations will destroy this cross-talk and
lead to the possible interpretation of nonzero DTF’s, which
are the result of the cross-talk, as significant cortical interac-
tions.

3. COMPUTER SIMULATION

To investigate the performance of the nulling beamformer in
conjunction with the MVAR model we simulated MEG data
as follows. Time series were simulated to represent 5 cor-
tical regions as shown in Fig. 1 (left). These locations are
believed to be the active areas involved in attentional control
of visual processing [8]. The time series were generated us-
ing a 5 dimensional MVAR model with coefficients chosen
to produce significant interactions in the beta band (approx
15Hz): 1 → 2 (from region 1 to region 2), 1 → 3, 1 → 4,
4 → 5, 5 → 4 and 1 → 5. For each region we defined a
cortical patch with sizes as follows: 3.24, 3.54, 1.7, 2.51 and
1.63 cm2 for regions 1 to 5, respectively. One time series
was assigned to each patch and then MEG data were modeled
using a lead field matrix based on a spherical head model.
The MEG sensors were configured to simulate the 275 mag-
netometers in the CTF whole head system. We generated 100

epochs of MEG data using the MVAR time series and used
this to compute inverse solutions and MVAR model parame-
ters as described below.
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Fig. 1. (Left) Simulated cortical patches: Locations are chosen to
simulate real interactions for attentional control of visual processing:
occipital, frontal right, temporal right, and posterior parietal left and
right areas. (Right) The mean and standard deviation of the singular
value of the lead field matrices for the randomly generated patches.

The number of eigenvector constraints used for each source
patch in (10) was found through the singular values of ran-
domly generated source patches on the cortex. The result in
Fig. 1 (right) shows the 5th and higher singular values were
small and we therefore used l = 4.

The performance of minimum norm imaging, the standard
LCMV beamformer, and the proposed nulling LCMV beam-
former method, with both point and eigenvector constraints,
is compared in the left column of Fig 2. The result shows the
DTF between each pair of cortical regions computed from the
signals estimated using each of the different spatial inverse
methods. In these 5x5 plots, we show the DTF between each
region pair as a function of frequency. As a qualitative indi-
cation of performance, we indicate in red those DTFs which
should be zero, i.e. those regions between which there was
no actual interaction when generating the simulated MVAR
model. Consequently, DTFs that are red indicate errors in the
estimated interactions.

The DTFs clearly indicate errors in the estimated inter-
actions using the conventional LCMV beamformer and min-
imum norm imaging. The errors are somewhat smaller using
the nulling beamformer with point constraints, but are sub-
stantially lower when using the more robust eigenvector con-
straints.

On the right side of Fig 2 we show the estimated connec-
tivity as computed from the DTF’s integrated from 12-30Hz
and thresholded at a p = 0.05 significance level based on the
permutation test. The new nulling LCMV method with eigen-
vector constraints shows the correct functional connectivity,
while the other three methods show additional erroneous (red)
connections.

The locations used to define the LCMV constraints were
the true locations of the simulated sources. In real exper-
iments, the actual locations are unknown and usually esti-
mated by various source localization methods. Simulations
we are unable to include here show that the eigenvector con-
straint method is robust to inaccurate source locations when
the source location is mislocated by less than 5mm.



0.2 0.4
0

0.5

1
1−−−−>1

0.2 0.4
0

0.5

1
2−−−−>1

0.2 0.4
0

0.5

1
3−−−−>1

0.2 0.4
0

0.5

1
4−−−−>1

0.2 0.4
0

0.5

1
5−−−−>1

0.2 0.4
0

0.5

1
1−−−−>2

0.2 0.4
0

0.5

1
2−−−−>2

0.2 0.4
0

0.5

1
3−−−−>2

0.2 0.4
0

0.5

1
4−−−−>2

0.2 0.4
0

0.5

1
5−−−−>2

0.2 0.4
0

0.5

1
1−−−−>3

0.2 0.4
0

0.5

1
2−−−−>3

0.2 0.4
0

0.5

1
3−−−−>3

0.2 0.4
0

0.5

1
4−−−−>3

0.2 0.4
0

0.5

1
5−−−−>3

0.2 0.4
0

0.5

1
1−−−−>4

0.2 0.4
0

0.5

1
2−−−−>4

0.2 0.4
0

0.5

1
3−−−−>4

0.2 0.4
0

0.5

1
4−−−−>4

0.2 0.4
0

0.5

1
5−−−−>4

0.2 0.4
0

0.5

1
1−−−−>5

0.2 0.4
0

0.5

1
2−−−−>5

0.2 0.4
0

0.5

1
3−−−−>5

0.2 0.4
0

0.5

1
4−−−−>5

0.2 0.4
0

0.5

1
5−−−−>5

(a)LCMV beamformer with point constraints
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(b)Minimum norm method
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(c)LCMV nulling beamformer with point constraints
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(d) LCMV nulling beamformer with eigenvector constraints

Fig. 2. Left: The DTF computed from (a) the estimated source
signals by point constraint beamformer method, (b) the estimated
source signals by minimum norm cortical imaging, (c) the esti-
mated source signals by the new point constraint nulling beamformer
method, and (d) the estimated source signals by eigenvector con-
straint nulling beamformer method. The horizontal axis represents
the angular frequency from 0 to 0.5π, the vertical axis represents
the DTF. Those with blue areas represent true interactions among
the sources while those with red areas represent false interactions.
Right: Permutation test of significance for functional connectivity
based on the integrated DTF from estimated source signals. True
interactions are shown in blue arrows and false in red. The radius of
the arrows represents the strength of interaction.

4. CONCLUSIONS

We have demonstrated that the new eigenvector constrained
nulling beamformer method is effective in simulated data for
estimating source signals and suppressing cross-talk; the esti-
mated MVAR parameters and DTF’s accurately reflected func-
tional connectivity. Our simulations also show some robust-
ness to inaccurate estimation of the source locations. Finally,
the permutation test appears successful in identifying signifi-
cant interactions.

Although we have attempted to make the method robust
through the use of eigenvector constraints and nulling, our ap-
proach shares with other beamforming methods a sensitivity
to the assumed underlying model. In our case the primary
sensitivity will be to additional correlated sources which con-
tribute to the measured EEG/MEG data but are not included
in the set of constraints. Sources of this type would certainly
confound interpretation of cortical interactions using MVAR
modeling, as would silent hidden sources. Nevertheless, the
approach described does appear effective in addressing the
cross-talk problem which make minimum norm imaging and
conventional LCMV beamforming inappropriate for this ap-
plication.
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