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Abstract

Objective: MEG dipole localization of epileptic spikes is useful in epilepsy surgery
for mapping the extent of abnormal cortex and to focus intracranial electrodes. Vi-
sually analyzing large amounts of data produces fatigue and error. Most automated
techniques are based on matching of interictal spike templates or predictive filtering
of the data and do not explicitly include source localization as part of the analysis.
This leads to poor sensitivity versus specificity characteristics. We describe a fully
automated method that combines time-series analysis with source localization to
detect clusters of focal neuronal current generators within the brain that produce
interictal spike activity.

Methods: We first use an ICA (Independent Components Analysis) method to
decompose the multichannel MEG data and identify those components that ex-
hibit spike-like characteristics. From these detected spikes we then find those whose
spatial topographies across the array are consistent with focal neural sources, and
determine the foci of equivalent current dipoles and their associated time courses.
We then perform a clustering of the localized dipoles based on distance metrics that
takes into consideration both their locations and time courses. The final step of re-
finement consists of retaining only those clusters that are statistically significant.
The average locations and time series from significant clusters comprise the final
output of our method.

Results and Significance: Data were processed from four patients with partial focal
epilepsy. In all three subjects for whom surgical resection was performed, clusters
were found in the vicinity of the resectioned area.

Conclusion: The presented procedure is promising and likely to be useful to the
physician as a more sensitive, automated and objective method to help in the local-
ization of the interictal spike zone of intractable partial seizures. The final output
can be visually verified by neurologists in terms of both the location and distribution
of the dipole clusters and their associated time series. Due to the clinical relevance
and demonstrated promise of this method, further investigation of this approach is
warranted.
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1 Introduction

Published methods for automatic spike detection in interictal EEG and MEG
data employ one or more of the following approaches: morphological analysis,
template matching, predictive filtering, and independent component analysis
(ICA). Methods from the first category use a morphological description of the
epileptic spikes. Morphological information includes such characteristics of a
waveform as sharpness, amplitude, duration and convexity (Faure, 1985). For
example, (Gotman and Gloor, 1976) describe a method based on splitting the
waveforms into a set of elementary half-waves. For each such half-wave, param-
eters describing its shape are calculated and a decision is made on the basis of
comparing the estimated parameters to a set of previously determined values
typical for interictal spikes. A thorough review of this and other morphological
methods can be found in (Gotman, 1999, 1993).

Template matching approaches also use a priori information about the spike
shape, which is embodied in the finite impulse response of a matched filter. A
decision is made by comparing the output of the filter with a predefined thresh-
old that controls the sensitivity vs. specificity characteristics of the method.
For optimal performance, template matching methods require knowledge of
the noise correlation matrix and a good agreement between the hypothesized
and real spike shapes (Therrien, 1992).

The majority of the methods from these first two categories were developed
for single channel data and do not take advantage of spatial structure in
the measurements. Performance is also limited by the variability of interictal
spike shapes between subjects as well as within a single subject (Flanagan
et al., 2002). The fact that the methods were originally developed for use with
EEG measurements makes it difficult to apply them to MEG data, which is
characterized by a significantly lower SNR.

Methods using wavelet transforms, neural network and expert system architec-
tures to detect interictal patterns can be also categorized as template matching
approaches. One disadvantage of such methods is that features are extracted
separately from each channel, which does not make good use of the spatial
structure of the data. A review and comparison of these methods can be found
in (Wilson and Emerson, 2002).

Use of single-channel or multichannel predictive filtering techniques for spike
detection is based on an assumption of local stationarity of background ac-
tivity (Diambra and Malta, 1999). Interictal spikes are then detected as a
deviation from stationarity. Implicit in this approach is that non-stationary
behavior comes only from interictal discharges. In reality, there are many dif-
ferent sources of non-stationary bursts in the data which can lead to high false
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positive rates. Multichannel autoregressive models were used by (Franaszczuk
and Bergey, 1999) for detecting dynamic changes in brain activity due to
bursts of interictal and ictal activity. This method operates on intracranially
recorded data with relatively high SNR and is capable of identifying spike
trains rather than single spikes. As with the previous two classes, predictive
filtering techniques for interictal spike detection were developed for EEG data
and may not perform well with noisier MEG data.

Use of context for elimination of false positive detections was originally pro-
posed by (Glover et al., 1989) who described a knowledge based system for
detection of epileptic sharp waves in 16 channel EEG data. The context infor-
mation extracted from electrooculogram, electrocardiogram and electromyo-
gram is used to eliminate false positive detections not specific to abnormal
epileptic activity. (Flanagan et al., 2002) proposed using sharp wave source
location to eliminate events whose spatial pattern cannot be explained by a
dipolar model. A source localization procedure is applied to the multichannel
data around each detected sharp transient to obtain a set of dipole locations.
A subset of these dipolar events is then retained through visual inspection and
selection of those which form interesting clusters.

Several spike detection approaches based on ICA have recently been reported
in applications to EEG recordings. (Kobayashi et al., 1999) perform both
model based and real data demonstrations of the use of ICA to isolate epilep-
tic discharges from multichannel EEG data. In this approach ICA is applied
to spatio-temporal data and components resembling abnormal epileptic activ-
ity are selected by visual inspection; these components are then interpeted by
an expert. (Kobayashi et al., 2002a,b) use ICA decomposition together with
the RAP-MUSIC source localization approach (Mosher and Leahy, 1999) to
detect potential epileptogenic regions. Rather than fitting a dipole to each
independent component separately (Zhukov et al., 2000), (Kobayashi et al.,
2002a) followed the multidimensional ICA paradigm (Cardoso, 1998) and de-
fined an interictal subspace spanned by the columns of the estimated mixing
matrix visually identified as corresponding to epileptic components. A dipole
model is then fitted to this subspace. While this approach does make use of the
spatial topography of the detected spikes, the method requires visual inter-
pretation of independent components to identify the interictal subspace and
manual cluster analysis to discard spurious sources.

In this paper we describe a novel method that combines several aspects of the
approaches reviewed above but in such a way that the technique is completely
automated. We first use ICA (Bell and Sejnowski, 1995) to decompose the
spike-like and background components of the MEG signal into separate spa-
tial topographies and associated time series. We then perform spike detection
based on a subset of the most spiky independent components using a simple
thresholding technique. We use source localization to retain only those spikes
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whose topographies can be explained by a current dipole pattern with a fit
of 95% or higher. Post-processing of the localized sources of spiky activity is
based on the concept of spatio-temporal clustering. We group the localized
dipoles into a set of spatially tight clusters with similar activation waveforms.
To improve specificity we retain only those clusters that satisfy a statistical
significance test. The final output of the algorithm is the set of significant clus-
ters with their average dipole location and time series. We report on realistic
simulations in which performance is evaluated by computing ROC (receiver
operating characteristic) curves (Metz, 1986) for the method at each level of re-
finement. We demonstrate that each consecutive step improves the specificity
vs. sensitivity characteristics of the method. We also present the application
of our method to four clinical interictal MEG datasets and compare results
with expert analysis of this data in which spikes are first visually identified
and current dipoles then fitted to each identified spike. Preliminary reports on
this method were presented in (Ossadtchi et al., 2001) and (Ossadtchi et al.,
2002).

2 Method

2.1 The Data Model

We begin by describing our spatio-temporal model for MEG data, which is
assumed to consist of spike activity, spatially and temporally correlated or
coherent background activity, and additive white noise. The method for spike
detection described below is based on identifying the spike-like components in
this data.

We represent interictal MEG data at time t as an [M×1] spatial vector x(t),
which we model as a linear combination of focal source topographies corrupted
by additive noise with non-stationary spatial structure:

x(t) =
[

a1, . . . ,aK

]















e1(t)
...

eK(t)















+
[

b1, . . . , bL

]















p1(t)
...

pL(t)















+ n(t) (1)

where ek(t) is the time course of the k-th of K dipole components responsible
for interictal spikes, with corresponding spatial topography ak (Mosher and
Leahy, 1999, 1998). Time course pl(t) represents the l-th of L additional non-
spike related spatially coherent sources (e.g. α, γ, δ waves, sharp sleep waves,
eye-blink and cardiac artifacts) with corresponding spatial topography bl. The
[M×1] vector n(t) models additional incoherent noise present in the data.
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We assume that each of the components responsible for interictal activity ek(t)
has a heavy tailed marginal probability density function fk(ek) at time t with
the cumulative distribution function:

P (fk(ek) < x) =
1

1 + e−αkx
, ∀x (2)

The form of this density is consistent with that assumed in the ICA method
used for spike detection that we describe in Section 2.2.1. The corresponding
spatial topography ak is assumed to be formed by a single current dipole
representing focal neural activation at some unknown location in the brain.

We assume a spatially coherent background activity that exhibits correla-
tions between sources. We model this using a multichannel autoregressive
model (MAR) (Kaminski and Blinowska, 1991) in order to capture non-instan-
taneous interactions between sources. While this model is not explicitly used
in our automated spike detection method, we do use this model to simulate
data to explore the sensitivity and specificity characteristics of our approach as
described in Section 3.1. The MAR model and its use in modeling spontaneous
background brain acticity is described in Appendix A.

2.2 Spike Detection, Localization and Clustering

2.2.1 Independent Components Analysis

Independent Components Analysis (ICA) is a method for finding statistically
independent components in multisensor data. The original model for ICA
assumes instantaneous mixing (Bell and Sejnowski, 1995), which holds well
for the quasistatic electromagnetic properties of MEG data. We use ICA as a
preprocessing step that allows us to perform spatial filtering of the data and
separate interictal spikes from background activity.

Application of ICA to the data vector x(t) results in an unmixing matrix W
and a set of independent components z(t) related as:

z(t) =















z1(t)
...

zM(t)















= Wx(t) (3)

where the unmixing matrix is selected to optimize some measure of statistical
independence between the components of the vector z(t). A number of ICA
methods, differing in the metrics used to measure statistical dependence, have
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been described in the literature (Cardoso, 1989; Hyvarinen and Oja, 1997; Bell
and Sejnowski, 1995). Here we use the Infomax method of Bell and Sejnowski
for reasons described below.

Consider the case where (i) the dimension of x(t) is M = K + L with K and
L the number of spike and coherent background components respectively, (ii)
each of these components is statistically independent, and (iii) the background
noise process is negligible. Then the unmixing matrix W will approximately re-
cover the components ek(t) and pl(t) in equation (1), within a permutation and
scale factor. In practice the above conditions will not be met: the background
components are correlated, K+L may be less thanM , and there is additional
background noise. However, provided that the spike components are indepen-
dent of the background components, and the spike SNR is reasonably large,
then ICA will find an unmixing matrix that approximately separates the spike
components from background components, with the remainder being due to
background noise (Knuth, 99). As we describe below, this is sufficient for our
purposes. Thus ICA applied to data conforming to the model in equation (1)
will result in a set of independent components of which K can be attributed
to interictal spike activity in the brain and L to spatially coherent electrical
activity unrelated to the interictal spikes. In this setting the estimated com-
ponents are no longer scaled copies of either ek(t) or pl(t), but rather linear
combinations of either ek(t), k = {1, . . . , K} or pl(t), l = {1, . . . , L}. We still
benefit from such a decomposition since interictal activity time courses are
sparse and thus their linear combinations will tend to preserve most of the
spikes so that they are detectable in the independent components of z(t).

We use the Infomax method (Bell and Sejnowski, 1995) for ICA decomposition.
The key idea of this approach is to find an unmixing matrix W for which the
joint entropy of the the quantities yi(t) = φ (wix(t) + bi), i = 1 . . .M , is
maximized; φ() is a nonlinear scalar function, wi are the rows of the unmixing
matrix W, and bi are bias terms estimated from the data and are zero when
the data is zero mean with a symmetric density. Using a natural gradient
approach (Amari, 1998), the adaptation procedure for the k + 1st iteration is
(Bell and Sejnowski, 1995):

Wk+1 = Wk + µE
(

I + φ(Wx(t))x(t)T
)

Wk (4)

where φ(y(t)) = (φ(y1(t)), . . . , φ(yM(t))) .

We have chosen this ICA procedure as it allows us to specify a probability
density function for the interictal time series. Our analysis of the time courses
of interictal paroxysmal activity allows us to conclude that the probability
density function of this activity has higher kurtosis values than the normal
background brain activity. High kurtosis corresponds to distributions with
heavy tails, i.e. distributions for which outliers are more likely than for a
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Gaussian distribution of the same variance. Similar observations regarding the
non-Gaussian distribution of spike waveforms have been reported by others
(Robinson et al., 2002; Kobayashi et al., 1999, 2002a). We assume the spike
data follow the heavy tailed distribution in equation (2), which corresponds
to the use of the nonlinear function: φ(x) = 1/ (1 + e−αx). Interestingly, the
parameter α of the distribution used in ICA does not affect the results other
than through a scaling of the unmixing matrix which does not affect the
subsequent processing that we perform.

2.2.2 Spikyness Spectrum and Spike Detection

To select those independent components that are indicative of interictal ac-
tivity we introduce a ”spikyness index” which is applied to each of the com-
ponents computed from equation (3):

Im =
max|zm(t)|
1
T

∫

|zm(t)|dt
, m = 1, . . . ,M. (5)

where the maximum is computed over the entire observation interval T . This
index does not necessarily detect only epileptic spikes since any component
with a strong maximum-to-absolute average ratio will produce large values.
However, since we later prune the components based on other spatial and
temporal features, at this point in the processing we are primarily concerned
with high sensitivity rather than specificity.

We define the spikyness spectrum as the rank ordered elements Im with Im ≥
Im+1, m = 1, . . .M − 1. We can now see the effect of the unmixing performed
by ICA. Fig. 1 shows a typical normalized spikyness spectrum for interictal
MEG data from a patient with temporal lobe epilepsy computed on (i) the raw
data, (ii) the independent components, and (iii) the right singular vectors of
the principal component or singular value decomposition (SVD) of the spatial-
temporal data matrix

The figure clearly shows that ICA concentrates spikyness into fewer compo-
nents than either the raw data or principal components analysis.

To find candidate epileptic spikes and their sources we first select the subset =
of independent components with the largest spikyness. We then create a new
time course d(t) by non-linearly mapping this set of independent components
into a single time series according to:

d(t) = max
m∈=

|zm(t)| (6)

To detect spikes we then apply a simple thresholding rule. As a result of this
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Fig. 1. Normalized ”spikyness” spectrum for interictal MEG data computed from
raw data and its decompositions using ICA and SVD. A decomposition that sep-
arates components containing spikes from those that do not will tend to exhibit
a faster decrease in spikyness than the raw data; we refer to this characteristic as
an increased degree of spikyness. Note that ICA increases the degree of spikyness
compared to raw data while SVD actually reduces it.

spike detection procedure we obtain a vector of time markers θ = [θ1, . . . θN ]
that point to the indices corresponding to the maximum of each detected
spike.

2.2.3 Candidate spike localization and RAP-MUSIC

To improve the specificity of the detection procedure we select the subset of
the detected spikes that can be localized as focal neuronal sources. To do this
we fit an equivalent current dipole model to the data in the vicinity of each
spike and accept the solution only if there is at least a 95% fit of a dipole
model to the data.

We use the RAP-MUSIC algorithm (Mosher and Leahy, 1999) to localize
the equivalent current dipoles from spatio-temporal data over a time win-
dow of ±τ , with τ = 16ms, around the apex of each detected spike. The
spatio-temporal data is first filtered by retaining only the temporal compo-
nents and their corresponding spatial topographies from the set = of most
spiky components i.e. we form a lower rank approximation x̂(t) of the vector
of measurements x(t) as

x̂(t) =
∑

m∈=

vmzm(t) (7)
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where vm is the mth column of the inverse of the unmixing matrix W. For the
i-th element of the vector θ found during the initial spike detection step, we
form an estimate of the signal subspace Φ̂s as the space spanned by the first
r left singular vectors of the cropped spatial temporal matrix X̂c:

X̂c = [x̂ ((θi − τ)) , . . . x̂ ((θi + τ))] (8)

The number of samples in the temporal window centered around the maximum
of the spike is 2τfs + 1 The signal subspace is found from the SVD of X̂c as

X̂cX̂c
T
=

[

Φ̂s, Φ̂e

]







Λs 0

0 Λe







[

Φ̂s, Φ̂e

]T
(9)

where the columns of Φ̂s and Φ̂e span, respectively, the estimated signal and
noise subspaces (Mosher and Leahy, 1999). The dimension of the signal sub-
space, r = 4, was selected to be one or two dimensions larger than the max-
imum expected number of sources in each spike interval, which in practice
rarely exceeded two.

RAP MUSIC finds sources in an automated and recursive fashion by pro-
jecting the topography for candidate source locations against the estimated
signal subspace. The method is robust to non-dipolar components in the data
and can find multiple sources in a single signal subspace (Mosher and Leahy,
1999). Importantly, dipoles will only be found with this procedure if the signal
subspace contains a strong dipolar topography. The algorithm is applied to
data in the vicinity of each spike in turn. The resulting set of dipoles is then
further processed using the clustering procedure described below.

2.2.4 Clustering

Associated with each localized dipole is a location vector ρ̂i = [ ρ̂
x
i ρ̂yi ρ̂zi ]

and its time course êTi = [êi ((θi − τ)) , . . . êi ((θi + τ))]T . A single isolated
source is of little diagnostic value and consequently we further reduce the
number of detected sources through a clustering procedure. Only those sources
that fall within one of a number of automatically determined clusters are
retained in the final set of detected sources.

To perform clustering we first compute the matrix containing Euclidean dis-
tances between each pair of estimated location vectors, i.e. dij =

∣

∣

∣ρ̂i − ρ̂j
∣

∣

∣. To
find the first cluster we chose row i0 according to the following criterion:

i0 = argmax
i

∑

j

I (dij < δ) (10)
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where I () is the indicator function and δ is a user specified threshold param-
eter that determines the maximum radius of the clusters. The first cluster
is then the set of dipoles I0 = {j : di0j < δ}. The entries of the matrix
corresponding to the dipoles from the identified cluster are removed and the
procedure repeated until the remaining clusters contain less than Nmin dipoles,
where Nmin is a user specified parameter.

Each spatial cluster is then subdivided into smaller clusters with similar wave-
forms of activation using the same procedure as above, but with the Euclidean
distance metric applied to the time series rather than locations. This two-step
procedure allows us to sort localized spikes into tight spatial clusters with
similar temporal properties.

2.2.5 Cluster significance

One further refinement is applied before the procedure is complete. We reduce
the number of clusters by removing those that do not exceed a user selected
significance threshold. With a large number of sources placed at random within
the head, clusters would naturally arise by chance. We therefore test for cluster
significance under the null hypothesis of randomly located sources over the
head volume. Since the dipoles in each cluster have time series that are similar
to each other but distinct from the other clusters, we apply the test separately
for each cluster with a Bonferoni correction for multiple hypothesis tests.

To test cluster significance we use as a statistic η̂, the number of dipoles
in the cluster. Under the null hypothesis all of the Nd detected dipoles are
uniformly scattered throughout a spherical volume containing the brain. We
compute the distribution of the statistic η, under the null hypothesis, equal to
the maximum number of dipoles enclosed in a spherical volume with radius r
equal to half the distance between the two furthest dipoles in the cluster being
tested. The maximum is taken over all possible locations within the spherical
brain volume. We assess cluster significance by computing the probability of
the statistic η exceeding the observed value η̂ under the null hypothesis. We
derive an approximate distribution for the maximum statistic η under the null
hypotheses in Appendix B.

The testing procedure is applied to each cluster in turn. To control for false
positives caused by multiple hypothesis tests, we use a Bonferoni correction
scheme in which we adjust the signficance level to α = 0.01/Nc where Nc is
the total number of detected clusters.
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3 Simulation Studies

3.1 Simulation Description

To validate the method we performed a set of realistic simulations. Our goal
was to obtain ROC (Metz, 1986) to understand the sensitivity and specificity
characteristics of our approach, and to investigate whether each of the con-
secutive steps described above delivered improved accuracy.

We simulated spatio-temporal vectors of spontaneous interictal activity on the
basis of real subject data. As described in equation (1), the spatial-temporal
vector x(t) is comprised of three additive parts: focal interictal activity with in-
dependent topographies ak, spatially coherent background brain activity with
topographies bl and spatially non-coherent sensor noise n(t). We simulated
each of those three components separately.

We simulated interictal spikes on the basis of averaged waveforms of spikes
detected in MEG data collected from a patient with temporal lobe epilepsy
using the acquisition system described in Section 4.1. The time course of the
averaged spike s(t) is shown in Fig. 2a. The source location of the simulated
interictal spike was chosen to coincide with that determined from the same
subject dataset and to lie in the right temporal lobe, Fig. 2b. The spatial
topography aint associated with this source was calculated using a spherical
head model; this spherical model was also used in all subsequent processing.

We generated a pseudo-random sequence of interictal spikes using a 2-state
(binary) Markov chain sequence f(t). The activity at the sensors due to the
spike generator was then computed as:

xint(t) = aint (s(t) ∗ f(t)) (11)

where ∗ denotes the convolution operator.

Spike detection in simulated spatially and temporally incoherent noise is rel-
atively straightforward and does not reflect the difficulty of the true problem.
Consequently, to perform a more realistic evaluation of our approach under
known conditions, we used a more realistic model for background brain ac-
tivity by training the MAR model described in Appendix A on spontaneous
activity recorded from a normal subject at rest. Details of the training pro-
cedure and related statistical tests are also contained in the Appendix. The
resulting spatially coherent background noise xbckg(t) sampled from the MAR
model is the second additive component in our data model.

The third component of our data model, spatially incoherent sensor noise
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Fig. 2. Location and waveform of interictal spike used in computer simulation stud-
ies: a) Averaged MEG spike waveform from subject with temporal lobe epilepsy, b)
Location of the spike generator for the simulated data.

n(t), was simulated as Gaussian white noise filtered with a low-pass filter
(fc = 40Hz). The simulated data were then computed as a sum of the three
components described above:

x̃(t) = xint(t) + xbckg(t) + n(t). (12)
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3.2 Simulation Results

To evaluate our approach we applied spike detection and localization method
described above to the simulated data and computed the true positive rate
(i.e. the fraction of true spikes detected) vs. false positive rate (i.e. the rate of
detected events with peaks further than 100 ms from the nearest true spike).
We plot these performance values as ROC (receiver operating characteristic)
curves (Metz, 1986). We evaluated the performance of our approach at three
distinct stages:

1. ICA + spike detection based on the spikyness spectrum and thresholding
2. Spike detection based on dipole localization for each spike detected in Step 1
3. Clustering and significance testing of spikes detected and localized as dipoles
in Step 2

To generate different operating points in Stage 1 we varied the threshold used
to locate spikes from equation (6). To generate different points in Stages 2
and 3 we kept the spike threshold constant at a value which achieved better
than .98 true positive rate in Stage 1 and varied the threshold for the RAP
MUSIC method in the fit of the dipole model to the signal subspace. As this
threshold is dropped, sensitivity will increase at the expense of specificity.

Three ROC curves corresponding to the three stages are shown in Fig. 3. The
true positive rate is computed as the fraction of true spikes that are detected.
The false positive rate is given as both the probability of a false positive at
each sample point and also as the rate of false positives per true spike. The
ideal ROC curve would show 100% sensitivity at the lowest possible false
positive rate, i.e. the ideal curve rises rapidly towards a true positive fraction
approaching unity. The results in Fig. 3 indicate that each stage of refinement
substantially improves specificity without affecting the achievable sensitivity.
The false positive rate at the end of Stage 3, expressed relative to the true
spike rate, shows a worse case of approximately 30% chance of a false positive
per true spike with a true positive rate exceeding 98%.

In this study we have attempted to perform a realistic simulation, but whether
performance after Stages 2 and 3 for real data will approach the accuracy
indicated in these ROC curves will require application to a wide range of
clinical data sets. In Section 4 we report on our preliminary studies with
clinical MEG data.
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Fig. 3. Receiver Operating Characteristic (ROC) curves showing performance at
three stages in the detection algorithm. Plotted for each stage of the processing are
the true positive rate vs. false positive rate as described in the text. The results
show clear improvement in sensitivity vs. specificity performance from Stage 1 to 2
and from Stage 2 to 3.

4 Results

We applied the spike detection method described above to spontaneous MEG
data sets collected from four different subjects. The four patients had com-
plicated clinical presentations and required invasive electrode recordings for
localization of the seizure origin for surgical planning. Their intractable com-
plex partial seizures could not be localized by standard non-invasive Video-
EEG and imaging criteria. In each case there was a clinical hypothesis which
justified proceeding to invasive electrodes due to the likelihood of finding an
operable seizure focus.
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Subject
Age

(Gender)
Phase

I
MEG

Phase
II

Phase
III

Phase
IV

(mos)

Automatic
detection
outcome

A 36M LF LTP LSMAd, LHg no NA LT[58],LP[33], C[73,66,78,56,31]

B 17M RF RF,RT RFg RF, RT 1(32) RF[57,71],RT[82]

C 34F RT RTlat RTlatg RTant 1(18) RTlat[26]

D 32M LT,RH RP, RT RTg ,RTd RT 3(9) RTpost[35,35,51], RTmes[46]

Table 1
Summary of data for the 4 clinical subjects for which MEG data was analyzed in this
study. A description of each column follows. Phase I: Scalp and sphenoidal inpatient
Video-EEG telemetry; MEG: Magnetoencephalography and magnetic source imag-
ing(MSI); Phase II: Intracranial monitoring with depth (d) or grid (g) electrodes;
Phase III: Focal excisional surgery; Phase IV: Outcome classification with number of
follow-up months (mos), follow-up outcome class: 1=seizure-free, 3=90 % seizure re-
duction; Automated detection outcome: Location of dipole clusters [number of spikes
in each cluster]. Abbreviations: L=left, R=right, T=temporal, H=hippocampus, P
= Parietal, F=frontal, SMA = somatosensory area, C=deep white matter, ant =
anterior, lat=lateral, post=posterior, mes=mesial

4.1 MEG data acquisition

MEG was recorded using a whole cortex CTF neuromagnetometer (CTF Cor-
poration, Port Coquitlam, Canada) in a magnetically shielded chamber (Vaku-
umSchmelze, Hanau, Germany). The magnetometer has 68 sensor channels
(1st derivative co-axial gradiometers, coil diameter 1.98 cm, baseline 5.0 cm)
and 32 reference channels. The data sample rate was 250 Hz per channel with
a band-pass of 1-70 Hz, a dynamic range of 16 bits and system noise of 5

to 7 fT/
√

(Hz). For data analysis, we computed an approximate third order
spatial gradient using the reference channels. The system accuracy was tested
with a dry calibration phantom and localization error for a single dipole mea-
sured at 1.0± 0.4mm.

4.2 Comparison to the four phase clinical procedure

There are four parameters to be set in the automated procedure: the thresh-
old for initial spike detection in the ICA time series, the threshold to use in
dipole localization in RAP MUSIC, and thresholds for determining cluster size
and significance. After adapting these parameters during initial studies with
human data, we were able to process all four clinical data sets with the same
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parameter settings. We compared the result of our automatic method to that
of the four phases (Phase I - Phase IV ) of the clinical procedure summarized
in Table 1. For each patient the table gives abbreviated loci of the detected foci
of abnormal activity during Phase I (excluding MEG) and of results obtained
from MEG using standard analysis, i.e. visual selection of spikes followed by
single dipole localization. The Phase II column reports locations of foci ob-
tained from intracranial monitoring. The column corresponding to Phase III
(resection) indicates the location of surgical resection if performed. Phase IV
summarizes the results of post-surgical monitoring of the patient. The table
shows the outcome class of each patient and number of months that have
passed since surgery. The results of the automatic procedure are summarized
in the right-most column. The table shows that regions of abnormal activity
detected by the automatic procedure were similar to those on which the four
phase clinical procedure were focused. The brain region in which resection
was performed coincided with the location of one of the clusters found by our
automatic procedure in all three cases in which a resection was performed.

4.3 Graphical comparison to the results of Phase I.

One of the steps in Phase I of the clinical procedure is manual analysis of
spontaneous interictal MEG recordings. The goal of this step is to detect
abnormal spike activity and determine its spatial origin. In Figs. 4, 5, 6, 7 we
graphically compare the results of manual detection performed by a qualified
examiner to that obtained by our method.
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Fig. 4. Automated detection and clustering results for subject A, compared to the
manual detection procedure. Results of the automated procedure are shown as cir-
cles with radii equal to 3 standard deviations of the distance of dipoles from the
centroid for all sources in the cluster. Circles with thicker lines indicate probable
epileptogenic clusters while thinner lines indicate non-epileptogenic clusters as de-
termined by their location and averaged time courses. The number of spikes in each
cluster is shown on the coronal sections. Manual detection results are shown as
bright square dots.

The number of clusters for the four subjects using our procedure was A: 7, B:
3, C: 1, and D: 4. Visual inspection of the temporal properties of the cluster
time-courses allowed us to attribute clusters localized in white matter regions
in the center of the head in subject A to the normal sleep activity spread over
the entire cortex. These clusters were excluded from further consideration. In
Fig. (8) we show two clusters for subject C. Fig. (8)a shows distinct spike-
like behavior in the temporal lobe. The second example, Fig. (8)b, also shows
tight spatial clustering but inspection of the time series shows little structure
so that this cluster, which is possibly due to muscle artifacts, can be rejected
as a potentially epileptogenic region. In fact this cluster was rejected by our
automated procedure because of the large variability in the time series, and
was included here only to demonstrate the importance of considering both the
spatial and temporal characteristics of putative clusters of localized sources.

18



70
58

17

25
17

Fig. 5. Automated and manual detection and clustering results for subject B. Details
as for Fig. 4.

To quantitatively compare human observer performance with our automated
procedure we performed a further analysis of this clinical data. For different
values of the RAP-MUSIC correlation threshold we computed the proportion
of spikes found by a qualified examiner which were also found by our auto-
matic procedure. We counted spikes as matching if the distance between the
time markers for the human and automated detetector were less than 120 ms.
The results of this analysis are shown in Fig. 9. For a typical RAP MUSIC
theshold of 95%, the automated procedure found between 48% and 93% of the
spikes found by the human examiner. It should be noted however, that the
automated procedure finds far more sources, even after clustering and signif-
icance testing of the clusters, than is practical for a human examiner. As an
example, in one 10 min record of spontaneous MEG data from a patient with
partial epilepsy consisting of 150,000 samples and 68 channels, the manual ex-
aminer selected 13 spikes. The initial spike detection (Stage 1 in Section 3.2)
produced 1342 spikes, including 12 of the 13 manually detected spikes. Stage
2 reduced this number to 376 dipoles keeping 11 out of 13 of the manually
detected. Keeping only statistically significant clusters resulted in 91 dipoles
split into two clusters. As shown in the earlier figures, many of these sources
clustered into regions consistent with the foci of interictal epileptic activity.
This indicates the potential power of the automated procedure, not only in
reducing time required for manual analysis of data, but in finding much larger
sets of plausible focal sources that can potentially be used by physicians in
treatment planning.
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Fig. 6. Automated and manual detection and clustering results for subject C. Details
as for Fig. 4.

5 Discussion and conclusions

We have described a procedure for detection of significant clusters of dipolar
sources with spike-like time courses in interictal MEG data. The method first
finds candidate spikes in the MEG data, then attempts to localize current
dipoles to account for each spike and retains only the sources which conform
to this model. These dipoles are then clustered according to their spatial and
temporal characterisics and finally the clusters tested for statistical signifi-
cance to yield a set of significant clusters as candidate epilpetogenic regions.

Once four user specified parameters are chosen, the procedure described above
is a fully automated method for screening of spontaneous MEG data for in-
terictal events. It supplies the physician with a more complete and potentially
more meaningful dataset of source foci and time series than is feasible using
a manual spike detection protocol.

Our simulation studies were based on a realistic model for coherent background
noise with parameters determined from a normal subject at rest. ROC studies
of the method were based on dipolar spike-like sources embedded in this co-
herent background activity. These studies show the benefit of the multistage
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Fig. 7. Automated and manual detection and clustering results for subject D. Details
as for Fig. 4.

refinement of the initially detected spikes in terms of substantially improved
specificity with near constant maximum sensitivity.

In practice, the method was found to produce clusters in MEG data from pa-
tients with partial focal epilepsy who were candidates for surgical resection. In
the 3 of 4 cases in which a resection was performed, the automated procedure
found a significant cluster in the vicinity of the area that was subsequently
resectioned. In these real cases, some spurious clusters remained, even after
application of the significance test. However, most of these can be easily re-
jected by a neurologist since their centroids fall in deep white matter and
the time series are inconsistent with epileptogenic activity. Sharp transients of
sleep might potentially cause confusion, but these are usually either low am-
plitude or mid line in location and therefore likely to be excluded. Occipital
partial epilepsy is uncommon and usually obvious clinically, thus the normal
sharp transients from the occipital lobe should not cause a significant clinical
problem.

In summary, the above procedure is promising and likely to be useful to the
physician as a more sensitive, automated and objective method to help in the
localization of the interictal spike zone of intractable partial seizures. The final
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Fig. 8. Location in three orthogonal views of two apparent dipole clusters found
for subject C and their corresponding time series. The bold line in the time series
graph is the average time course over all dipoles. (a) This cluster in the temporal
lobe shows clear spike activity in the time courses and represents a potentially
epileptogenic region; (b) this cluster, while also spatially tight, shows a high degree
of variability in the time courses and little evidence of spike activity and is believed
to be due to muscle artifacts in the data. This apparent cluster was discarded by our
automated procedure due to the varability in the time courses and is included here
as a demonstration of the importance of considering both the spatial and temporal
characteristics of detected sources.
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Fig. 9. Comparison of manual and automatic spike detection procedures. For each
of the 4 subjects, we plot the fraction of the manually detected dipolar sources that
are also found by the automated procedure. Different points on the curve are found
using different acceptance thresholds during RAP MUSIC dipole localization. For
the 4 subjects the following number of dipoles were found by the qualified reader:
A: 13, B: 26, C: 12, D: 12

output can be visually verified by neurologists in terms of both the location
and distribution of the dipole clusters and their associated time series. Due
to the clinical relevance and demonstrated promise of this method, further
investigation of this approach is warranted.
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Appendix

A Multichannel Autoregressive (MAR) Model of Spontaneous Brain Activity

The MARmodel (Franaszczuk and Bergey, 1999) is an extension of the autore-
gressive model characterized by a series of coefficient matrices Ak k = 1, . . . P ,
where P is the order of the MAR model. The (m,n)th element of Ak represents
the interaction from the nth to themth source at time lag k. Formally, the time
series generated by the model can be written as

p(t) = −
P
∑

k=1

Akp(t− k) + ε(t) (A.1)

where ε(t) is a spatially and temporally white vector representing the ”inno-
vations” process that drives the model.

The MAR model can be written in terms of a matrix transfer function, i.e. in
the z-domain:

P(z) = (H(z))−1 E(z) (A.2)

where the matrix transfer function H(z) = {hij(z)} is defined as

H(z) = 1 +
P
∑

k=1

Akz
k (A.3)

The degree of interaction between the sources of background activity at differ-
ent frequencies can be computed using the directed transfer function (DTF)

matrix Γ =
{

γ2ij
}

(Kaminski and Blinowska, 1991):

γ2ij(f) =
|hij(f)|

2

∑L
k=1 |hik(f)|

2 (A.4)

where |hij(f)|
2 is the cross spectral density between the ith and jth sources.

A matrix of scalar parameters reflecting interaction for a frequency band of
interest ∆ can be computed by integrating over that frequency band:

gij =

∫

∆ |hij(f)|
2

∫

∆

∑L
k=1 |hik(f)|

2 (A.5)

The matrix G = {gij} is called integrated directed transfer function (IDTF)
matrix for the MAR model (Kaminski and Blinowska, 1991).
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Here we use the MAR model to represent coherent background brain activity.
We now describe how we trained the model using spontaneous MEG data from
a normal subject at rest. We define a coherent background activity subspace as
that spanned by the dominant left singular vectors of the SVD of the spatial-
temporal data matrix X collected from the subject using the setup described
in 4.1 at the sample rate of 250 Hz. We retained only those singular vectors
such that the subspace spanned by them captures 95% of the variance in the
data; in the data used in this simulation, this corresponded to the first r = 48
singular vectors. From these vectors we constructed the matrix:

Ybckg =















vT1
...

vTr















. (A.6)

where vi is the ith right singular vector of X.

To simulate temporal activity in this subspace we use the MAR model de-
scribed in equation (A.1). Parameters for MAR models of different orders
were estimated from Ybckg by solving a system of normal equations (Kay,
1988). The estimated models were then cross-validated on independent seg-
ments of data (Golub et al., 1979). Using the estimated coefficient matrices for
each model order, we computed the total prediction error across all channels,
i.e. the trace of the prediction error correlation matrix. The prediction errors
plotted in Fig. A.10 indicate an appropriate model order of P = 4. The IDTF
matrix, equation (A.5), is shown in Fig. A.1b. This matrix indicates a strong
degree of interaction between the different components in the model since if
each component were independent, the IDTF matrix would be diagonal.

The use of the normal equations to solve for MAR parameters is optimal in a
maximum likelihood sense only for a Gaussian innovation process ε(t). To in-
vestigate the normality of the residuals we used the Kolmogorov-Smirnov test.
The p-values for this test for each channel are shown in Fig. A.2b. The plot
shows that the null hypothesis of normality cannot be rejected at the signifi-
cance level α = 0.05. We can therefore use normally distributed noise to drive
our MAR model in order to simulate realistic spatially coherent background
brain activity.

The MAR model and coherent background signal subspace were combined to
generate coherent background activity according to:

xbckg(t) =
[

u1, . . . ,ur

]

ybckg(t) (A.7)

where ur are the first r = 48 left (spatial) singular vectors of the spatial-
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Fig. A.1. a)Prediction Error variance vs. MARmodel order for estimated parameters
when applied to cross-validation data. Note that the cross validation prediction error
indicates a distinct minimum at model order P=4; b) The Integrated Directed
Transfer Matrix for the estimated 4th order MAR parameters; the figure shows a
high degree of correlation between channels in the data.

temporal data matrix X and ybckg(t) is the MAR process generated using the
estimated MAR parameters and driven by white Gaussian noise.
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Fig. A.2. Computed p-values for Kolmolgorov-Smirnov test for normality applied to
residual or prediction errors using cross-validation data. The results indicate that
there is no evidence in this data to support use of a distribution other than Gaussian
to drive the MAR models.

B Cluster Significance Computation

We describe the statistic used to test the null hypothesis as described in Sec-
tion 2.2.5 that each dipole cluster arose by chance through a uniform random
distribtion of the dipoles within the brain volume. In order to compute an
analytical expression for the significance level of an observation under the null
hypothesis we divide the spherical head volume V into a 3-D grid with cubic
voxels of small size δ × δ × δ, yielding the total number of voxels Nv =

⌊

V
δ3

⌋

.
For a particular placement of dipoles we then compute the number of dipoles
in each such voxel, i.e.

Ni =
Nd
∑

j=1

Ii(j), i = 1, . . . Nv, j = 1, . . . Nd (B.1)

where Nd is total number of detected dipoles and Ii(j) is an indicator function
equal to 1 if the j-th dipole falls in the i-th voxel.

We now compute the probability of observing more that η̂ dipoles within
a spherical patch of radius r under the null hypothesis. The probability of
observing η ≤ η0 dipoles within a spherical patch of radius r located in a fixed
position can be computed using the binomial cumulative distribution function
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as

P (η ≤ η0) =
η0
∑

t=0







Nd

t







(

m

Nv

)t (

1−
m

Nv

)Nd−t

(B.2)

where m = 4
3
π
(

r
δ

)3
is the number of voxels within the spherical volume.

To compute the maximum distribution over all possible locations of the patch
we make the approximating assumption that the number of dipoles within the
spherical volume is independent for different locations of this volume when the
allowed sphere centers are spaced by distance r from each other. Under this
assumption the significance level α for the maximum statistic can be computed
as

α = P
(

max(η1, . . . , ηNp
) > η̂

)

= 1−
Np
∏

i=1

p(ηi ≤ η̂) = 1− P (ηi ≤ η̂)Np (B.3)

where ηi is the number of dipoles within the spherical volume in the i-th

position and Np =
4
3
π
(

Rh−r
r

)3
is the number of possible locations of the patch

within the sphere of radius Rh.

To assess the accuracy of the independence approximation we performed
Monte Carlo simulations in which we compute the number of dipoles re-
quired to achieve a given significance level α for different cluster sizes. In
Fig. B.1 we show results of computation using equation (B.3) for different lev-
els of significance α. We also show the number of dipoles required to achieve
α = 0.01 based on 100 Monte Carlo trials. These results show that equation
(B.3) provides a mildly conservative number compared to Monte Carlo trials
and therefore can be used to control false positives with reasonable accuracy.
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