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Abstract. We describe the use of non-parametric permutation tests to detect ac-
tivation in cortically-constrained maps of current density computed from MEG 
data. The methods are applicable to any inverse imaging method that maps 
event-related MEG to a coregistered cortical surface. To determine an appro-
priate threshold to apply to statistics computed from these maps, it is important 
to control for the multiple testing problem associated with testing 10’s of thou-
sands of hypotheses (one per surface element). By randomly permuting pre- 
and post-stimulus data from the collection of individual epochs in an event re-
lated study, we develop thresholds that control the familywise (type 1) error 
rate.  These thresholds are based on the distribution of the maximum intensity, 
which implicitly accounts for spatial and temporal correlation in the cortical 
maps. We demonstrate the method in application to simulated data and experi-
mental data from a somatosensory evoked response study.  

1   Introduction 

Cortically constrained spatio-temporal maps of neural activity can be computed from 
event related MEG data using linear inverse methods to estimate source current densi-
ties within pyramidal cells in the cortex. One of the most commonly used approaches 
extracts a representation of the cerebral cortex from a coregistered MR image, tessel-
lates the result, and solves a linear inverse problem for elemental sources located at 
each of the vertices of the tessellated surface. The problem is hugely underdeter-
mined, so that regularization methods are typically used [1,2]. The resulting current 
density maps (CDMs) are in general low resolution; interpretation is further con-
founded by the presence of additive noise exhibiting strong spatial correlation. As 
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with fMRI images, objective assessment of CDMs requires a principled approach to 
identifying regions of significant activation.  

Dale et al. [2] normalize the CDMs using an estimate of the background noise vari-
ance at each cortical element. These normalized images follow a t-distribution under 
the null hypothesis of Gaussian background noise. Thresholding the images will 
produce maps of significant activation. However, testing at each surface element 
gives rise to the multiple comparisons problem: if significance is set at the p=.05 
level, for example, then statistically 5% of the surface elements will give false posi-
tives. We wish to determine a threshold to achieve the desired family-wise error rate 
(FWER). The simplest solution is the Bonferroni correction which scales the p-value 
by the number of tests performed (i.e. number of surface elements). This is of little 
practical value in neuroimaging experiments since, due to strong spatial dependence, 
it is very conservative. The most widely used methods in analysis of neuroimaging 
data use random field theory and make inferences based on the maximum distribu-
tion. The maximum plays an essential role in controlling FWER. Consider a statistic 
image iT , thresholded at u; if the null hypothesis is true everywhere, then the FWER 
is  
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That is, a familywise error occurs when one or more iT  are above the threshold u, but 
this can only occur when the maximum of the iT  is above u. Hence, to control the 
FWER at level α, one needs to find the (1-α)100th percentile of the maximum distri-
bution,  
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The random field methods proceed by fitting a general linear model to the data. The 
parameters of this model are estimated and then contrasted (using t-tests, F-tests, 
paired t-tests, ANOVA or others) to produce a statistic image. In this framework, a 
closed form approximation for the tail of TFmax  is available, based on the expected 
value of the Euler characteristic of the thresholded image.  

The parametric framework is valid for PET and smoothed fMRI data. However, 
the assumptions for the p-value local maxima and the size of the suprathreshold clus-
ters do not hold directly for MEG data because of spatially variant noise correlation 
on the cortical surface. One solution to this problem is to use a transformation that 
warps or flattens the image into a space where the data are isotropic [3]. This ap-
proach can be applied directly to MEG, for example to determine an appropriate 
threshold for the noise-weighted maps described in Dale et al [2]. An application of 
this framework to MEG is described in [4] but the method is specifically tailored to 
beamforming methods rather than the linear inverse methods of interest here. These 
parametric random field methods require the usual parametric assumption of normal-
ity at each spatial location, in addition to random field assumptions of a point spread 
function with two derivatives at the origin, sufficient smoothness to justify the appli-



cation of the continuous random field theory, and a sufficiently high threshold for the 
asymptotic results to be accurate. 

Non-parametric methods rely on minimal assumptions, deal with the multiple 
comparisons problem and can be applied when the assumptions of the parametric 
approach are untenable. They have also outperformed the parametric approaches in 
the case of low degrees-of-freedom t images [5]. Non-parametric permutation tests 
have been applied in a range of functional imaging applications [5,6,7,8]. Permutation 
tests are attractive for the application to MEG data since they are exact, distribution 
free and adaptive to underlying correlation patterns in the data. Further, they are con-
ceptually straightforward and, with recent improvements in desktop computing 
power, are computationally tractable.  Blair et al [6] describe an application of this 
approach to analysis of EEG data as recorded at an array of electrodes; in contrast the 
work presented here is applied to inverse solutions in which the maps are estimates of 
cortical activation.  

2   Method 

Our goal is to detect spatial and temporal regions of significant activity in MEG-
based cortical maps while controlling for the risk of any false positives. We find 
global or local thresholds on statistics computed from the cortical maps that control 
the FWER .  The method is introduced in a general framework to demonstrate its 
flexibility and adaptability to different experiments; we then describe the specific 
tests used in our experimental studies.  

2.1   Permutation Approach 

We assume that MEG data are collected as a set of N stimulus-locked event-related 
epochs (one per stimulus repetition) each consisting of a pre- and post-stim interval of 
equal length. Each epoch consists of an array of data representing the measured mag-
netic field at each sensor as a function of time. A cortical map is computed by averag-
ing over all N epochs and applying a linear inverse method to produce an estimate of 
the temporal activity at each surface element in cortex.  Our goal is to detect the loca-
tions and times at which activity during the post-stim experiment period differs sig-
nificantly from the background pre-stim period. The method, as described below, can 
be readily extended to address more complex questions involving multiple factors.   

To apply the permutation test, we must find permutations of the data that satisfy an 
exchangeability condition, i.e. permutations that leave the distribution of the statistic 
of interest unaltered under the null hypothesis. Permutations in space and time are not 
useful for these applications because of spatio-temporal dependence of the noise. 
Instead we rely on the exchangeability of the pre- and post-stimulus data for each 
epoch. Given N original epochs, we can create NM 2≤  permutation samples, each 
consisting of N new epochs. Since the inverse operator is linear, we can equivalently 
apply the inverse before or after averaging the permuted epochs.  Consequently, we 



describe the permutation tests in terms of permutation of the images formed from 
individual epochs, although in practice it is more computationally efficient to average 
the permuted data before applying the inverse operator.  

Our modeling proceeds by succesively summarizing the information contained in 
the current density maps as illustrated in Figure 1. Current density maps for each 
epoch are denoted )(tYijk with t the time index, i the spatial index, j the permutation 
index, and k the epoch index, with 0=j  representing the original non-permuted data.  
We first summarize the data over epochs, finding the average effect Eij(t) of all ep-
ochs at each time point and spatial location. Then we summarize the data over time, 
creating an image Tij of the effect of interest. Finally we summarize over space to 
gauge the overall effect of the experiment, Sj: 

)}({statisticsummary )( tYtE ijkkij =  (2) 

)}({statisticsummary tET ijtij =  (3) 

}{statisticsummary ijij TS =  (4) 
Appropriate summary statistics include mean, mean absolute value, mean squared 

value, and absolute maximum value.  Due to the nonparametric nature of the test, any 
test statistic can be used. However, as noted above, the maximum statistic captures 
the necessary information to control the FWER.  Put another way, using the maxi-
mum statistic, we can return and make inferences in this dimension using the empiri-
cal maximum distribution.  

Fig. 1. Illustration of the summarizing procedure used to construct empirical distributions from 
the permuted data: M permutation samples )(tYijk are produced from the original data )(0 tY ki . 
The data are then summarized successively in epochs, time and space according to equ (2)-(4) 
respectively, to produce jS . The empirical distribution of jS  can be used to draw statistical 
inferences for the original data. 

 



If we were interested in making inferences among epochs, such as looking for ha-
bituation effects, we would have to use a maximum statistic in equ (2). However, in 
our case we will assume no structured experimental variation among epochs and use 
the average, which is also consistent with the standard procedure for analyzing event 
related MEG data. For the time summarizing statistic in equ (3) we use the maximum 
over all post-stimulus data. This allows us to maintain resolution in the time domain 
and later check the temporal activation profile of the sources. Finally, using a maxi-
mum summarizing statistic in equ (4) to compute jS allows us to retain spatial as well 
as temporal resolution.  

After summarizing all data with respect to epochs, time and space, we can use the 
distribution of the jS  statistic to define a global threshold that controls the FWER, 
i.e. if we pick a global threshold with p-value equal to 0.05 with respect to the distri-
bution of jS , we have a 5% probability of one or more false positives throughout the 
entire spatio-temporal data set.  We can then use this value to threshold the image at 
each point in time at each surface element to determine those regions for which we 
can reject the null hypothesis and hence detect significant activation.   

2.2   Achieving Uniform Sensitivity 

Permutation tests are always valid given the assumption of exchangeability under the 
null hypothesis. However, if the null distribution varies across space or time, there 
will be uneven sensitivity in that dimension. For example, with a maximum statistic 
over space, surface elements for which background noise variance is high will con-
tribute more to the maximum distribution than others with low noise; the impact is a 
relatively generous threshold for the high-noise variance locations and a stringent 
threshold for the other locations. We can overcome this problem by including some 
form of normalization in the summary statistic. Thus, before computing the maximum 
statistic Tij, we first normalize the data at each surface element by the sample standard 
deviation at that element computed from the pre-stim data (this is equivalent to the 
noise normalization performed in [2], except we measure our noise in the surface 
element domain, instead of the detector domain).  We assume homogeneous variance 
over time, so do not perform any normalization in this dimension.  

Under the assumption that the data are Gaussian, the noise normalization converts 
the data, under the null hypothesis, to a t-distribution. In this case, the permutation 
test will yield uniform spatial sensitivity. However, if the data are non-Gaussian, then 
simply normalizing by the standard deviation may not be sufficient for this purpose 
(Fig. 2). An alternative is to normalize based on the p-values themselves, i.e. at each 
spatial location we compute the empirical distribution across permutations and then 
replace the statistic ijT  for each permutation sample with its p-value. The p-value at 
surface element i for permutation j, called p

ijT , is defined by: 
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where )(tpi is the p-value function for surface element i, the proportion of permuta-
tions as large or larger than t. For each i, }{ p

ijT has a uniform distribution under the 
null hypothesis, and hence is normalized.  We next compute the summary statistic as 
the distribution of the minimum of p

ijT  for each surface element over the entire corti-
cal surface (minimum p-value plays the same role as the maximum statistic in 
FWER). From this we compute the threshold on the p

ijT  values to achieve the desired 
FWER, and from this compute the corresponding threshold to apply at each individ-
ual spatial location.  
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Fig. 2. Illustration of the impact of heterogeneous voxel null distributions on a 5% FWER 
threshold.  Shown are null distributions of 5 surface elements in three cases: all sharing the 
same normal distribution, each having different variances and each having different skewed 
distributions. The first case (left) shows that with homogenous nulls the false positive rate at 
each surface element is homogeneous.  The second case (middle) demonstrates the variable 
false positive rate when test statistics are not normalized (e.g. raw CDM values, Eij(t)).  The 
last case demonstrates the impact of non-Gaussianity, even when variance is normalized, and 
motivates the use of p-values to normalize Tij.  Note that in all cases FWER is controlled at 5%. 

 
One practical problem with this approach is the discreteness of the p-values p

ijT , 
which in turn causes Sj to be discrete.  If many p

ijT  have the smallest possible value 
(1/M), then small α -levels for Sj may be unattainable.  For example, one Monte 
Carlo experiment with M=1,000 found that 30% of the permutations had a minimum 

p
ijT  of value 0.001 and hence the smallest possible FWER threshold corresponded to 

3.0=α . Therefore, this p-value normalization approach, while makes no assump-
tions on differing shapes of the local distributions, requires many permutations.   



2.3   Two Detection Methods 

We have described above the procedure we use for generating the summary statistics 
from which we compute thresholds to detect significant activation, as well as the 
available normalization procedures. The two methods we will examine further in our 
simulations are summarized in Table 1. Both methods use the mean statistic to sum-
marize epochs, as well as maximal statistics to summarize in time and space.  How-
ever, method 1 does not normalize the time-summarizing ijT , while method 2 trans-
forms ijT  into p-values, essentially normalizing ijT with the local permutation distri-
bution.  They subsequently use the maximum (method 1) or minimum (method 2) to 
summarize space. We can then use the empirical distribution of the space-
summarizing statistic jS  to define a global threshold thS that achieves a 5% FWER. 

Table 1. Summary statistics and normalization schemes for the detection methods 
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    The process for testing the original data against thS  is as follows. For method 1 the 
threshold can be applied directly to the normalized CDM’s, )(0 tEn

i ; any source with 
thn

i StE ≥)(0  at any time can be declared significant. For method 2 the test thS  has 
units of p-values and cannot be directly applied to )(0 tEn

i .  Moreover, the p-values 
were computed separately for each source i, so the same p-value at different sources 
will correspond to different values of )(0 tEn

i . Method 2’s variable thresholds are 
found with the inverse p-value transformation, where source i at time t is significant if 
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3   Simulation Studies 

In this section we present simulation results to evaluate the two methods summarized 
in Table 1. A cortical surface was extracted from an MRI scan using BrainSuite, a 
brain surface extraction tool [9] and coregistered to the MEG sensor arrangement of a 
CTF Systems Inc. Omega 151 system. The original surface contained approximately 
520,000 faces and was down-sampled to produce a 15,000 face  (7481 vertices) sur-
face suitable for reconstruction purposes. Further, the original surface was smoothed 
to assist easy visualization of CDMs. An orientation constraint was applied to the 
reconstruction method using surface normals estimated from the original dense corti-
cal surface. The forward model was calculated using overlapping spheres. The in-
verse matrix H was regularized using the Tikhonov method with 7104 −⋅=λ . 



3.1   Source Simulation Experiment 

We simulated two sources on the left and right hemisphere of the brain, as shown in 
Figure 3. The timecourses represent an early and a delayed response to a stimulus 
(Fig. 4). 
 

 
Fig. 3. Source 1 (left) and source 2 (right) are shown on the original and smoothed version 

of a cortical surface. 
 

 
Fig. 4. Timecourse of simulated sources and points of source identification at α=0.123. Trian-
gles for both methods, circles for only method 1 

 
A total number of 100 epochs were generated, each  consisting of 100 pre-stimulus 

and 100 post-stimulus time points.   Gaussian i.i.d. noise with power 2000 times the 
average signal power was added to the channel measurements. The epochs were re-
sampled producing 1000=M  permutation samples for method 1 and 10000=M  for 
method 2 (the larger number of resamples required for method 2 was due to the dis-
creteness of the p-values as discussed in Section 2.2). We then applied the inverse 
operator H to all data, to produce CDMs )(tYijk . All further processing for the extrac-
tion of the empirical distribution of jS  is summarized in Table 1.  

The global α=0.05 threshold thS  for method 1 was 236.51 =thS .  Due to the dis-
creteness problem, the smallest possible threshold with method 2 was α=0.123; for 
this level, 4

1 100503.5 −⋅=thS  and 0001.02 =thS ; note that the first is a threshold on 
maximum statistics while the second is a p-value threshold.  We applied these thresh-
olds to the original data as described in Sect. 2.3. For α=0.05, method 1 identified 6 
time points as containing significant activations. For α=0.123 method 1 identified 9 



and method 2 identified 8 time instances as containing significant activations (Fig. 4). 
Note that both methods successfully identify regions with either source 1 or source 2 
active. Importantly, neither give any false positives in regions where there is no 
source. 

 

 
 

Fig. 5. Examples of significant activation maps for method 1 and 2 for two time instances. 
Reconstruction appears spread on the smooth cortical surface, but active sources are in 
neighboring sulci in the original cortical surface. The lowest achieved FWER for method 2 is 
α=0.123 

 

 
 

Fig. 6. Thresholded and Unthresholded maps of the current density ( 0iE ), the noise normal-
ized current density ( n

iE 0 ) and (1-p)-value map at 113=t . The. 0iE  and n
iE 0 maps are thresh-

olded subjectively while the (1-p) value map is thresholded at a p=.05 for each source. 
 

Figure 5 shows that method 1 and method 2 produce very similar results. In simu-
lation, this is expected since the noise is Gaussian. We should comment here that 
permutation tests do not address the limited resolution of MEG reconstruction. All 

n
iE 00iE iP−1



inverse methods are ill-posed and CDMs tend to mislocalize source activation. If the 
inverse method demonstrates experimental variation in some regions, permutation 
tests will identify these regions regardless of the presence of an actual source there. 

We can display the unthresholded p-value maps of method 2, transforming the 
CDMs of the original data into p-values.  Even though this does not address the mul-
tiple comparisons problem, it is interesting to compare the achieved localization of 
CDMs, noise-normalized CDMs and p-value maps. Such a result is given in Figure 6.  

3.2   Noise Simulation Experiment 

In order to test both methods for specificity, we applied permutation tests using noise-
only data. We estimated the thresholds for method 1 using standard Gaussian noise; 
we did not evaluate method 2 due to the discreteness problem. Then, we created 100 
measurements, each consisting of 100 epochs. The epochs had 100 pre- and 100 post-
stimulus time points. We tested these data for significant activation, keeping in mind 
that the approximate Monte Carlo standard error for a true 0.05 rejection rate is 2.2; 
hence we expect 5+/-2 false positives.  Method 1 exhibited false positives only 6 out 
of 100 times, consistent with being an exact test. 

 

 
Fig. 7. Examples of false positives for method 1 and 2. Due to high correlation, false positive 
sources are in neighboring areas on the cortical surface 

4   Real Data Experiment 

The effectiveness of the proposed algorithm was evaluated using data from a real 
somatosensory experiment. The data acquisition was done using a CTF Systems Inc. 
Omega 151 system. The somatosensory stimulation was an electrical square-wave 
pulse delivered randomly to the thumb, index, middle and little finger of each hand of 
a healthy right-handed subject. For the purposes of the current experiment, only data 
from the right thumb where tested for reconstruction. 

This experiment demonstrated that method 2 is more sensitive than method 1. 
Also, the discrepancies in the significant activation maps is an indication that the data 
are not Gaussian, as they were in the simulation experiments. As shown in Figure 8, 
in mst 22=  only method 2 detected significant activity. Further, it seems to correct 
the CDM, which shows the main activity in the ipsilateral hemisphere. Significant 



activation in the left somatosensory cortex is expected, as the experiment involved 
stimulation of the right thumb, so method 2 produces reasonable results. For 

mst 28= the same remarks for sensitivity are true. Figure 9 shows the thresholds 
applied by each method. Again, due to discreteness, the lowest achieved FWER by 
method 2 is α=0.086. 

 

 
Fig. 8. Reconstruction and Significant maps from methods 1 and 2 for two time instances. All 
maps are scaled by 1210  

 

 
 

Fig. 9. Global threshold applied by method 1 ( thS1 ) at level α=0.086, as compared to the 
histogram of the thresholds applied to each source by method 2. Also, a map of the thresholds 
on the cortical surface is given on the right. Most of the individual thresholds are below thS1  

5   Conclusion 

We have presented a method to apply permutation tests for processing of MEG data 
and extracting maps of significant brain activation.  It can be combined with any 
inverse imaging method and is flexible in terms of available statistics and normaliza-
tion procedures.  The method is exact (i.e. it achieves the specified FWER) providing 
confidence that activation is present in the cortical regions that do test as significant.  

69.81 =thS



One limitation of the method is that the pre- and post-stimulus size of the data 
should be the same for the permutation scheme to work; we will be considering boot-
strap alternatives to avoid this requirement. Also, this work does not address the lim-
ited resolution of the inverse methods in MEG. If the CDMs demonstrate experimen-
tal variation in some regions, permutation tests, or indeed other tests based on the 
rejection of H0, will identify these regions regardless of the presence of an actual 
source at that location. Thus there is the potential to detect significant brain activation 
but for the sites to be misplaced relative to true activation area. It is important to take 
this effect into account when interpreting maps of cortical activation derived from 
MEG data. 
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