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Abstract. Non-rigid mutual information (MI) based image registration is prone
to converge to local optima due to Parzen or histogram based density -estima
tion used in conjunction with estimation of a high dimensional deformation field.
We describe an approach for non-rigid registration that uses the Iddike of

the target image given the deformed template as a similarity metric, wheeein th
distribution is modeled using a Gaussian mixture model (GMM). Using GMMs
reduces the density estimation step to that of estimating the parameters of the
GMM, thus being more computationally efficient and requiring fewer nemalb
samples for accurate estimation. We compare the performance opproagh
(GMM-Cond) with that of MI with Parzen density estimation (Parzen-MH, o
inter-subject and inter-modality (CT to MR) mouse images. Mouse imags-re
tration is challenging because of the presence of a rigid skeleton withinigidn-

soft tissue, and due to major shape and posture variability in inter-subggist
tration. The results show that GMM-Cond has higher registration acgtihao
Parzen-Ml in terms of sum of squared difference in intensity and diefficents

of overall and skeletal overlap. The GMM-Cond approach is a geapmoach

that can be considered a semi-parametric approximation to Ml bassttaéign,

and can be used an alternative to Ml for high dimensional non-rigidtragien.

1 Introduction

Longitudinal and inter-subject imaging studies are ofterfgrmed to study changes in
anatomy and function in a subject over a period of time, cosgipopulations. Non-
rigid registration is required to normalize anatomicalradpes such as posture variability
in longitudinal studies or anatomical variability acroggplations in inter-subject stud-
ies. Several non-rigid registration algorithms have besretbped, a review of which
can be found in [7].

Mutual information (MI) measures the amount of informat&irared between two
random variables and can be used as a similarity metric igémegistration. It has been
successfully applied to multi-modality rigid registratif21] and some approaches to
non-rigid registration using Ml have also been propose®]jn[L5]. However, Ml is a
non-convex function of the registration parameters andebestration could converge
to an inaccurate local optimum. The problem of converginptal optima is exacer-
bated in the non-rigid registration case because of the&sed dimensionality of the
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deformation field compared to the rigid case. Additiondllif,between the reference
image (target) and the image to be registered (templatejusation of the joint den-
sity of their intensities, which is unknown. Typically a nparametric approach such
as Parzen windowing is used to estimate the entire jointiyeinem the images [14].
This approach requires appropriate choice of the Parzedomirwidth, which is usu-
ally taken as a design parameter and kept fixed over the esgtitple. This has the
drawback that for long-tailed distributions the densitjireate tends to be noisy at the
tails, and increasing the window width to deal with this nilgtad to oversmoothing the
details in the distribution [4]. The former scenario wouddult in a cost function that
has more local optima, while the latter could lead to inaa®uregistration results. The
non-parametric approach also requires a large number gfleatto accurately estimate
the distribution.

Maximizing Ml is closely related to maximizing the joint doability of the target
and template images, or the conditional probability of theget given the template
image [6], [8], [13]. An interpretation of Ml as a special easf maximum likelihood
estimation is given in [13]. In [6] a maximum posteriori (MAP) framework for non-
rigid registration is used wherein a Parzen-like condalatensity estimate is computed
and used as the likelihood term. In [23] multinomial jointensity distributions were
used in a MAP framework for registration and a relationshighvoint entropy was
derived for the uniformative prior case. In [8] a registetraihing set was used to model
the joint intensity distribution using Parzen density mstiion and Gaussian mixture
models (GMMs), and the estimated distribution was used tfopa rigid registration
of a test set. Approximating the joint density using mu#ti@aussians was described
in [18] as an approach to increasing the robustness of againbpy based regularizer
for limited angle transmission tomography image recomsia.

In this paper we describe an approach for non-rigid redistrahat uses the log-
likelihood of the target image given the deformed template aimilarity metric for
non-rigid registration, wherein the distribution is maettLising a GMM. Gaussian dis-
tributions are commonly used in image segmentation to sgmrtethe distribution of
intensities corresponding to a particular tissue type in®ET images [2], [12],[16].
In [2], [12] a unified MAP framework was described for brairgseentation, artifact
correction, and non-linear registration with spatial pricaps obtained from a proba-
bilistic atlas. We focus on registration and use GMMs to nhtitkejoint intensity distri-
bution of the two MR/CT images to be registered, since thisiridutions are typically
characterized by localized blobs. Using GMMs reduces tmsitieestimation step to
that of estimating the parameters of the GMM, which condishe mean, covariance,
and weight of each Gaussian. For images that have a fewdtiséigions of intensity
such as mouse CT images, the number of parameters to be testimamall and can
be robustly estimated from fewer samples compared to thepacemetric approach.
Our approach of using the log-likelihood of the target gitlemtemplate in conjunction
with a GMM can be viewed as a semi-parametric alternative tdodded registration
when dealing with the high dimensional non-rigid registnatcase.

We compare the performance of our conditional likelihoodrioavith GMM pa-
rameterization, with that of MI with non-parametric deggstimation. We will hence-
forth refer to these methods as the GMM-Cond and the ParZenethods respectively.
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We evaluate these methods using mouse CT and MR imagesti@égisof mice and
other small animals is challenging because of the presehdgio skeleton within
non-rigid soft tissue. Additionally, inter-subject whddedy mouse images may have
considerable shape and postural differences. Registrapproaches specific to small
animal registration were described in [3], [10], [11], [19], and [22]. Specifically,
in [17] and [22] MI was used as a similarity metric for intrasdality mouse CT reg-
istration. We evaluate the GMM-Cond approach on inter-nitydénter-subject mouse
registration.

2 Methods and Results

Let the target and template images heand I5, and their intensity at positior be
i1(x) andiy (x) respectively. Let the transformation that maps the terepitathe target
beT(x) = x — u(x), whereu is the displacement field. The deformed template is then
represented bya', whose intensities are given by(x —u(x)). We define the similarity
metric D, (11, I>) between the target and deformed template as the log liledibbthe
target given the deformed template. Assuming that the vioxehsities in/; and/; are
independent identically distributed random variableshvj@tint densityp(i1, i2), the
similarity metric is given by,

o w0y N 1o PUL(), i2(x — u(x)))
Du(, I2) = log p(1|13)) glg itk —a) &

We assume a Gaussian mixture model for the joint depsity i»). Let the number
of components of the Gaussian mixture modelAgethe mixing proportions bery,
and g (i1, i2|mk, X% ) be a Gaussian with mean; and covariance’,, wherek =
1,2,---, K. Let the unknown deterministic GMM parameters for each comentk
be represented #3 = (7, my, X%), and let® = [0, 0, - - - , 0] be the vector of all
unknown parameters. Then, the joint density is given by

K

plir,i2|©) =Y mrg(in, inlmu, ), )
k=1

wherer;, > 0 and> r_, m; = 1.

We use the Laplacian of the displacement field as a reguigrigrm to penalize
deformations that are not smooth. We parameterize theagispient field using the dis-
crete cosine transform (DCT) basis. The DCT bases are eigetidns of the discrete
Laplacian, so using the DCT representation of the displacgrfield in conjunction
with Laplacian regularization simplifies the regularipatiterm to a diagonal matrix
[1]. Let B;(x), i = 1,2,--- , Ny, represent the DCT coefficients that parameterize the
deformation field and let;, i = 1,2, --- , N, be the corresponding eigen values of the
discrete Laplacian matrik. Then the norm|Lu(x)||* = Zf\i’l v:2B;. The objective
function is then given by,

Ny
r{lla@xz log p(ir (%)|ia(x — u(x)),0) — > 7?62, 3)
5 x =1
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wherey is a hyperparameter that controls the weight on the regimgrterm.

To simplify the problem, we replace the combined optimmatvith respect to the
deformation field and GMM parameters with an iterative twepsprocedure. Here,
the GMM parameters are first estimated from the target anatiohefd template images
through maximum likelihood estimation, and the deformafiield is then computed
given the estimated GMM parameters. The two step optintiras given by

O(a™) = arg mgxz log p(i1(x), iz (x — 0™ (x))|O) (4)

Ny
amtt = argm&leogp(h(X)\b(X —u(x)),0(™)) - ,“ZWQBZQ’ ®)
x =1

whereu™ represents the estimated deformation field at overall opdition iteration

m. The estimation of GMM parameters is described in the neotie® The estimation
of the deformation field in Equation 5 given the GMM parameierperformed using
conjugate gradient (CG) optimization with Armijo line sefar

2.1 Estimation of parametersof Gaussian mixture model

The maximum likelihood estimate of the GMM parametérsn Equation 4 can be
obtained by the expectation maximization (EM) algorithrh [St the data sample at
voxel j corresponding to the positiaty be ST = [i1(x;),i2(x; — u(x;))]* , where
j=1,2,--- N,andN is the number of voxels in each image. The component of the
GMM from which S; arises is taken as the hidden variable in the EM algorithne. Th
EM update equations are given in Equations 6 - 9.

L (S mi(w), S (w) ©
SR i (w)g(SY,mi (w), i (w))
N
T (u) = %Zﬁk (7)
j=1
. ENzl T?ksl-l
2+1( ): J J : J (8)
e Z;V:1 Tik
5 ) = 2=t (5 ngm)z(s; —mi” )" o
j=1Tjk

where i (u),mi (u), and X} (u) are the GMM parameter estimates at EM iteration
i and deformation fieldr. The objective function to be optimized in Equation 4 is a
non-convex function o®, so a good initial estimate is needed to converge to a global
optimum. We use the k-nearest neighbors algorithm [14] émiifly cluster centers in
the joint histogram of the target and template images, aachtimber of samples that
fall into a particular cluster. The cluster centers and thapprtion of samples in a
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cluster relative to the total number of samples were usetiegttializationsm} and
p}, respectively, and’) was assumed to be identity for &l The number of clusters was
chosen to visually match the initial histogram of the two g@s. Assuming a reasonable
initial global alignment, the number of clusters was theptl@nstant throughout the
registration process.

Figure 1 shows the GMM estimate of the joint pdf of intensitdd the target and
template images shown in Figure 2 (a) and (b). The joint gistm of the intensities of
these two images is shown in Figure 1 (a), and the pdf estinating GMM is shown
in Figure 1 (b) with the component means overlaid. The nunob@omponents was
chosen to bé( = 7 to match the joint histogram.

@)

Fig. 1. Estimation of joint pdf of images in Fig. 2 (a) and (b) : (a) Joint histogrdmmages, (b)
GMM estimate (the component means shown with X’ marks).

2.2 Relation to Mutual Information

Let the random variables corresponding to the intensitfe @nd I3 be ¢; and ¢,
respectively. Mutual information betweenand(; is defined as

= 21,22)lo p(21,22) 21dze = E(lo P21, 22)
D(¢1,¢2) = /P( 1,22)1 gp(21)(22)d 1dze = E(1 gp(zl)p(ZQ))‘ (10)

MI between two random variables can be interpreted as thectiedh in uncertainty of
one random variable given the other. Using Ml as a similaristric for registration
aims to find a deformation that makes the joint density of #rgdt and deformed
template images maximally clustered, thus implying thatuhcertainty of one image
given the other is minimized [21].

An alternative formulation can be obtained by approxingtine expectation in
Equation 10 by a sample mean where the intensity at each ket target and de-
formed template images constitutes the random sample.eHeeget
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= %Zlog p Z;(();&iz_xu—xugzi))) _ %Zlogp(il(X)) (11)

Since the target is fixed and independenugk), dropping the terms containing the
marginal density(i; ), we get the approximate Ml based similarity metric as

DG 6e) = Zl b bl 2D 12)

Thus, computing the deformation field that maximizes muinfdrmation is ap-
proximately equivalent to maximizing the conditional dignef the target given the
template image as defined in Equation 1. In [13] a similarti@ighip between max-
imum likelihood and conditional entropy was derived. Thé ptf;, i) in Equation
12 is unknown, and needs to be estimated. The pdf can be éstirnaing a non-
parametric approach such as Parzen windowing or a GMM bagedach can be taken
to parametrize the pdf and estimate those parameters.

The Parzen window estimate of a pdf at random variable valyes is defined by
[14]

1 & z i zo — i5(5)

1— 1 2 — 1y
ple1,22) NZ ] (13)
whereg(22) is a Gaussian window of width, which is usually taken as a design pa-
rameter. Note that this can be considered as a Gaussianrenixiodel with as many
Gaussians as the number of samplEs£ N), with mean given by the sampie; =
[i1(k),i%(k)]T, fixed standard deviatio®), = [UO ;)2
bilities 73, = % However, we expect the GMM-Cond approach to have two adgast
over the Parzen-MI approach

} , and equal weighting proba-

1. The density estimation requires estimation6d&f GMM parameters that can be
robustly estimated from the given images for sniéllIn contrast, the Parzen-Ml
approach computes the entikg;,, x Ny;,, pdf from the samples, wherg,;,, is the
number of bins at which the pdf is computed

2. Estimation of the displacement field may be more robusafiping in local minima
because of the much lower dimensionality with which thetjdiensity is parame-
terized.

We expect to gain computationally as well as in robustnes® fthis reduction in
dimensionality of the problem. However, if the joint degsitbes not fit a GMM, the
number of mixture components might be large, approachireyzeld window estimate.
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2.3 Results

We perform validation studies of our method using multi-mligt (CT and MR) inter-
subject mouse images. Mouse CT images typically consistaifignsoft tissue versus
bone contrast, and can be assumed to follow a GMM. Though enldiisimages have
a larger number of intensity levels than the CT, the numberonfiponents required
in the GMM is not prohibitively large. We consider two micettwere imaged using
both MR and CT (referred to as MR1 and CT1, MR2 and CT2) and ttheromice
that were imaged using only CT (referred to as CT3 and CT4is Glves6 possi-
ble inter-modality, inter-subject registrations (CT1-RIFCT3-MR2, CT4-MR2, CT2-
MR1,CT3-MR1, CT4-MR1). The MR images were obtained on a Béas/T system
at a resolution 0f).23 x 0.17 x 0.50 mm. The CT images corresponding to the MR
were acquired on a Siemens Inveon system and the others Witi@ed from a mi-
croCT system, at a resolution 62 x 0.2 x 0.2 mm. We first perform &2 parameter
affine registration of the CT images to the MR image using thHe goftware [20]. We
downsampled the MR and affinely registered CT images tolsige< 128 x 64 to re-
duce computation. The downsampled MR and affinely regidt€reimages were then
used as the target and template images respectively forigidnregistration. We com-
pare our semi-parametric GMM-Cond approach to hon-patgriedrzen-MI approach
in the context of high-dimensional non-rigid registratiosther than comparing to ex-
isting registration algorithms that address mouse registr with application specific
constraints such as skeletal rigidity. The goal is to ewal@MVM-Cond as a general
framework for non-rigid inter-modality registration in sthanimal studies.

Fig. 2. Multi-modality inter-subject registration: Coronal view of (a) target MR gmavith out-
line of body and lungs, (b) template CT image affinely registered to MRRgcgen-MI registered
image, and (d) GMM-Cond registered image. Images (b)-(d) amerskath target body and lung
outlines.

For both methods, we usdd x 15 x 15 DCT bases to represent the displacement
field. We choose the weight on the regularizing term such that the determinant of
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the Jacobian of the displacement field is positive. For thedPaMI registration we
followed a hierarchical approach, first aligning the imatie were smoothed with a
Gaussian of widtf3 voxels, and used the displacement field thus obtained taliné
the registration of the original images. We observed thagcatly aligning the original
images causes the algorithm to reach an inaccurate locahomimin a few iterations. A
Parzen window width of- = 5 was used to compute the distribution at every iteration.
For the GMM-Cond approach, we usgdverall iterations between the density estima-
tion and deformation field estimation. Each displacemeid fistimation involved0
iterations of the CG algorithm. Coronal view of the registtimages for one dataset
along with the target and template images are shown in Figui&e usedk = 7
components in the GMM for this dataset. The outline of theybard lungs of the tar-
get image was overlaid in green on all the images. We apptiediisplacement field
resulting from both registration algorithms to the highesalution images for display
purposes. We quantify the performance of the registratioouigh three measures:

1. Overall overlap: The target and template images can beesggd into mouse and
background regions. The overall overlap of the target aridroeed template can
then be measured by computing the dice coefficients of thendabeled as mouse
in the two images.

2. Overlap of skeleton: The skeleton can be segmented inatigettand template
images by thresholding. The dice coefficients of the skal@idhe target and de-
formed template images give a measure of overlap in thetskele

3. Mean squared difference (MSD) between intensities: @hget MR image has a
corresponding CT image acquired with it. The normalized meguared differ-
ence between intensities of the CT corresponding to thetaagd the deformed
template images gives a measure of registration accuracy.

The average and standard deviation values of the three nesdeu thet inter-subject
CT to MR registrations are given in Table 1.

It can be seen from the images and the outline overlay tha&MBI-Cond method
shows better overall shape and lung alignment comparedetdMtiParzen and AIR
methods. On average, the GMM-Cond method has higher di¢gaieets for the skele-
ton as well as overall shape, and lower normalized MSD betvimtensities than the
MI-Parzen and AIR registration methods, indicating beti@gnment. It is promising
that the GMM-Cond shows improved performance for the istdsject, multi-modality
registration considered, since these images have coabidatifference in intensities,
overall shape, and skeletal structure.

3 Discussion

We used the conditional density of the target given the deéartemplate as a simi-
larity metric for non-rigid registration, wherein the catohal density is modeled as
a Gaussian mixture model. A DCT representation of the dediion field was used in
conjunction with a Laplacian regularizing term to reducenpatation. We compared
the performance of our approach with that of Parzen-MI baggatoach using multi-
modality MR/CT mouse images.
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Table 1. Quantitative measures of overlap

Mean+ SD of dice coefficients for overall overlap
Affine | Parzen-MI GMM-Cond
0.84 + 0.030.87 + 0.04 091+ 0.03
Mean+ SD of dice coefficients for overlap of skeleton
024 + 0.07[0.31 + 0.07[ 0.34+0.04
Mean+ SD of squared difference between intensities
0.56 + 0.07[0.50 + 0.07[ 044 +0.11

The GMM-Cond approach showed higher registration accutzay the Parzen-Ml
approach in terms of dice coefficients and mean squareddiife between intensities
of the target and registered images. The GMM parametrizaiaot only computa-
tionally more efficient than the Parzen method, but also awgs performance by re-
ducing the overall dimensionality of the estimation prabjend through more robust
and accurate density estimation. Additionally, the onlgige parameter that needs to
be chosen is the number of clusters in the GMM, which can bairodd from the initial
joint histogram.

The performance of the GMM-Cond method is promising as itquers better than
the Parzen Ml approach for multi-modality whole body imagéh postural variations.
This indicates that this is a robust approach that can patsnbe applied to multi-
modality non-rigid registration problems. It can be useduaslternative to Ml based
registration when dealing with high dimensional deformiatiields. The GMM-Cond
approach can be viewed as a general framework that can barusedjunction with
other models for the deformation field, and with additionahstraints specific to the
application (e.g., rigidity constraints for the skeletonnnouse images). It should be
noted however, that if the joint density of the images doddaitow a GMM, a large
number of clusters would be required to fit the data, thusemsing the number of
parameters to be estimated and might not perform betterRaeazen-MI in that case.
We expect this approach to be particularly useful in apfibos where the images have
a few distinct regions of intensity such as mouse CT images.
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