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Resolution and Noise Properties of MAP
Reconstruction for Fully 3-D PET
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Abstract—We derive approximate analytical expressions for response. The situation is further complicated when the true
the local impulse response and covariance of images reconstructedspatia”y variant sinogram response is considered [1]. In 3-D
from fully three-dimensional (3-D) positron emission tomography - peT gystems, the large axial variation in sensitivity produces
(PET) data using maximuma posteriori(MAP) estimation. These . d ,t' I iant behavior. The utility of the MAP
expressions explicitly account for the spatially variant detector re- Increased spaually varniant behavior. e u_' ity or the
sponse and sensitivity of a 3-D tomograph. The resulting spatially approach for 3-D PET would be enhanced if we were able to
variant impulse response and covariance are computed using 3-D characterize this spatially variant behavior through computation
Fourier transforms. A truncated Gaussian distribution is used of the resolution and covariance of the resulting images. These
to account for the effect on the variance of the nonnegativity ompytations should include the effects of both axial variation

constraint used in MAP reconstruction. Using Monte Carlo . itivit d tiall iant si
simulations and phantom data from the microPET small animal In sensitvity and spatially variant sinogram response.

scanner, we show that the approximations provide reasonably Her_e, we develop approximate analytical eXpreSSion_S for the
accurate estimates of contrast recovery and covariance of MAP local impulse response and covariance of 3-D MAP images.

reconstruction for priors with quadratic energy functions. We  These results can be used not only to characterize the images,
also describe how these analytical results can be used to achleveout also to modify the smoothing effect of the prior to optimize
nelar-unlform contrast recovery throughout the reconstructed performance for specific tasks. For instance, in combination
volume. : '
) ) _ with computer observer models, these results have been used
Index Terms—Covariance, fully 3-D PET, image reconstruction, - 1 compute ROC curves for lesion detectability and, in turn, to
MAP estimation, positron emission tomography, resolution anal- optimize MAP reconstruction for lesion detection [4]. Here, we
ysis, uniform resolution. p . . : ' .
show an example of using our local impulse response analysis
to develop a method to spatially adapt the smoothing prior, as
. INTRODUCTION proposed for the 2-D case in [3], to achieve near-uniform con-

AXIMUM a posteriori (MAP) image reconstruction trastrecovery throughout the scanner field of view.

methods can combine accurate physical models forBecause most iterative algorithms for PET, including our
coincidence detection in three-dimensional (3-D) positrdWAP method in [1], are nonlinear, the statistical properties of
emission tomography (PET) tomographs and statistical mod#ig reconstructions cannot be computed directly from those of
for the photon-limited nature of the coincidence data with regfl€ data, and approximations are typically required to make
larizing smoothing priors on the image. As we have previousi¢ problem tractable. Barret al. [5] and Wanget al. [6]
shown [1], [2], this translates into improved resolution anfave derived approximate expressions for the mean and covari-
noise performance when compared with filtered-backprojecti@fice of expectation maximization (EM) and generalized-EM
(FBP) methods that are based on a simpler line-integral modégorithms as a function of iteration. This approach is very
and do not explicitly model the noise distribution. useful for algorithms that are terminated at early iterations, but

Fessler and Rogers [3] have shown that MAP (or equiVQOmputati_on costis _high a_nd the accuracy of the approximation

lently, penalized maximum likelihood) reconstruction producé&@n deteriorate at higher iterations.
images with object-dependent resolution and variance forAn alternative approach for algorithms that are iterated to ef-

two-dimensional (2-D) PET systems with a spatially invariariective convergence is to analyze the properties of the images
that represent a fixed point of the algorithm [7], [8]. Building
on this work, we have derived simplified theoretical expressions

Lfg@r the local impulse response and the voxel-wise variance of
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Here, we extend the results in [9] and [10] to fully 3-D PET. In The detection probability matri¥’ can be accurately mod-
this work, we include the effects of spatially variant sinogram reled using the factored detection probability matrix that we de-
sponse [1], variations in sensitivity due to “missing” projectionsieloped in [12] and [1]
and the nonnegativity constraint. Resolution is studied using a
local “cqntrast recovery coefficient” (CRC) computed at each P = Puetsons et i PatinP geom (4)
voxel using the local impulse response [3]. Analytic expressions
for contrast recovery and covariance reveal the source of spatial ) ) o L
variations in these quantities and the effect of the smoothi¥'€r€Pgeom 1S the geometric projection matrix with element
parameter. Using these simplified expressions, we can direcify/) €qual to the probability that a photon-pair produced in
control the resolution versus noise tradeoff. For example, W@X€lJ reaches the front faces of the detector pair the ab-
can spatially adapt the smoothing parameter to achieve a spc€ of attenuation and assuming perfect photon-pair colin-

cific variance or contrast recovery value or, as proposed in | f';lrity. It incorporates a depth-dependent geometric sensitivity

maximize contrast to noise ratio to optimize reconstructiofid@t i calculated using the solid angle spanned by the voxel
for lesion detection. We note that when the smoothing term3& the faces of the detector paifl]. Puct bi is the sinogram
made data-adaptive, the algorithm ceases to be a true BayeSising matrix used to model photon-pair noncolinearity, inter-
method. However, the spatially variant smoothing weights af&yStal scatter and penetration [12],, is a diagonal matrix
computed before the image is reconstructed:; the image can tRAt&INING the attenuation factors, afet.sens is again a di-

be reconstructed using these weights with the same program fHnal matrix that contains the normalization factors that com-
we use to compute true MAP estimates. Although this papefnsate for variations in detector pair sensitivity.

deals with PET image reconstruction, the techniques presentey!0St image priors used in PET image reconstruction have a
below represent a general approach for analyzing images cdaiePs distribution of the form

puted from space-variant systems using MAP estimators.

1
p(z) = - exp(=pU(z)) (5)
Il. BACKGROUND
A. MAP Reconstruction whereU (z) is the energy functionj is the smoothing parameter

PET data are well modeled as a collection of independdhgt controls the resolution of the reconstructed image /aisd
Poisson random variables with the log-likelihood function ~ the normalization constant or partition function. Combining the

L likelihood function and the image prior, the MAP reconstruction
L(ylz) = Z yi log y; — y; — log w! (1) is found as

wherez € RY*! is the unknown imagey € RM*! is the
measured sinogram, agd= R *! is the mean of the sinogram.
The mean sinogrampis related to the image through an affine
transform

&(y) = arg max L(ylz) — fU(z). (6)

B. Approximations of Local Impulse Response and Covariance

y=Prtstr 2) The MAP estimator (6) is nonlinear in the data and its prop-

whereP € RM*N s the detection probability matrix, ande ~ erties are object dependent. Therefore, we study the resolution
RM*x1 andr € RM*! account for the presence of scatter an@nd noise properties locally for each data set using the local im-
randoms in the data, respectively. pulse response and the covariance matrix.

When operated in standard mode, PET scanners precorrecthelocal impulse responder the jth voxel is defined as [3]
for randoms by computing the difference between coincidence
events collected using a “prompt” coincidence timing window V(&) = lim Ex(y(x + dej)) — Ex(y(x))
and those in a delayed timing window of equal duration. This 60 6
correction method is based on the assumption that the events
in the delayed timing window have mean equal to that of thehere& denotes the expectation operatéfy) is the recon-
randoms in the prompt timing window. The precorrected dagaruction from datay, y(z) is the projection data from tracer
y has meanPz + s and variancePz + s + 2r; so a Poisson distributionz, ande; is thejth unit vector.
model does not reflect the true variance. The true distributionUsing a first-order Taylor series approximation of (6) at the
has a numerically intractable form, however, the shifted-Poisspainty = % and the chain rule, we can derive the local impulse

(1)

model with log likelihood response for the MAP reconstruction at voxeb be [3]
M
L(yle) = > (vi + 2rs) log (Px); + si + 2r;) V(%) ~ [F + SR 'Fe; 8)
=1
— ((P:l:)z + s; + 27’2‘) (©)

and the covariance matrix [3]
serves as a good approximation [11].

Yty + 2r; < 0, we sety; = —2r,. Cov(z) ~ [F + SR "' F[F + $R]™! 9)
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where & P'D[1/g,]P is the Fisher information ma- approximated by appropriate shifts of the elements ofjthe

trix when using the Poisson likelihood model (1) r &' column so that the resulting matri(j) has a block Toeplitz
P'D[1/((Px); + s; + 2r;))]P for the shifted-Poisson mode|Structure. This makes the computations in (8) and (9) tractable
(3). D[z;] represents a diagonal matrix with diagonal elemeng§cause a block Toeplitz matrix can be approximately diagonal-
z;,i=1,...,N. Ris the second derivative of the prior energy?ed using a 3-D fast Fourier transform (FFT). o
function U(2(7)). In the following, results are developed for _The Fisher information matrix must be positive semi-defi-
the Poisson model only, extensions to the shifted-PoissBi€: O equivalently, its eigenvalues must be real and nonneg-

case are direct. Because (8) and (9) use derivatives of @{iv€- Although the trud” is guaranteed to have this property,
log-likelihood and prior energy function up to order two onlyth® Toeplitz approximation may not. Consequently, we further

they will be most accurate in cases in which the objectiy80dify the matrix by introducing the symmetry condition as
function is locally quadratic. follows. We first comp_ute thgth column of F and arrange
Equations (8) and (9) both involve computation of the inverdBese values as a 3-D image. Foriax L x M voxel volume,
of anN x N matrix, whereN is the number of image voxels. W& then shift this image so that théh voxel is moved to the
Even though one can avoid the computation of the matrix ifeNter voxel £/2 + 1,L/2 + 1,M/2 + 1). To ensure that
verse by solving a set of linear equations for a voxel of interéte 3-D FFT coefficients are real, we introduce the symmetry:
[8], the computational cost can still be prohibitive for large numf (4: 7, ) = max{ f(é, j, k), f(L—i+1, L—j+1, M —k+1)}.
bers of voxels. Another problem is that the nonnegativity cofrinally, we take the 3-D FFT of the resulting image and truncate
straint in (6) introduces nonlinearities that are not accounted f8fy negative coefficients to zero. _
in the truncated Taylor series used to derive the approximations’0" @ homogeneous prior with quadratic enelyalready
This results in large errors in the variance estimate in low-a3@s the block Toeplitz structure. However, if a spatially variant
tivity regions where the constraint is active. In the followingMeothing prior is used (see Section IlI-D), we can use a lo-
section, we develop approximations to (8) and (9) that are mdérlly |_nvar|ant approximatiol(j) in a similar manner to that
readily computed. We also describe a method for modifying tif€Scribed above fak(). _
covariances computed using (9) to account for the effect of the! N€ localimpulse response and covariance of vgreh then
nonnegativity constraint. be approximated By

V(&) =[F(j) + BR()] T F (e, (10)
I1l. RESOLUTION AND COVARIANCE FOR3-D PET Cov, (£) ~ [F(j) + /JR(j)]—lF(j)[F(j) n [JR(j)]—lej. (11)

A. Simplified Expressions for Local Impulse Response and
Covariance Because a block Toeplitz symmetric matrix is approximately

In [9], we analyzed the resolution and covariance of MAP réJock circulant, approximate inverses B{;) andR(j) can be
constructions for a simplified 2-D PET system model using a§omputed using a 3-D Fourier transform.
proximations similar to those in [7], [3], and [13], including the Equations (10) and (11) can be used to evaluate the local
assumption that the geometric resporB§50111Pge011lv is shift impulse rgsponse.and covariance at e_ach_ voxel. The dominant
invariant. Although this is a reasonable approximation in 2-D, g©Mmputation cost is computing(;), which involves one for-
is not applicable in 3-D because of the “missing data” probIeHﬁard and one backprojection operation. If only a small number
resulting from the finite number of detector rings. Here, we ef voxels are of interest, this approach is practical because the
tend the results in [9] to 3-D by replacing the global invarianceg@mputational cost is similar to one reconstruction. However,
assumption with a local one. The idea of using a local inva@valuating these expressions for the whole image using (10) and
ance assumption in the context of shift-variant PET modelindl) is prohibitive because the entire computation needs to be
was first proposed by Fessler and Booth [14], who applied tHigPeated for each voxel.
idea to developing fast preconditioners for conjugate gradientT0 study the local impulse response and variance throughout
algorithms for optimization of cost functions similar to (6). ~ the field of view, we need to reduce the cost of computifg

We can view the elements of thien column of the Fisher in- Using the factored_system matrix (4), the Fisher information
formation matrixF" as representing an “image” associated witfatrix ¥ can be written as
thejth voxel. We will assume that these Fisher information “im-

ages” vary smoothly as we move between the columns’ of r =PfgeomPathﬁet.bmrPdet.sens

associated with neighboring voxels. We also assume that these 1

images have local support; i.e., for thigh column, the signif- D {ﬂ_} Pyt sens Paet blur PatinPgeom-  (12)
71

icantly nonzero values are concentrated in the vicinity of the
jth voxel. The rationale for these assumptions lies in the form:-l-he approximations in [3, Eq. (31)], [9, Eq. (8)], and [14

defl _ . . .
F = P'D[1/g,]P (see, for example, the Fisher informatiorq. (13)] cannot be used here because the computation is com-

matrix for a small scale problem shown in 3, Fig. 2]). We capjicated by the spatially variant geometric and sinogram re-

then infer that the resolution and variance at voxe largely _ _ o

determined by thgth column ofF. Therefore, when estimating “When constructing a full covariance matrix usifigv; (&) as thejth

h uti d . t that voxel we assume stati column, the resulting matrix may not be symmetric because of the spatially

the resolution and variance a VOXel, w u 1Q8ant system response. We can always obtain a symmetric covariance matrix

arity throughout the scanner with the Fisher information matriapproximation by taking the average of the resulting matrix and its transpose.
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sponses such that exact computation of the diagonal elementé/e can now write the local impulse response (10) and covari-
of F' is impractical. To reduce the computation cost, we retaance (11) in Fourier transform form as

the shift-variant components of the model but approxiniate ,

so that the time-consuming components of the computation are (&) *Q'Q[F(j) + SR(j)] ' Q' QF(j)Q Qe;

data independent and can be precomputed and stored. In [1], ~Q'[QF()Q + BQRH)Q|QF(H)Q'Qe;
we model the sinogram blurring . 1,1, USiNG a shift-variant M)

local blurring kernel applied to the sinogram. This accounts for ~Q'D l — J_2 y ] Qe; (15)
photon-pair noncolinearity, intercrystal scatter and crystal pen- AilJ) + PR pa(d)

etration. These effects can be decomposed into the following Ly Ai(5)

major components: 1) a projection shift due to crystal penetra-COVJ( I) ~n; QD NG+ Br 202 Qe; (16)
tion, 2) amplitude decrease of the local response due to detector i i il

blurring, and 3) a change in the shape of the local impulse fghere{\;(j), i = 1,...,N} is the 3-D Fourier transform of
sponse due to detector blurring. We therefore replace the @fe positive-semidefinite approximation of the central column

proximations used in [3] and [9] with the following approximaof the block-Toeplitz matrix formed from thgh column of
tion for (12), which explicitly incorporates the sinogram blur-

ring factors: D[] PeonPlict ttur Patet bt Pgeom D]

geom

and{u;(j),i = 1,...,N} is the 3-D Fourier transform of the

1
F 2 D[1;1D[] ™ PyeomPet. biur Pet biur equivalent approxmation of thgth column of R. Q and @

“ Poeom D[] 'D Dir;], (13) represent the Kronecker form of the 3-D Fourier transform and
its inverse, respectively.
where For space-invariant _prio.rs. with quadratic energy functions,
(15) and (16) can be simplified to
ot V]?Z 92217112 [Pilet.blury]i ) , )\(J)
 def i U(z)~QD | — 1~ ; 17
j
' Cov, (&) ~n72Q/D A )_2 2] Qc; (18)
with g;; the (4,7)th element of matrixPom, n; the (4,i)th (ANi(d) + Br; ")

element of the matrix produ@yc: cens Pattn, anduf the(j, 7)th

where theyu;’s are the 3-D Fourier transform of the central
element of

column of R.
P, Pt b Pdet blur Pgeom- B. CRC and Variance

geom
We can reduce (17) and (18) to scalar measures by consid-
Them is an approximation of théj, j)th diagonal element of ering only the variance and the local CRC, which we define as
F, where the crystal penetration peak shift is accounted for byc; = 7}(z). The CRC can be used as an alternative to the
P 1,1..Y. The decrease in the amplitude of the impulse réull- W|dth at half maximum (FWHM) as a measure of resolution
sponse due to the detector blurring effect is approximated by that has the advantage that it can be directly computed from (17)
ratio ;/J?/ > gfj. The normalized spatially shape-variant im{we will examine the relationship between CRC and FWHM in

pulse response iR is approximated using Section IV-D). The CRC and variance for tjth voxel are given
by
D[Vj]71P/ge0mP/det.blurPdet~b1UTPg9011lD[Vj]71' 1 N—-1 )\7(j)
: - N N = N(j) + Br s
There is no optimality to the approximations (13), but we note =0
that (13) is exact whe,;¢n, Pdct.sens, and D[1/7;] are all 51 it Ai(9)

var; /R K

TN = (NG) + B )t

=

equal to the identity matrix. (20)

Using this approximation,Py.., Puc; iiur Pdet biur Pgeom
becomes the dominant computation load in computiig Expressions (19) and (20) provide direct insight into the spa-
Because it is independent of the data, it can be precomputgally variant properties of MAP reconstructions: because the
Furthermore, by taking advantage of the rotational symmetoyly function of the data is the quantiky;, we can, in the ab-
of the PET system, we need only compute the columns ttssince of any data, determine resolution and noise properties at
correspond to the voxels in a single plane containing tl@ch voxel as a function af;. The spatial variations in the;’s
symmetry axis of the scanner. We refer to voxels in this pla@ssociated with a given source distribution imply spatial varia-

s “base voxels.” All of the other columns can be approxion inresolution and variance. Tl#ievalue necessary to achieve
imated using linear or nearest-neighbor interpolation. Thésdesired CRC or variance can then be chosen enbas been
reduces the computation time and storage space requireddomputed as we describe in Section IlI-D. The results (19) and
Pfgeom ﬁet.blurPdet.uurPgeom to a practical level. (20) require that the mean of the data is available to compute
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Fig. 1. CRC and SD (standard deviation) curves for six different locations in the outermost and central axial planes: (a) CRQwestsl (b) SD versus
(x = 1), (c) CRC versus (3 = 1), and (d) SD versus (3 = 1).

However, they can also be used in a “plug-in” mode in which exaodify the preceding results to account for the effect of this
perimental data is used to estimatg This issue is addressedconstraint.
in Section V. We first consider the effect of the constraint on the voxelwise
We can evaluate (19) and (20) to show the dependence of theiance. We assume that if the nonnegativity constraint were
CRC and variance on the hyperparame¢teand ;. The PET not imposed, the voxel intensities of the MAP reconstructions,
system simulated here was the microPET system [15] with eigiinditioned on the true image, would be Gaussian random
image planes 064 x 64 voxels. We used a second-order (2&ariables. Empirical evidence supporting this assumption
neighbors) 3-D prior with a quadratic energy function. Becauge provided later. We further assume that the effect of the
of the circular symmetry of the PET system, we need only conennegativity constraint is to modify this Gaussian distribution
sider radial and axial variations in CRC and variance. We sgy replacing all negative voxel values with zero; i.e., the
lected three points with different radial positions in both the outonstraint truncates the original Gaussian distribution in the
ermost and the central transaxial planes. The results are shawnpative range, but does not change the distribution of the voxel
in Fig. 1. Each plotis similar to that shown for a 2-D PET systewalues in the positive range. Under this assumption, the actual
in [9] with two inflection points. Note that in Fig. 1(d), there is adistribution of the voxel values will be a “truncated Gaussian”
range ofx values in which the standard deviation varies slowlwith probability density function
(although these curves are less flat than are their 2-D equiva-
lents in [9]), indicating a range of values over which the image 1

—((z—p)?) /257 H
standard deviation will vary very little. This observation is con- om0l e~ (@mmf2en, ifz >0
firmed in our simulation studies below.
p(z) = §(x) [1 VT erf< r )} fr=o
C. Compensation for Nonnegativity Constraints 2 4 V202 /)]’
The development of (16) in Section 1I-B is based on a first- 0, ife <0

order Taylor series approximation and cannot account for the

nonnegativity constraint typically used in MAP reconstructiowhere » and % are the mean and variance of the original
This results in large errors in covariance estimates for low-aGaussian distribution, respectively, @rf is the error function,
tivity regions [7], [9]. In this section, we develop a method tandé(x) is the Dirac delta function.
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Because of the truncation at= 0, the actual mean,,, and
variance 2, of the truncated Gaussian distribution differ fron
the original meany, and varianceg?, and are given by .
2
= om0ty L By e[ K 22
I’L-"L‘ (I’L’ U) 27I' ¢ + 2 + \/F ( )
2 1
02 (1,0) = | o W2 4 = (2 0% .
27 2
Jrret( )| ool @)
V202

It is straightforward to show that

Fig. 2. The values okj‘z displayed as an image for a simulated scaled 3-D
ux(u, 0) . 12 o Hoffman brain phantom for the microPET system configuration. The image is 8
——=f(= (24) planes of 64x 64 voxels. An inverse gray scale is used for better visualization

g of spatial variations.

g
where
F(&) = 1 C—(52/2)+§ [1+erf<i (25) decoupled, is similar to that used in [19] for computing the vari-
V2

V2 2 ance of regions of interest. It is also similar in spirit to the
approximation of the Fisher information matrix used in Sec-

and ) tion IlI-A.
o (1, o) _ (ﬁ) (26) An implicit assumption in this variance-compensation tech-
o? o nigue is that the nonnegativity constraint affects each voxel in-
where dependently. In practice, the impact of the smoothing prior is to
¢ @ 1 ¢ cquple the voxel_s SO that_activgtion of the _con;traint at one voxel
g(&) = i e +3 &+ [1 + erf <ﬁ>} will affect the variance of its neighbors. This will affect the accu-

) racy of the approximation. However, as we show in Section 1V,
- (&) 27)  the approximations appear reasonably accurate and are signif-
icant improvements over previously reported results, in which

: 5 5 ,
€., (i, 0)) /o 8nd(o, (1, 9)) /o are both functions gi /o the nonnegativity constraint was ignored [7], [9].

Therefore, if we can findu.. (11, 0))/o, we will be able to cal-
culate(a2(p, o))/,

Because (20) implicitly assumes an unconstrained recdp- Uniform Resolution Reconstruction
struction, the variance from (20) is an estimate of the original o, Fig. 1(c), we see that the CRC of the MAP reconstruc-
Gaqssmn variance?. To accpunt_for the. effect of the con-tion with a constang is highly dependent oR;. Although
straint, we need to replace this variance wiftor, equivalently, generally changes smoothly inside the support of the object,
compute the ratio; /0. The mean of the truncated Gaussiaghere is still substantial variation from the center to the axial
distributiony.,. is actually the mean of the corresponding vox&l,ndary, as shown in Fig. 2. This causes the CRC'’s and, hence,
in the MAP reconstructions. This can be esumated_as thesolution in 3-D PET to be highly nonuniform. In some situ-
ensemble mean of a set of Monte Carlo reconstructions, gfons, it may be desirable to reconstruct images with uniform
approximated by reconstruction of the noiseless projection d@gc's. For instance, when multibed acquisitions are overlapped
[7], [6]. With this meany,, and the unconstrained varianee iy, the axial direction, the variance at the axial boundary of each
we can |n;/ert_(24) to findu/o. We can then compute the fraceq position can be reduced by adding together reconstructions
tion o7, /o~ using (26). These computations can be performeg,y gverlapped planes that correspond to the same position. If
rapidly using look-up tables for (25) and (27). resolution is mismatched, this may produce artifacts. Uniform

In practical situations, in which neither the noiseless projegsial resolution in the form of matched CRC’s may avoid this
tion data nor sufficient numbers of independent data sets a8 51em.

available, a single noisy MAP reconstruction may be the on
source that can be used to estimatelf so, the noise in the re-
construction will affect the accuracy of the estimate. As ares
an oversmoothed MAP reconstruction may be more suitable {g

the purpose of computing, than is the original reconstruction.ﬁjﬁf can be precomputed for all of the base voxels sthtor

After we obtain the voxelwise varianeg under the nonneg- y,q gesired resolution can be found, independently of the data,
ativity constraint, we approximate the image covariance matrﬂ?éing a look-up table. Given estimates of thg we then set
by By = n;?m?. This method is straightforward, but it fails to ac-
Cov =~ Do, (5)]CorrD]o,(5)] (28) count for the fact_that t_hyé?_’s are being varied thro_ughout_the
volume. The spatial variation ifi introduces a local interaction
whereCorr is the correlation matrix estimated from (18). Thigffect so that the look-up table approach donesproduce uni-
approximation, in which the correlation and variance terms ai@m CRC'’s. The effect is particularly pronounced toward the

Y In order to achieve uniform contrast recovery, the hyperpa-
rameter must be spatially variant. For any desired CRC (be-
een 0 and 1), we can find the correspond'ﬁ?}@j_2 =
I each voxelj using (19). Because (19) as a functionof=
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edge of the axial field of view, where the; (and, hencef;)
values can change significantly from one plane to the next.

To obtain uniform CRC's, it is necessary to solve a couple
system of equations. When we vary the smoothing paramet
throughout the image, we assign a sepa#at® each voxel and
redefine the energy function as

N
Ulx) = % S0 pnBib(zi— ) (29)

=1 keN; k> j

wherep;,, is the reciprocal of the Euclidean distance betwee™

voxel j andk. The second derivative of (29) is
Fig. 3. The 3-D Hoffman brain phantom used in our Monte Carlo studies.

—pik //3]./3]“ if j #kkeN; ;’rrjlgrg;/(?ri]:ztig:':les indicate the voxels selected for evaluation of the CRC
ROE) =3 S" ppu/Bibr, i =k (30)

E based on the geometry of the microPET scanner [15], which

For exact uniform resolution, we would need to iterate betwe&RNSIStS of eight rings with 240 2-mm 2-mm x 10-mm
computing the Fourier transform coefficients;) of the sym- LSO dgtectors in each ring. The fleld_ of view is 112—-mm
metric Toeplitz approximatioR(j) and updating the;'s using transaxially X 18-mm aX|aIIyZ and all images were recon-
(19) with the new;(5)’s. This is a very computationally inten- Structed on eight 2.25-mm-thick planes with §464 1.5-mm
sive procedure and probably not warranted because (19) is o¥fjf€!s- Data were generated using forward projection through
an approximation. A more practical solution is to consider onif¢ factored matrix model developed in [1], which includes

the diagonal elements @t and solve the following set of equa-& SPatially varying geometric respong&.... and detector
response blurring kernelB e 1,1u:- The latter were computed

tions:
using Monte Carlo modeling of photon-pair production and
Z pit/Bif = nt w2 Z pit V4. (31) interaction within the detector ring. The phantom image was
IcN; T IcN; a scaled 3-D digital Hoffman brain [20], as shown in Fig. 3.

The normalization factors were based on measurements from
Equation (31) may not have an exact solution, but it can kecylindrical normalization source collected in the microPET
solved iteratively in a least-squares sense using an iterative éganner. The attenuation correction factors were computed

ordinate descent method to minimize the error function analytically assuming a constant attenuation coefficient 0.095
2 cm~! throughout the support of the phantom. The average
number of counts in each data set was six million and included
_— . . — * ,.2 . . -
E= Z Z Pty PP —mjn; Z pit ] - (32) a 10% uniform scatter background. All of the images were
A 1N reconstructed using 60 iterations of a nonnegatively constrained

(ﬂ{_econditioned conjugate gradient (PCG) algorithm with a

We have found that a coordinate-wise descent algorithm c : . . .
E@cond—order guadratic energy function, as described in [2].

verges rapidly, taking a small fraction of the image reconstru
tion time for the microPET system simulated here.

The following scheme can be used for reconstructing uniform  Statistical Distribution of Image Voxel Values
CRC images with quadratic priors.

1) Select a desired CRC. In developing the variance approximation that accounts

2) For each voxelj, use a look-up table to find the corre-for the effect of the nonnegativity constraint, we assumed a
spondingy* for t’he given CRC truncated Gaussian, as described in Section llI-C. To inves-
; .

3) Compute thes;’s using (14) and the mean of the peTigate this conjecture, we calculated the sample distribution
data (or actuaIJPET data when used in “plug-in” mode).for individual voxels in Monte Carlo reconstructions of the

4) Use a coordinate descent algorithm to find ghés that prain phantgm. Four points of interest were sglected: one e_ach
minimize (32). in C_SF, white matter, gray matter, .anq one in a gray—whne
5) Reconstruct the image with the spatially variarﬁ’amal volume vqxel. The. sample distributions, overlaid with
smoothing parameters;. truncated Gaussian d|§tr|but|ons based on th.e Monte Car!o
sample mean and variance, are shown in Fig. 4. There is
generally a good match between the sample histograms and
the truncated Gaussian distributions. However, the truncated
We used computer Monte Carlo simulations to evaluatgaussian density tends to overestimate the probability of the
the approximations described above. All simulations weigxel values being zero while underestimating the probability
3This is equivalent to approximating matri by Dr,|Rs D[r,], where of occupying the neighboring histogram bin. This could result

1= (Sien. P3N/ BBt Tuen. pst)~ 2 andR, is the second derivative in underestimation of the variance in low-intensity regions,
of the homogeneous quadratic énergy function. which we investigate further in Section IV-E.

IV. MONTE CARLO VALIDATION
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Fig. 4. Intensity distribution of image voxel values for four points: one CSF, (a)
one white matter and one gray matter, and one gray-white partial volume. o
The circles represent the histograms of voxel values of 1000 Monte Carlo 10
reconstructions. The solid lines represent the estimated probabilities in each
histogram bin using the truncated Gaussian distribution model. &0
OOO0 [+
° o
— True value o
B. Approximation of:; 107 \° +  Approximation o
o Geometric only

Ther; values for the phantom were computed using (14). If
the approximations of the Fisher information matrix (12) were
exact, thenf’s would represent the diagonal elements of the 2|
Fisher information matrix. These can be computed exactly from
F = P'D[1/y,]P. Fig. 5 shows profiles through the image of
r; values that pass through the symmetry axis of the scanner
for the first and central transaxial planes. Also shown are the -3 ‘ .
values that would be computed if the sinogram blurring factors 0 10 20
are dropped from the approximation (denoted “geometric only”
in the figure). This figure demonstrates very little loss in accu- (b)
racy inr; as a result of the approximation and that inclusion of

the sinogram qurrlng factors is important for an accurate adpPig. 5. Comparison of the values computed using (14) (“approximation”)

proximation. with the true values of the diagonals of the Fisher information matrix (“true
value”): (a) the first transaxial plane and (b) the central transaxial plane. The
“geometric only” values represent the estimates when the sinogram blurring

C. Approximation of CRC’s factors are dropped from (14).

30 40 50 60
VOXEL INDEX

We selected two points of interest in each image plane at
which to evaluate the CRC approximation (19); these are indirese, we computed the FWHM of the local impulse response
cated in Fig. 3. The “ground truth” CRC was calculated from reat each of the locations studied in Section IV-C. The local
constructions from two noiseless data sets: the original phantanpulse response is not symmetric; so we computed a mean
sinogram and the sinogram of the phantom after adding a pE®WHM in the transaxial plane using
turbation at the point of interest. The approximations were com-
puted using (19). In both cases, a quadratic energy function .
with a second order neighborhood was used. Fig. 6(a) ShOWS0an FWHM— \/area of the contour at half maximum
the CRC values for voxels lying approximately along the sym- /4
metry axis of the scanner. Each curve corresponds to a different

smoothing parametet, ranging from2.5 x 10~° (top) t00.001 - L
(bottom). The approximation shows an almost exact match Wi-[}}i1e FWHM versus CRC curves are plotted in Fig. 7. This figure

the “ground truth” values. In Fig. 6(b), we show the CRC valu lecates a monotonic relationship between FWHM and CRC

for off-center voxels for the same range®¥alues. In this case, f‘?r Ie;CP VOXP}' W|trt1hvery similar vaﬁs for voxtehls ﬁt a Ei(e;tlﬂr]a-
there is a small increase in the error, but they are, at most, a g distance from the scanner axis. However, tne height ot these

percent. curves vary with radial distance, and consequently, we cannot
claim that a constant CRC throughout the volume translates to
a constant FWHM, or vise versa. We note that the asymmetry
D. CRC versus FWHM of the local impulse response indicates thay scalar measure
As we discussed previously, we characterize resolutiafiresolution at a point will be deficient in characterizing the re-
through the local CRC rather than the traditional FWHM response, and for our purposes, the CRC has distinct advantages
olution. To achieve some insight into the relationship betweewer FWHM in terms of our ability to directly compute it.
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(2]
T

9]

S

FWHM (VOXELS)

w

a
0 ( ) Fig. 7. Relation between FWHM and CRC. Squares denote ground truth and
10 ' ’ ' ' ' i solid lines the theoretical approximation. The lower set of curves correspond to
the points around the central axis of the scanner indicated in Fig. 3 while the
upper set correspond to the points in the same figure that are off axis. Different
points on the FWHM versus CRC curve were generated using different values
of 3.

1 2 3 4 5 6 7 8
PLANE INDEX
(b)

Fig. 6. The CRC's computed using the approximation (19) compared wi
ground truth values. (a) Comparison for the voxels close to the symmetry a (ﬂ)
of the scanner as indicated in Fig. 3 and (b) comparison for off-axis voxels a
shown in Fig. 3. The solid lines denote the approximation resultsxasdenote

the measured ground truth. . . . .
E. Approximation of Variance
To investigate the accuracy of the approximate variance ¢

pression (20), we computed the voxelwise variances from 10
independent reconstructions of the phantom and compared th
with the values computed using (20). Fig. 8 shows the stand:

deviation images for both the Monte Carlo results and the th
oretical approximations. A selected profile passing through tl
CSF region in the second plane is shown in Fig. 9. The theor..
ical approximations are generally n gOOd agreement with trl:—ll%.& Standard deviation images computed using (a) the Monte Carlo method
Monte Carlo results. from 1000 reconstructions and (b) the theoretical approximation (20). The order
We illustrate the impact of the method in Section 11I-C fopf the image planes are from left to right, top row: plane 1 (upper axial edge) to
. . .. 4 (center); bottom row: plane 5 (center) to 8 (lower axial edge).
compensating for the effect of the nonnegativity constraint in
Fig. 10. In Fig. 10(a), we show a scatter plot of the uncorrected
standard deviation [computed using (20)] versus the MonteThe remaining differences between the Monte Carlo and the-
Carlo standard deviations. In Fig. 10(b), we show the correctetktical variances are due to a combination of factors: residual
standard deviations versus the Monte Carlo results. The scattaiance in the Monte Carlo sample statistics, deviations of the
plot shows a tendency to underestimate the variance, whidlAP images from the assumed truncated Gaussian model, and
is consistent with the observation in Section IV-A. Howeveerrors caused by the local stationary approximation. Because
the results are a substantial improvement on those that do oot variance computation scheme is based on a sequence of ap-
compensate for the effect of the nonnegativity constraint.  proximations, it is not surprising that the computed variances

(b)
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5 ' ' ' ‘ " ' F. Estimating the Variance of Integrated ROI Activity
: 3 One of the important applications of covariance estimation
ar ol G © , °e°boo'boo%a 1 is to compute the uncertainty in region of interest (ROI)
- guantitation. Here, we use the theoretical covariance expression
3l (17) to estimate the variance of the integrated activity in several
o U ROI's. The results are then compared with the variances esti-
4 mated using the Monte Carlo method with 1000 independent
2r 1 reconstructions. Sixty-five ROI centers in the phantom were
selected. For each ROI center, we drew eight concentric circular
n o Monte Carlo ] regions with radius varying from one to eight voxels; so there
—— Approximation are totally 65x 8 = 520 ROI’s.
S o : For each ROI, the total mean activif§§, was computed as
o 10 20 30 40 50 60 .
VOXEL INDEX 1 N
R= ~ Z fiz; (33)
Fig. 9. Comparison of center transaxial profiles passing through CSF region j=1
in the second plane of standard deviation images in Fig. 8. Z fj
Jj=1
6 ' ' ' ' ' where{f;, j =1,..., N} is anindicator function for the ROI.
The variance of? is then
5-
(% 1 N N
T, Var(R) = — 2 Z Z fifwow(G)oz(k)Corr(x;, k)
8 =1 k=1
53 Z 1
s =t
4 (34)
g2 where o, (j) denotes the estimated variance of voxelvith
5 compensation for the effect of the nonnegativity constraint and
1T Corr(x;, zx) is the correlation between voxeisandk. Substi-
tuting (18) in (34) and assuming th@brr(x;, 21 ) is stationary
00 6 within the ROI, we get
N .
5 — (A + B8R )?
Var(R) = — (35)
N N s
‘ S0 Y e
. —2,,.\2
9) j=1 i=1 ()‘l + [3K’ NZ)
I
a3t . .
a where {F;,: = 1,...,N} is the 3-D Fourier transform of
(E {fjaw(J)szlva}
E2' As a comparison, the ratio of the Monte Carlo standard de-
) viation to the theoretical estimate is plotted as a function of the
1t . i theoretical value in Fig. 11. For most ROI’s, the ratio lies in the
L range 0.95 to 1.05, with the largest relative error in all ROI's of
AR 13%.

To quantify the accuracy of the approximation, we calculated
the root mean-squared error (RMSE) between the Monte Carlo
results and the theoretical approximations

Fig. 10. Scatter plots of variance estimates: (a) uncorrected theoretical 1 Ny Var?® — Var®? 2
standard deviations [the standard deviations estimate from (20)] versus Monte RMSE = Z I S et S
Carlo standard deviations and (b) corrected theoretical standard deviations 4 Vargnc

versus Monte Carlo standard deviations. =1

where N,. is the number of ROI's. The resulting RMSE was
are not exact. However, we anticipate that these variances @#%. Frieden [22] shows that for a Gaussian random variable,
sufficiently accurate to be of practical value (we will quantifithe relative error of the estimate of the variance wiith.i.d.
the accuracy of the approximation in the next section). samples is\/2/(L — 1). For L. = 1000, we would expect an
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error of approximately 4.5% in the Monte Carlo study. Thus, ¢ RASIREE LI PR P e Qe

the accuracy of the theoretical approximation is comparable to 25|
that of the Monte Carlo estimate with 1000 samples. Because
the computational cost of this approximation is less than that for 0.2r

O
one reconstruction, the advantage in computation time is signif- &
icant. Possibly more importantly, the theoretical approximation 0151 e M
allows estimation of the variance of individual reconstructions 01} Agg%%ﬁ?aﬁon
using a single noisy measurement using a “plug-in” form of the
approximate variance (see Section V). 0.05¢
G. Uniform CRC Reconstruction 0y > 3 2 5 6 = 8

Fig. 6 clearly shows spatially variant CRC’s when spatially Plane Index

invariant smoothing priors are used. The resolution changes (b)

substantially in the axial direction for both center and off-center ) ) ) ] y
9. 12. Uniform CRC reconstruction with spatially varyimg the CRC's

voxels. . Here’_ we demons”fite u3|.ng the sPatla”y Var'atgjf (a) voxels along the central axis of the scanner and (b) off-center voxels.

smoothing prior developed in Section IlI-D to reconstrualieasured values were those obtained by computing the CRC by perturbing the

near-uniform resolution images. We selected a desired CRi@ntom at the point of interest and measuring the resulting change in intensity
. . s in the reconstruction at that point. Approximate values were computed using

of 0.3. A coordlna_te descent algonthm for_mlnlmlzmg (_32) t(b’lg).

select the appropriat;’s took only 10 iterations to effectively

converge. Fig. 12 shows the measured CRC's of the images

reconstructed using the spatially variafif's computed to parisons of the standard deviation images and selected profiles

give a uniform CRC of 0.3. The CRC’s were very close to thr® shown in Figs. 13 and 14, respectively. As would be ex-

desired value for all planes and near uniform in both axial af@cted, the variances at the axial boundaries are increased be-

transaxial directions. The theoretically predicted CRC [i.cause of increased contrast recovery. The theoretical results are

those computed using the approximate expression (19)] #tejood agreement with the Monte Carlo results, again demon-

also shown in Fig. 12. These are slightly more uniform thagirating the effectiveness of the theoretical approximations.

are those based on the measured CRC's. This would appear

to indicate that the remaining source of nonuniformity lies in V. VALIDATION WITH MONKEY BRAN PHANTOM SCANS

the errors in the approximation of the system response ratheﬁ_ . . . . .

than in the manner in which the spatially variant smoothintc'; o investigate the effectiveness of the covariance approxima-

on in plug-in mode, we used experimental data collected from
arameters are computed. However, when we chosgl tlse . ; :
b P &; a baby monkey brain phantom scanned using the microPET

without solving (31) but instead using a look-up table, as Aner 151, Fortv-on | nt dat ts were recorded
suggested in [3], the CRC's at the boundary planes droppedsf:a er [15]. Forty-one equal count data sets were recorded,

approximately 0.25 (a 16% error) due to oversmoothing fro Rh each data set having about six million events. The 41 data

adjacent planes. Thus, for uniform CRC’s throughout the fieF(JEtS I\glsroef :ﬁgor';itéﬁgt?dcl:z'gg fI(D)SaGs'\'f]A:Devfatf; (;gtogfé 5;1(0 nin
of view, it is necessary to consider the coupling effect betwe%ﬁn P uctl N9 Wil

spatially varian{3’s as is done in (31). g 15.

We also investigated the variance distribution for the uniform ) . . . )
resolution reconstructions. The voxelwise variances were cofty- Covariance Computation using a Modified Plug-in Method
puted using both the Monte Carlo method from 1000 indepen-Because we do not have noise-free data, we must use the
dent reconstructions and the theoretical approximation. Conwisy data to compute the; values in (14), which we use in
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Fig. 15. MAP reconstructions of one baby monkey brain microPET phantom
data set with3 = 0.0002.

1.4 T T 7

- 'Direct PILIJg-in
----------- —e— Modified Plug-in |

130

1'1_. ........ PR G ..........
,; K
w
=0.9r
]
0.8r
(b) o7t
’ e . . . 0.6r
Fig. 13. Standard deviation images for the uniform resolution reconstructions. :
Computed using (a) the Monte Carlo method, and (b) the theoretical 0.5 y : . . . 30
approximation. The order of the image planes are from left to right, top row: 0 5 10 E1[)5/] 20 25

plane 1 (upper axial edge) to 4 (center); bottom row: plane 5 (center) to 8
(lower axial edge).

Fig. 16. Plot of bias in the direct and modified plug in methods vs. mean for
a Poisson random variable. In each case we plot the pradudtx E[¢(y)]
where¢(y) represents the plug in estimator bf E[y]. Ideally, the product

o o Monte Carlo ' ' should equal unity.
8t — Approximation
7r Bias could be reduced by forward projecting a reconstructed
ol image. However, we would often like to compute the variance
before reconstruction. We therefore use the following correction
ol method. We first note that for a Poisson random varigble
w
4+
1 =1 T
- El— | = e
2 1 o yk-l—l
= — C_y
’ 7 2_: (k+1)!
N . , X =
10 20 30 40 50 80 -7
VOXEL INDEX =—(1-c). (36)

Fig. 14. Transaxial profiles through the CSF region in the second plane\pfe can therefore use the measuremend computel/(yi + 1)
standard deviation images in Fig. 13. . .
as an unbiased estimate Bf1/(y; + 1)]. We then use (36) to
compute the corresponding mearvia a look-up table. This
turn to compute (18). We can use the direct “plug in” method, walue is then used to computg in (14).
which the measured data are directly used in place of the meaiThe effect on bias of this “modified plug-in” method is
[7]. However, this will result in a biased estimate because vebdown in Fig. 16. For a Poisson random variable with mean
are taking the reciprocal of the data value as an estimate of #g&,) greater than 3, the method is effectively unbiased esti-
reciprocal of its mean. It is well known and illustrated in Fig. 18nate. Below this, there is increasing negative bias as the mean
that E[1/y] # 1/E[y] for a Poisson random variable This value decreases. However, the bias is greatly reduced compared
direct plug-in method produces a small positive bias for largeith that resulting from the direct plug-in method.
Ely]. The negative bias wheh[y] is small is due to the com-  In Fig. 17, we show a comparison sf estimated with this
putation of the reciprocal dfl /y] as1 wheny = 0. modified plug-in method with the direct plug-in method using
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o Direct plug-in
= Modified plug-in
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VOXEL INDEX

(a)

— True
x| o Direct plug-in
x  Modified plug-in x

10 0 10 20 30 40 50 60
VOXEL INDEX

(b)

Fig. 17. Comparison of the values computed using (14) with noise-free
projection data (solid line), with the direct plug-in method using noisy data

(circle), and with the modified plug-in method using the same noisy datg(* o Monte Carlo :
(a) the first transaxial plane; (b) the central transaxial plane. 2<>°°° — Approximation °
1t o
the simulated data described in the previous section. We com- 0 . } . ‘ . ‘ °
puted thex;’s using (14) with noise-free projection data, with 10 20 30 40 50 60
the direct plug-in method using noisy data, and with the modi- Voxel Index
fied plug-in method using the same noisy data. The figure indi- ()
cates that the modified method corrects most of the bias intfg5. 18 Standard deviation images of the monkey brain phantom
duced using the direct plug-in method. reconstruction. (a) Standard deviation image from theoretical approximation.

(b) Standard deviation image from Monte Carlo method. (c) Profiles through
) o the center of the fourth plane.
B. Variance Images and ROI Quantitation

The voxelwise sample variances were computed from the 41 ) ) ]
reconstructions of the monkey brain phantom and compar@?oret'cal approximation and Monte Carlo methods. The re-

with the theoretical approximation results computed using tf!tS are shown in Fig. 19. The RMSE between the Monte Carlo
modified plug-in method. The standard deviation images wiffgsult and theoretical approximation in this case is 23.8%, with
selected profiles are shown in Fig. 18. In this case, the smajpredicted error of 22.4% error in the Monte Carlo result. This
Monte Carlo sample sizé/(= 41) results in significantly larger T€SUlt is a practical validation that the variance of ROI quan-
uncertainty in the estimated variance than we encountered in #§&tion in MAP reconstruction can be estimated to reasonable
computer simulations with = 1000. To perform a quantitative 2CCUracy in real data when using the modified plug-in method.
comparison, we looked at activity computed over several ROI's.

We hand selected 21 ROI centers and drew nine concentric
circular ROI's around each selected center by varying the radius
from one to nine voxels. As in Section IV-F, we estimated We have derived simplified expressions for the resolution and
the variance of the average activity in each ROI using bothoise properties of MAP reconstructions in fully 3-D PET.

VI. CONCLUSION
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[3] J. A. Fessler and W. L. Rogers, “Spatial resolution properties of pe-

(4]

(5]

nalized-likelihood image reconstruction: Spatial-invariant tomographs,”
IEEE Trans. Image Processingol. 9, pp. 1346-1358, Sept. 1996.

P. Bonetto, J. Qi, and R. M. Leahy, “Covariance approximation for fast
and accurate computation of channelized Hotelling observer statistics,”
IEEE Trans. Nucl. Scito be published.

H. H. Barrett, D. W. Wilson, and B. M. W. Tsuli, “Noise properties of the
EM algorithm: I. Theory,"Phys. Med. Biol.vol. 39, pp. 833—846, 1994.

[6] W. Wang and G. Gindhi, “Noise analysis of MAP-EM algorithms for

emission tomographyPhys. Med. Biol.vol. 42, pp. 2215-2232, 1997.

[7] J. Fessler, “Mean and variance of implicitely defined biased estimators

(8]

(9]

(such as penalized maximum likelihood): Applications to tomography,”
IEEE Trans. Image Processingol. 5, pp. 493-506, Mar. 1996.

—, “Approximate variance images for penalized-likelihood image re-
construction,” inProc. IEEE Nucl. Sci. Symp. Med. Imag. Coafbu-
querque, NM, 1997.

J. Qi and R. M. Leahy, “A theoretical study of the contrast recovery
and variance of MAP reconsructions from PET datBFE Trans. Med.
Imag, vol. 18, pp. 293—-305, Apr. 1999.

10] ——, “Fast computation of the covariance of MAP reconstruction of

Fig. 19. Ratio of the Monte Carlo estimated standard deviation for each ROI
over that computed using the theoretical approximation with the modified11]
plug-in method.

[12]
These expressions are rapidly computable and relatively
straightforward to interpret. They can be used to characterize
the reconstructed images and to optimize system design arkBl
reconstruction algorithms. We have also shown how these
methods can be used to reconstruct images with near-unifornn4)
resolution as measured using the contrast recovery coefficient.
Extensive Monte Carlo simulations support the accuracy of thﬁs]
approximations used to simplify our theoretical expressions.
The experimental phantom scan further confirms these results
and demonstrates the use of these methods in plug-in mode.
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