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Resolution and Noise Properties of MAP
Reconstruction for Fully 3-D PET
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Abstract—We derive approximate analytical expressions for
the local impulse response and covariance of images reconstructed
from fully three-dimensional (3-D) positron emission tomography
(PET) data using maximuma posteriori(MAP) estimation. These
expressions explicitly account for the spatially variant detector re-
sponse and sensitivity of a 3-D tomograph. The resulting spatially
variant impulse response and covariance are computed using 3-D
Fourier transforms. A truncated Gaussian distribution is used
to account for the effect on the variance of the nonnegativity
constraint used in MAP reconstruction. Using Monte Carlo
simulations and phantom data from the microPET small animal
scanner, we show that the approximations provide reasonably
accurate estimates of contrast recovery and covariance of MAP
reconstruction for priors with quadratic energy functions. We
also describe how these analytical results can be used to achieve
near-uniform contrast recovery throughout the reconstructed
volume.

Index Terms—Covariance, fully 3-D PET, image reconstruction,
MAP estimation, positron emission tomography, resolution anal-
ysis, uniform resolution.

I. INTRODUCTION

M AXIMUM a posteriori (MAP) image reconstruction
methods can combine accurate physical models for

coincidence detection in three-dimensional (3-D) positron
emission tomography (PET) tomographs and statistical models
for the photon-limited nature of the coincidence data with regu-
larizing smoothing priors on the image. As we have previously
shown [1], [2], this translates into improved resolution and
noise performance when compared with filtered-backprojection
(FBP) methods that are based on a simpler line-integral model
and do not explicitly model the noise distribution.

Fessler and Rogers [3] have shown that MAP (or equiva-
lently, penalized maximum likelihood) reconstruction produces
images with object-dependent resolution and variance for
two-dimensional (2-D) PET systems with a spatially invariant
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response. The situation is further complicated when the true
spatially variant sinogram response is considered [1]. In 3-D
PET systems, the large axial variation in sensitivity produces
increased spatially variant behavior. The utility of the MAP
approach for 3-D PET would be enhanced if we were able to
characterize this spatially variant behavior through computation
of the resolution and covariance of the resulting images. These
computations should include the effects of both axial variation
in sensitivity and spatially variant sinogram response.

Here, we develop approximate analytical expressions for the
local impulse response and covariance of 3-D MAP images.
These results can be used not only to characterize the images,
but also to modify the smoothing effect of the prior to optimize
performance for specific tasks. For instance, in combination
with computer observer models, these results have been used
to compute ROC curves for lesion detectability and, in turn, to
optimize MAP reconstruction for lesion detection [4]. Here, we
show an example of using our local impulse response analysis
to develop a method to spatially adapt the smoothing prior, as
proposed for the 2-D case in [3], to achieve near-uniform con-
trast recovery throughout the scanner field of view.

Because most iterative algorithms for PET, including our
MAP method in [1], are nonlinear, the statistical properties of
the reconstructions cannot be computed directly from those of
the data, and approximations are typically required to make
the problem tractable. Barrettet al. [5] and Wanget al. [6]
have derived approximate expressions for the mean and covari-
ance of expectation maximization (EM) and generalized-EM
algorithms as a function of iteration. This approach is very
useful for algorithms that are terminated at early iterations, but
computation cost is high and the accuracy of the approximation
can deteriorate at higher iterations.

An alternative approach for algorithms that are iterated to ef-
fective convergence is to analyze the properties of the images
that represent a fixed point of the algorithm [7], [8]. Building
on this work, we have derived simplified theoretical expressions
for the local impulse response and the voxel-wise variance of
MAP reconstruction for 2-D PET systems [9]. The resulting ex-
pressions are readily computed using 2-D discrete Fourier trans-
forms, and their relatively simple algebraic form reveals the ef-
fect of the prior smoothing parameter on image resolution and
variance. In [10], we extended these results to approximate the
full image covariance and described a method for using a trun-
cated-Gaussian model to account for the effect of the nonnega-
tivity constraint on image variance. All of these previous studies
[3], [7]–[10] were restricted to 2-D PET and assumed a shift in-
variance in the combined forward and backprojection operators,
which is not applicable to fully 3-D PET.
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Here, we extend the results in [9] and [10] to fully 3-D PET. In
this work, we include the effects of spatially variant sinogram re-
sponse [1], variations in sensitivity due to “missing” projections,
and the nonnegativity constraint. Resolution is studied using a
local “contrast recovery coefficient” (CRC) computed at each
voxel using the local impulse response [3]. Analytic expressions
for contrast recovery and covariance reveal the source of spatial
variations in these quantities and the effect of the smoothing
parameter. Using these simplified expressions, we can directly
control the resolution versus noise tradeoff. For example, we
can spatially adapt the smoothing parameter to achieve a spe-
cific variance or contrast recovery value or, as proposed in [9],
maximize contrast to noise ratio to optimize reconstructions
for lesion detection. We note that when the smoothing term is
made data-adaptive, the algorithm ceases to be a true Bayesian
method. However, the spatially variant smoothing weights are
computed before the image is reconstructed; the image can then
be reconstructed using these weights with the same program that
we use to compute true MAP estimates. Although this paper
deals with PET image reconstruction, the techniques presented
below represent a general approach for analyzing images com-
puted from space-variant systems using MAP estimators.

II. BACKGROUND

A. MAP Reconstruction

PET data are well modeled as a collection of independent
Poisson random variables with the log-likelihood function

(1)

where is the unknown image, is the
measured sinogram, and is the mean of the sinogram.
The mean sinogramis related to the imagethrough an affine
transform

(2)

where is the detection probability matrix, and
and account for the presence of scatter and

randoms in the data, respectively.
When operated in standard mode, PET scanners precorrect

for randoms by computing the difference between coincidence
events collected using a “prompt” coincidence timing window
and those in a delayed timing window of equal duration. This
correction method is based on the assumption that the events
in the delayed timing window have mean equal to that of the
randoms in the prompt timing window. The precorrected data

has mean and variance ; so a Poisson
model does not reflect the true variance. The true distribution
has a numerically intractable form, however, the shifted-Poisson
model with log likelihood1

(3)

serves as a good approximation [11].

1If y + 2r < 0, we sety = �2r .

The detection probability matrix can be accurately mod-
eled using the factored detection probability matrix that we de-
veloped in [12] and [1]

(4)

where is the geometric projection matrix with element
equal to the probability that a photon-pair produced in

voxel reaches the front faces of the detector pairin the ab-
sence of attenuation and assuming perfect photon-pair colin-
earity. It incorporates a depth-dependent geometric sensitivity
that is calculated using the solid angle spanned by the voxel
at the faces of the detector pair[1]. is the sinogram
blurring matrix used to model photon-pair noncolinearity, inter-
crystal scatter and penetration [12], is a diagonal matrix
containing the attenuation factors, and is again a di-
agonal matrix that contains the normalization factors that com-
pensate for variations in detector pair sensitivity.

Most image priors used in PET image reconstruction have a
Gibbs distribution of the form

(5)

where is the energy function, is the smoothing parameter
that controls the resolution of the reconstructed image, andis
the normalization constant or partition function. Combining the
likelihood function and the image prior, the MAP reconstruction
is found as

(6)

B. Approximations of Local Impulse Response and Covariance

The MAP estimator (6) is nonlinear in the data and its prop-
erties are object dependent. Therefore, we study the resolution
and noise properties locally for each data set using the local im-
pulse response and the covariance matrix.

Thelocal impulse responsefor the th voxel is defined as [3]

(7)

where denotes the expectation operator, is the recon-
struction from data , is the projection data from tracer
distribution , and is the th unit vector.

Using a first-order Taylor series approximation of (6) at the
point and the chain rule, we can derive the local impulse
response for the MAP reconstruction at voxelto be [3]

(8)

and the covariance matrix [3]

(9)
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where is the Fisher information ma-

trix when using the Poisson likelihood model (1) or
for the shifted-Poisson model

(3). represents a diagonal matrix with diagonal elements
. is the second derivative of the prior energy

function . In the following, results are developed for
the Poisson model only, extensions to the shifted-Poisson
case are direct. Because (8) and (9) use derivatives of the
log-likelihood and prior energy function up to order two only,
they will be most accurate in cases in which the objective
function is locally quadratic.

Equations (8) and (9) both involve computation of the inverse
of an matrix, where is the number of image voxels.
Even though one can avoid the computation of the matrix in-
verse by solving a set of linear equations for a voxel of interest
[8], the computational cost can still be prohibitive for large num-
bers of voxels. Another problem is that the nonnegativity con-
straint in (6) introduces nonlinearities that are not accounted for
in the truncated Taylor series used to derive the approximations.
This results in large errors in the variance estimate in low-ac-
tivity regions where the constraint is active. In the following
section, we develop approximations to (8) and (9) that are more
readily computed. We also describe a method for modifying the
covariances computed using (9) to account for the effect of the
nonnegativity constraint.

III. RESOLUTION AND COVARIANCE FOR 3-D PET

A. Simplified Expressions for Local Impulse Response and
Covariance

In [9], we analyzed the resolution and covariance of MAP re-
constructions for a simplified 2-D PET system model using ap-
proximations similar to those in [7], [3], and [13], including the
assumption that the geometric response, , is shift
invariant. Although this is a reasonable approximation in 2-D, it
is not applicable in 3-D because of the “missing data” problem
resulting from the finite number of detector rings. Here, we ex-
tend the results in [9] to 3-D by replacing the global invariance
assumption with a local one. The idea of using a local invari-
ance assumption in the context of shift-variant PET modeling
was first proposed by Fessler and Booth [14], who applied this
idea to developing fast preconditioners for conjugate gradient
algorithms for optimization of cost functions similar to (6).

We can view the elements of theth column of the Fisher in-
formation matrix as representing an “image” associated with
the th voxel. We will assume that these Fisher information “im-
ages” vary smoothly as we move between the columns of
associated with neighboring voxels. We also assume that these
images have local support; i.e., for theth column, the signif-
icantly nonzero values are concentrated in the vicinity of the
th voxel. The rationale for these assumptions lies in the form:

(see, for example, the Fisher information
matrix for a small scale problem shown in [3, Fig. 2]). We can
then infer that the resolution and variance at voxelis largely
determined by theth column of . Therefore, when estimating
the resolution and variance at that voxel, we assume station-
arity throughout the scanner with the Fisher information matrix

approximated by appropriate shifts of the elements of theth
column so that the resulting matrix has a block Toeplitz
structure. This makes the computations in (8) and (9) tractable
because a block Toeplitz matrix can be approximately diagonal-
ized using a 3-D fast Fourier transform (FFT).

The Fisher information matrix must be positive semi-defi-
nite, or equivalently, its eigenvalues must be real and nonneg-
ative. Although the true is guaranteed to have this property,
the Toeplitz approximation may not. Consequently, we further
modify the matrix by introducing the symmetry condition as
follows. We first compute the th column of and arrange
these values as a 3-D image. For an voxel volume,
we then shift this image so that theth voxel is moved to the
center voxel ( ). To ensure that
the 3-D FFT coefficients are real, we introduce the symmetry:

.
Finally, we take the 3-D FFT of the resulting image and truncate
any negative coefficients to zero.

For a homogeneous prior with quadratic energy,already
has the block Toeplitz structure. However, if a spatially variant
smoothing prior is used (see Section III-D), we can use a lo-
cally invariant approximation in a similar manner to that
described above for .

The local impulse response and covariance of voxelcan then
be approximated by2

(10)

(11)

Because a block Toeplitz symmetric matrix is approximately
block circulant, approximate inverses of and can be
computed using a 3-D Fourier transform.

Equations (10) and (11) can be used to evaluate the local
impulse response and covariance at each voxel. The dominant
computation cost is computing , which involves one for-
ward and one backprojection operation. If only a small number
of voxels are of interest, this approach is practical because the
computational cost is similar to one reconstruction. However,
evaluating these expressions for the whole image using (10) and
(11) is prohibitive because the entire computation needs to be
repeated for each voxel.

To study the local impulse response and variance throughout
the field of view, we need to reduce the cost of computing.
Using the factored system matrix (4), the Fisher information
matrix can be written as

(12)

The approximations in [3, Eq. (31)], [9, Eq. (8)], and [14,
Eq. (13)] cannot be used here because the computation is com-
plicated by the spatially variant geometric and sinogram re-

2When constructing a full covariance matrix usingCov (x̂xx) as thejth
column, the resulting matrix may not be symmetric because of the spatially
variant system response. We can always obtain a symmetric covariance matrix
approximation by taking the average of the resulting matrix and its transpose.
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sponses such that exact computation of the diagonal elements
of is impractical. To reduce the computation cost, we retain
the shift-variant components of the model but approximate
so that the time-consuming components of the computation are
data independent and can be precomputed and stored. In [1],
we model the sinogram blurring, , using a shift-variant
local blurring kernel applied to the sinogram. This accounts for
photon-pair noncolinearity, intercrystal scatter and crystal pen-
etration. These effects can be decomposed into the following
major components: 1) a projection shift due to crystal penetra-
tion, 2) amplitude decrease of the local response due to detector
blurring, and 3) a change in the shape of the local impulse re-
sponse due to detector blurring. We therefore replace the ap-
proximations used in [3] and [9] with the following approxima-
tion for (12), which explicitly incorporates the sinogram blur-
ring factors:

(13)

where

(14)

with the th element of matrix , the th
element of the matrix product , and the th
element of

The is an approximation of the th diagonal element of
, where the crystal penetration peak shift is accounted for by

. The decrease in the amplitude of the impulse re-
sponse due to the detector blurring effect is approximated by the
ratio . The normalized spatially shape-variant im-
pulse response in is approximated using

There is no optimality to the approximations (13), but we note
that (13) is exact when , , and are all
equal to the identity matrix.

Using this approximation,
becomes the dominant computation load in computing.
Because it is independent of the data, it can be precomputed.
Furthermore, by taking advantage of the rotational symmetry
of the PET system, we need only compute the columns that
correspond to the voxels in a single plane containing the
symmetry axis of the scanner. We refer to voxels in this plane
as “base voxels.” All of the other columns can be approx-
imated using linear or nearest-neighbor interpolation. This
reduces the computation time and storage space required for

to a practical level.

We can now write the local impulse response (10) and covari-
ance (11) in Fourier transform form as

(15)

(16)

where is the 3-D Fourier transform of
the positive-semidefinite approximation of the central column
of the block-Toeplitz matrix formed from theth column of

and is the 3-D Fourier transform of the
equivalent approximation of theth column of . and
represent the Kronecker form of the 3-D Fourier transform and
its inverse, respectively.

For space-invariant priors with quadratic energy functions,
(15) and (16) can be simplified to

(17)

(18)

where the ’s are the 3-D Fourier transform of the central
column of .

B. CRC and Variance

We can reduce (17) and (18) to scalar measures by consid-
ering only the variance and the local CRC, which we define as

. The CRC can be used as an alternative to the
full-width at half maximum (FWHM) as a measure of resolution
that has the advantage that it can be directly computed from (17)
(we will examine the relationship between CRC and FWHM in
Section IV-D). The CRC and variance for theth voxel are given
by

(19)

(20)

Expressions (19) and (20) provide direct insight into the spa-
tially variant properties of MAP reconstructions: because the
only function of the data is the quantity , we can, in the ab-
sence of any data, determine resolution and noise properties at
each voxel as a function of . The spatial variations in the ’s
associated with a given source distribution imply spatial varia-
tion in resolution and variance. Thevalue necessary to achieve
a desired CRC or variance can then be chosen oncehas been
computed as we describe in Section III-D. The results (19) and
(20) require that the mean of the data is available to compute.
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Fig. 1. CRC and SD (standard deviation) curves for six different locations in the outermost and central axial planes: (a) CRC versus� (� = 1), (b) SD versus�
(� = 1), (c) CRC versus� (� = 1), and (d) SD versus� (� = 1).

However, they can also be used in a “plug-in” mode in which ex-
perimental data is used to estimate. This issue is addressed
in Section V.

We can evaluate (19) and (20) to show the dependence of the
CRC and variance on the hyperparameterand . The PET
system simulated here was the microPET system [15] with eight
image planes of voxels. We used a second-order (26
neighbors) 3-D prior with a quadratic energy function. Because
of the circular symmetry of the PET system, we need only con-
sider radial and axial variations in CRC and variance. We se-
lected three points with different radial positions in both the out-
ermost and the central transaxial planes. The results are shown
in Fig. 1. Each plot is similar to that shown for a 2-D PET system
in [9] with two inflection points. Note that in Fig. 1(d), there is a
range of values in which the standard deviation varies slowly
(although these curves are less flat than are their 2-D equiva-
lents in [9]), indicating a range of values over which the image
standard deviation will vary very little. This observation is con-
firmed in our simulation studies below.

C. Compensation for Nonnegativity Constraints

The development of (16) in Section II-B is based on a first-
order Taylor series approximation and cannot account for the
nonnegativity constraint typically used in MAP reconstruction.
This results in large errors in covariance estimates for low-ac-
tivity regions [7], [9]. In this section, we develop a method to

modify the preceding results to account for the effect of this
constraint.

We first consider the effect of the constraint on the voxelwise
variance. We assume that if the nonnegativity constraint were
not imposed, the voxel intensities of the MAP reconstructions,
conditioned on the true image, would be Gaussian random
variables. Empirical evidence supporting this assumption
is provided later. We further assume that the effect of the
nonnegativity constraint is to modify this Gaussian distribution
by replacing all negative voxel values with zero; i.e., the
constraint truncates the original Gaussian distribution in the
negative range, but does not change the distribution of the voxel
values in the positive range. Under this assumption, the actual
distribution of the voxel values will be a “truncated Gaussian”
with probability density function

if

erf if

if

(21)

where and are the mean and variance of the original
Gaussian distribution, respectively, erf is the error function,
and is the Dirac delta function.
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Because of the truncation at , the actual mean, , and
variance, , of the truncated Gaussian distribution differ from
the original mean, , and variance, , and are given by

erf (22)

erf (23)

It is straightforward to show that

(24)

where

erf (25)

and

(26)

where

erf

(27)

i.e., and are both functions of .
Therefore, if we can find , we will be able to cal-
culate .

Because (20) implicitly assumes an unconstrained recon-
struction, the variance from (20) is an estimate of the original
Gaussian variance . To account for the effect of the con-
straint, we need to replace this variance withor, equivalently,
compute the ratio . The mean of the truncated Gaussian
distribution is actually the mean of the corresponding voxel
in the MAP reconstructions. This can be estimated as the
ensemble mean of a set of Monte Carlo reconstructions, or
approximated by reconstruction of the noiseless projection data
[7], [6]. With this mean and the unconstrained variance,
we can invert (24) to find . We can then compute the frac-
tion using (26). These computations can be performed
rapidly using look-up tables for (25) and (27).

In practical situations, in which neither the noiseless projec-
tion data nor sufficient numbers of independent data sets are
available, a single noisy MAP reconstruction may be the only
source that can be used to estimate. If so, the noise in the re-
construction will affect the accuracy of the estimate. As a result,
an oversmoothed MAP reconstruction may be more suitable for
the purpose of computing than is the original reconstruction.

After we obtain the voxelwise variance under the nonneg-
ativity constraint, we approximate the image covariance matrix
by

(28)

where is the correlation matrix estimated from (18). This
approximation, in which the correlation and variance terms are

Fig. 2. The values of� displayed as an image for a simulated scaled 3-D
Hoffman brain phantom for the microPET system configuration. The image is 8
planes of 64� 64 voxels. An inverse gray scale is used for better visualization
of spatial variations.

decoupled, is similar to that used in [19] for computing the vari-
ance of regions of interest. It is also similar in spirit to the
approximation of the Fisher information matrix used in Sec-
tion III-A.

An implicit assumption in this variance-compensation tech-
nique is that the nonnegativity constraint affects each voxel in-
dependently. In practice, the impact of the smoothing prior is to
couple the voxels so that activation of the constraint at one voxel
will affect the variance of its neighbors. This will affect the accu-
racy of the approximation. However, as we show in Section IV,
the approximations appear reasonably accurate and are signif-
icant improvements over previously reported results, in which
the nonnegativity constraint was ignored [7], [9].

D. Uniform Resolution Reconstruction

From Fig. 1(c), we see that the CRC of the MAP reconstruc-
tion with a constant is highly dependent on . Although
generally changes smoothly inside the support of the object,
there is still substantial variation from the center to the axial
boundary, as shown in Fig. 2. This causes the CRC’s and, hence,
resolution in 3-D PET to be highly nonuniform. In some situ-
ations, it may be desirable to reconstruct images with uniform
CRC’s. For instance, when multibed acquisitions are overlapped
in the axial direction, the variance at the axial boundary of each
bed position can be reduced by adding together reconstructions
from overlapped planes that correspond to the same position. If
resolution is mismatched, this may produce artifacts. Uniform
axial resolution in the form of matched CRC’s may avoid this
problem.

In order to achieve uniform contrast recovery, the hyperpa-
rameter must be spatially variant. For any desired CRC (be-
tween 0 and 1), we can find the corresponding
for each voxel using (19). Because (19) as a function of

can be precomputed for all of the base voxels, thefor
the desired resolution can be found, independently of the data,
using a look-up table. Given estimates of the, we then set

. This method is straightforward, but it fails to ac-
count for the fact that the’s are being varied throughout the
volume. The spatial variation in introduces a local interaction
effect so that the look-up table approach doesnot produce uni-
form CRC’s. The effect is particularly pronounced toward the
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edge of the axial field of view, where the (and, hence, )
values can change significantly from one plane to the next.

To obtain uniform CRC’s, it is necessary to solve a coupled
system of equations. When we vary the smoothing parameters
throughout the image, we assign a separateto each voxel and
redefine the energy function as

(29)

where is the reciprocal of the Euclidean distance between
voxel and . The second derivative of (29) is

if

if (30)

For exact uniform resolution, we would need to iterate between
computing the Fourier transform coefficients of the sym-
metric Toeplitz approximation and updating the ’s using
(19) with the new ’s. This is a very computationally inten-
sive procedure and probably not warranted because (19) is only
an approximation. A more practical solution is to consider only
the diagonal elements of and solve the following set of equa-
tions3 :

(31)

Equation (31) may not have an exact solution, but it can be
solved iteratively in a least-squares sense using an iterative co-
ordinate descent method to minimize the error function

(32)

We have found that a coordinate-wise descent algorithm con-
verges rapidly, taking a small fraction of the image reconstruc-
tion time for the microPET system simulated here.

The following scheme can be used for reconstructing uniform
CRC images with quadratic priors.

1) Select a desired CRC.
2) For each voxel , use a look-up table to find the corre-

sponding for the given CRC.
3) Compute the ’s using (14) and the mean of the PET

data (or actual PET data when used in “plug-in” mode).
4) Use a coordinate descent algorithm to find the’s that

minimize (32).
5) Reconstruct the image with the spatially variant

smoothing parameters .

IV. M ONTE CARLO VALIDATION

We used computer Monte Carlo simulations to evaluate
the approximations described above. All simulations were

3This is equivalent to approximating matrixRRR by D[r ]RRR D[r ], where
r = ( � � � = � ) andRRR is the second derivative
of the homogeneous quadratic energy function.

Fig. 3. The 3-D Hoffman brain phantom used in our Monte Carlo studies.
The white circles indicate the voxels selected for evaluation of the CRC
approximation.

based on the geometry of the microPET scanner [15], which
consists of eight rings with 240 2-mm 2-mm 10-mm
LSO detectors in each ring. The field of view is 112–mm
transaxially 18-mm axially, and all images were recon-
structed on eight 2.25-mm-thick planes with 6464 1.5-mm
voxels. Data were generated using forward projection through
the factored matrix model developed in [1], which includes
a spatially varying geometric response and detector
response blurring kernels . The latter were computed
using Monte Carlo modeling of photon-pair production and
interaction within the detector ring. The phantom image was
a scaled 3-D digital Hoffman brain [20], as shown in Fig. 3.
The normalization factors were based on measurements from
a cylindrical normalization source collected in the microPET
scanner. The attenuation correction factors were computed
analytically assuming a constant attenuation coefficient 0.095
cm throughout the support of the phantom. The average
number of counts in each data set was six million and included
a 10% uniform scatter background. All of the images were
reconstructed using 60 iterations of a nonnegatively constrained
preconditioned conjugate gradient (PCG) algorithm with a
second-order quadratic energy function, as described in [2].

A. Statistical Distribution of Image Voxel Values

In developing the variance approximation that accounts
for the effect of the nonnegativity constraint, we assumed a
truncated Gaussian, as described in Section III-C. To inves-
tigate this conjecture, we calculated the sample distribution
for individual voxels in Monte Carlo reconstructions of the
brain phantom. Four points of interest were selected: one each
in CSF, white matter, gray matter, and one in a gray–white
partial volume voxel. The sample distributions, overlaid with
truncated Gaussian distributions based on the Monte Carlo
sample mean and variance, are shown in Fig. 4. There is
generally a good match between the sample histograms and
the truncated Gaussian distributions. However, the truncated
Gaussian density tends to overestimate the probability of the
voxel values being zero while underestimating the probability
of occupying the neighboring histogram bin. This could result
in underestimation of the variance in low-intensity regions,
which we investigate further in Section IV-E.
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Fig. 4. Intensity distribution of image voxel values for four points: one CSF,
one white matter and one gray matter, and one gray–white partial volume.
The circles represent the histograms of voxel values of 1000 Monte Carlo
reconstructions. The solid lines represent the estimated probabilities in each
histogram bin using the truncated Gaussian distribution model.

B. Approximation of

The values for the phantom were computed using (14). If
the approximations of the Fisher information matrix (12) were
exact, the ’s would represent the diagonal elements of the
Fisher information matrix. These can be computed exactly from

. Fig. 5 shows profiles through the image of
values that pass through the symmetry axis of the scanner

for the first and central transaxial planes. Also shown are the
values that would be computed if the sinogram blurring factors
are dropped from the approximation (denoted “geometric only”
in the figure). This figure demonstrates very little loss in accu-
racy in as a result of the approximation and that inclusion of
the sinogram blurring factors is important for an accurate ap-
proximation.

C. Approximation of CRC’s

We selected two points of interest in each image plane at
which to evaluate the CRC approximation (19); these are indi-
cated in Fig. 3. The “ground truth” CRC was calculated from re-
constructions from two noiseless data sets: the original phantom
sinogram and the sinogram of the phantom after adding a per-
turbation at the point of interest. The approximations were com-
puted using (19). In both cases, a quadratic energy function
with a second order neighborhood was used. Fig. 6(a) shows
the CRC values for voxels lying approximately along the sym-
metry axis of the scanner. Each curve corresponds to a different
smoothing parameter, ranging from (top) to
(bottom). The approximation shows an almost exact match with
the “ground truth” values. In Fig. 6(b), we show the CRC values
for off-center voxels for the same range ofvalues. In this case,
there is a small increase in the error, but they are, at most, a few
percent.

D. CRC versus FWHM

As we discussed previously, we characterize resolution
through the local CRC rather than the traditional FWHM res-
olution. To achieve some insight into the relationship between

Fig. 5. Comparison of the� values computed using (14) (“approximation”)
with the true values of the diagonals of the Fisher information matrix (“true
value”): (a) the first transaxial plane and (b) the central transaxial plane. The
“geometric only” values represent the estimates when the sinogram blurring
factors are dropped from (14).

these, we computed the FWHM of the local impulse response
at each of the locations studied in Section IV-C. The local
impulse response is not symmetric; so we computed a mean
FWHM in the transaxial plane using

mean FWHM
area of the contour at half maximum

The FWHM versus CRC curves are plotted in Fig. 7. This figure
indicates a monotonic relationship between FWHM and CRC
for each voxel with very similar curves for voxels at a fixed ra-
dial distance from the scanner axis. However, the height of these
curves vary with radial distance, and consequently, we cannot
claim that a constant CRC throughout the volume translates to
a constant FWHM, or vise versa. We note that the asymmetry
of the local impulse response indicates thatanyscalar measure
of resolution at a point will be deficient in characterizing the re-
sponse, and for our purposes, the CRC has distinct advantages
over FWHM in terms of our ability to directly compute it.
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Fig. 6. The CRC’s computed using the approximation (19) compared with
ground truth values. (a) Comparison for the voxels close to the symmetry axis
of the scanner as indicated in Fig. 3 and (b) comparison for off-axis voxels also
shown in Fig. 3. The solid lines denote the approximation results and�’s denote
the measured ground truth.

E. Approximation of Variance

To investigate the accuracy of the approximate variance ex-
pression (20), we computed the voxelwise variances from 1000
independent reconstructions of the phantom and compared these
with the values computed using (20). Fig. 8 shows the standard
deviation images for both the Monte Carlo results and the the-
oretical approximations. A selected profile passing through the
CSF region in the second plane is shown in Fig. 9. The theoret-
ical approximations are generally in good agreement with the
Monte Carlo results.

We illustrate the impact of the method in Section III-C for
compensating for the effect of the nonnegativity constraint in
Fig. 10. In Fig. 10(a), we show a scatter plot of the uncorrected
standard deviation [computed using (20)] versus the Monte
Carlo standard deviations. In Fig. 10(b), we show the corrected
standard deviations versus the Monte Carlo results. The scatter
plot shows a tendency to underestimate the variance, which
is consistent with the observation in Section IV-A. However,
the results are a substantial improvement on those that do not
compensate for the effect of the nonnegativity constraint.

Fig. 7. Relation between FWHM and CRC. Squares denote ground truth and
solid lines the theoretical approximation. The lower set of curves correspond to
the points around the central axis of the scanner indicated in Fig. 3 while the
upper set correspond to the points in the same figure that are off axis. Different
points on the FWHM versus CRC curve were generated using different values
of �.

Fig. 8. Standard deviation images computed using (a) the Monte Carlo method
from 1000 reconstructions and (b) the theoretical approximation (20). The order
of the image planes are from left to right, top row: plane 1 (upper axial edge) to
4 (center); bottom row: plane 5 (center) to 8 (lower axial edge).

The remaining differences between the Monte Carlo and the-
oretical variances are due to a combination of factors: residual
variance in the Monte Carlo sample statistics, deviations of the
MAP images from the assumed truncated Gaussian model, and
errors caused by the local stationary approximation. Because
our variance computation scheme is based on a sequence of ap-
proximations, it is not surprising that the computed variances
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Fig. 9. Comparison of center transaxial profiles passing through CSF region
in the second plane of standard deviation images in Fig. 8.

Fig. 10. Scatter plots of variance estimates: (a) uncorrected theoretical
standard deviations [the standard deviations estimate from (20)] versus Monte
Carlo standard deviations and (b) corrected theoretical standard deviations
versus Monte Carlo standard deviations.

are not exact. However, we anticipate that these variances are
sufficiently accurate to be of practical value (we will quantify
the accuracy of the approximation in the next section).

F. Estimating the Variance of Integrated ROI Activity

One of the important applications of covariance estimation
is to compute the uncertainty in region of interest (ROI)
quantitation. Here, we use the theoretical covariance expression
(17) to estimate the variance of the integrated activity in several
ROI’s. The results are then compared with the variances esti-
mated using the Monte Carlo method with 1000 independent
reconstructions. Sixty-five ROI centers in the phantom were
selected. For each ROI center, we drew eight concentric circular
regions with radius varying from one to eight voxels; so there
are totally 65 8 520 ROI’s.

For each ROI, the total mean activity,, was computed as

(33)

where is an indicator function for the ROI.
The variance of is then

(34)
where denotes the estimated variance of voxelwith
compensation for the effect of the nonnegativity constraint and

is the correlation between voxelsand . Substi-
tuting (18) in (34) and assuming that is stationary
within the ROI, we get

(35)

where is the 3-D Fourier transform of
.

As a comparison, the ratio of the Monte Carlo standard de-
viation to the theoretical estimate is plotted as a function of the
theoretical value in Fig. 11. For most ROI’s, the ratio lies in the
range 0.95 to 1.05, with the largest relative error in all ROI’s of
13%.

To quantify the accuracy of the approximation, we calculated
the root mean-squared error (RMSE) between the Monte Carlo
results and the theoretical approximations

RMSE

where is the number of ROI’s. The resulting RMSE was
6.4%. Frieden [22] shows that for a Gaussian random variable,
the relative error of the estimate of the variance withi.i.d.
samples is . For , we would expect an
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Fig. 11. Ratio of Monte Carlo standard deviation estimates to the theoretical
results versus the theoretical standard devation for the ROI quantitation study.

error of approximately 4.5% in the Monte Carlo study. Thus,
the accuracy of the theoretical approximation is comparable to
that of the Monte Carlo estimate with 1000 samples. Because
the computational cost of this approximation is less than that for
one reconstruction, the advantage in computation time is signif-
icant. Possibly more importantly, the theoretical approximation
allows estimation of the variance of individual reconstructions
using a single noisy measurement using a “plug-in” form of the
approximate variance (see Section V).

G. Uniform CRC Reconstruction

Fig. 6 clearly shows spatially variant CRC’s when spatially
invariant smoothing priors are used. The resolution changes
substantially in the axial direction for both center and off-center
voxels. Here, we demonstrate using the spatially variant
smoothing prior developed in Section III-D to reconstruct
near-uniform resolution images. We selected a desired CRC
of 0.3. A coordinate descent algorithm for minimizing (32) to
select the appropriate ’s took only 10 iterations to effectively
converge. Fig. 12 shows the measured CRC’s of the images
reconstructed using the spatially variant’s computed to
give a uniform CRC of 0.3. The CRC’s were very close to the
desired value for all planes and near uniform in both axial and
transaxial directions. The theoretically predicted CRC [i.e.,
those computed using the approximate expression (19)] are
also shown in Fig. 12. These are slightly more uniform than
are those based on the measured CRC’s. This would appear
to indicate that the remaining source of nonuniformity lies in
the errors in the approximation of the system response rather
than in the manner in which the spatially variant smoothing
parameters are computed. However, when we chose the’s
without solving (31) but instead using a look-up table, as
suggested in [3], the CRC’s at the boundary planes dropped to
approximately 0.25 (a 16% error) due to oversmoothing from
adjacent planes. Thus, for uniform CRC’s throughout the field
of view, it is necessary to consider the coupling effect between
spatially variant ’s as is done in (31).

We also investigated the variance distribution for the uniform
resolution reconstructions. The voxelwise variances were com-
puted using both the Monte Carlo method from 1000 indepen-
dent reconstructions and the theoretical approximation. Com-

Fig. 12. Uniform CRC reconstruction with spatially varying�: the CRC’s
of (a) voxels along the central axis of the scanner and (b) off-center voxels.
Measured values were those obtained by computing the CRC by perturbing the
phantom at the point of interest and measuring the resulting change in intensity
in the reconstruction at that point. Approximate values were computed using
(19).

parisons of the standard deviation images and selected profiles
are shown in Figs. 13 and 14, respectively. As would be ex-
pected, the variances at the axial boundaries are increased be-
cause of increased contrast recovery. The theoretical results are
in good agreement with the Monte Carlo results, again demon-
strating the effectiveness of the theoretical approximations.

V. VALIDATION WITH MONKEY BRAN PHANTOM SCANS

To investigate the effectiveness of the covariance approxima-
tion in plug-in mode, we used experimental data collected from
a baby monkey brain phantom scanned using the microPET
scanner [15]. Forty-one equal count data sets were recorded,
with each data set having about six million events. The 41 data
sets were reconstructed using PCG MAP with . Ex-
amples of the reconstructions for a single data set are shown in
Fig. 15.

A. Covariance Computation using a Modified Plug-in Method

Because we do not have noise-free data, we must use the
noisy data to compute the values in (14), which we use in
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Fig. 13. Standard deviation images for the uniform resolution reconstructions.
Computed using (a) the Monte Carlo method, and (b) the theoretical
approximation. The order of the image planes are from left to right, top row:
plane 1 (upper axial edge) to 4 (center); bottom row: plane 5 (center) to 8
(lower axial edge).

Fig. 14. Transaxial profiles through the CSF region in the second plane of
standard deviation images in Fig. 13.

turn to compute (18). We can use the direct “plug in” method, in
which the measured data are directly used in place of the mean
[7]. However, this will result in a biased estimate because we
are taking the reciprocal of the data value as an estimate of the
reciprocal of its mean. It is well known and illustrated in Fig. 16
that for a Poisson random variable. This
direct plug-in method produces a small positive bias for large

. The negative bias when is small is due to the com-
putation of the reciprocal of as when .

Fig. 15. MAP reconstructions of one baby monkey brain microPET phantom
data set with� = 0:0002.

Fig. 16. Plot of bias in the direct and modified plug in methods vs. mean for
a Poisson random variable. In each case we plot the productE[y] � E[�(y)]
where�(y) represents the plug in estimator of1=E[y]. Ideally, the product
should equal unity.

Bias could be reduced by forward projecting a reconstructed
image. However, we would often like to compute the variance
before reconstruction. We therefore use the following correction
method. We first note that for a Poisson random variable:

(36)

We can therefore use the measurementto compute
as an unbiased estimate of . We then use (36) to
compute the corresponding meanvia a look-up table. This
value is then used to compute in (14).

The effect on bias of this “modified plug-in” method is
shown in Fig. 16. For a Poisson random variable with mean

greater than 3, the method is effectively unbiased esti-
mate. Below this, there is increasing negative bias as the mean
value decreases. However, the bias is greatly reduced compared
with that resulting from the direct plug-in method.

In Fig. 17, we show a comparison of estimated with this
modified plug-in method with the direct plug-in method using
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Fig. 17. Comparison of the� values computed using (14) with noise-free
projection data (solid line), with the direct plug-in method using noisy data
(circle), and with the modified plug-in method using the same noisy data (“�”):
(a) the first transaxial plane; (b) the central transaxial plane.

the simulated data described in the previous section. We com-
puted the ’s using (14) with noise-free projection data, with
the direct plug-in method using noisy data, and with the modi-
fied plug-in method using the same noisy data. The figure indi-
cates that the modified method corrects most of the bias intro-
duced using the direct plug-in method.

B. Variance Images and ROI Quantitation

The voxelwise sample variances were computed from the 41
reconstructions of the monkey brain phantom and compared
with the theoretical approximation results computed using the
modified plug-in method. The standard deviation images with
selected profiles are shown in Fig. 18. In this case, the small
Monte Carlo sample size ( ) results in significantly larger
uncertainty in the estimated variance than we encountered in the
computer simulations with . To perform a quantitative
comparison, we looked at activity computed over several ROI’s.

We hand selected 21 ROI centers and drew nine concentric
circular ROI’s around each selected center by varying the radius
from one to nine voxels. As in Section IV-F, we estimated
the variance of the average activity in each ROI using both

(a)

(b)

(c)

Fig. 18. Standard deviation images of the monkey brain phantom
reconstruction. (a) Standard deviation image from theoretical approximation.
(b) Standard deviation image from Monte Carlo method. (c) Profiles through
the center of the fourth plane.

theoretical approximation and Monte Carlo methods. The re-
sults are shown in Fig. 19. The RMSE between the Monte Carlo
result and theoretical approximation in this case is 23.8%, with
a predicted error of 22.4% error in the Monte Carlo result. This
result is a practical validation that the variance of ROI quan-
titation in MAP reconstruction can be estimated to reasonable
accuracy in real data when using the modified plug-in method.

VI. CONCLUSION

We have derived simplified expressions for the resolution and
noise properties of MAP reconstructions in fully 3-D PET.
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Fig. 19. Ratio of the Monte Carlo estimated standard deviation for each ROI
over that computed using the theoretical approximation with the modified
plug-in method.

These expressions are rapidly computable and relatively
straightforward to interpret. They can be used to characterize
the reconstructed images and to optimize system design and
reconstruction algorithms. We have also shown how these
methods can be used to reconstruct images with near-uniform
resolution as measured using the contrast recovery coefficient.
Extensive Monte Carlo simulations support the accuracy of the
approximations used to simplify our theoretical expressions.
The experimental phantom scan further confirms these results
and demonstrates the use of these methods in plug-in mode.
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