
INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 47 (2002) 2785–2795 PII: S0031-9155(02)37839-4

Internet2-based 3D PET image reconstruction using a
PC cluster

D W Shattuck1, J Rapela1, E Asma1, A Chatzioannou2, J Qi3 and
R M Leahy1

1 Signal and Image Processing Institute, University of Southern California, Los Angeles,
CA 90089, USA
2 Crump Institute for Molecular Imaging, University of California, Los Angeles CA 90095, USA
3 Center for Functional Imaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA

E-mail: leahy@sipi.usc.edu

Received 22 December 2001
Published 17 July 2002
Online at stacks.iop.org/PMB/47/2785

Abstract
We describe an approach to fast iterative reconstruction from fully three-
dimensional (3D) PET data using a network of PentiumIII PCs configured
as a Beowulf cluster. To facilitate the use of this system, we have developed
a browser-based interface using Java. The system compresses PET data on
the user’s machine, sends these data over a network, and instructs the PC
cluster to reconstruct the image. The cluster implements a parallelized version
of our preconditioned conjugate gradient method for fully 3D MAP image
reconstruction. We report on the speed-up factors using the Beowulf approach
and the impacts of communication latencies in the local cluster network and
the network connection between the user’s machine and our PC cluster.

1. Introduction

Statistically optimal algorithms for PET image reconstruction can produce significant
improvements in image quality and resolution. However, the iterative methods used in such
approaches can require an hour or more of computation on a single processor computer for
fully 3D datasets. Substantial reductions in computation time have been achieved using the
ordered subsets expectation maximization (OSEM) algorithm, which can achieve acceptable
results in just a few passes through the data (Hudson and Larkin 1994). Further reductions have
been achieved by converting fully 3D datasets to two-dimensional (2D) data using rebinning
algorithms (e.g. Defrise et al 1997) and then using iterative 2D reconstruction rather than
fully 3D methods (Comtat et al 1998, Kinahan et al 1996, Liu et al 2001). However, these
speed-ups are achieved at a price: the OSEM method never optimizes the likelihood objective
function and the results can be dependent on the number of subsets and the number of

0031-9155/02/152785+11$30.00 © 2002 IOP Publishing Ltd Printed in the UK 2785

http://stacks.iop.org/pb/47/2785

2786 D Shattuck et al

iterations that are used; similarly, the rebinning methods, even if exact for true line integrals,
are unable to accurately model the true physical response of the scanner. In our work (Qi et al
1998b, Mumcuoglu et al 1994) we have concentrated on using convergent algorithms to
compute maximum a posteriori (MAP), or equivalently penalized-ML, solutions to the PET
reconstruction problem. The more accurate models that we use with fully 3D datasets have
been shown to improve image resolution (Qi et al 1998a, 1998b, Chatziioannou et al 2000)
but inevitably lead to longer computation times. These methods can require an hour or more
for 3D datasets, making the method impractical for routine use in clinical and small animal
scanners. In this paper we present a distributed computing system and software designed to
produce MAP reconstructions of PET data in reasonable time. We also describe our method for
decoupling the reconstruction computer from the scanning facility via the Internet, allowing
the cluster to serve as a remote computing resource.

Previously, our approach to reducing reconstruction time has been to use rapidly
converging methods such as the preconditioned conjugate gradient method (Qi et al 1998b).
Further reductions were obtained using symmetric multi-processing (SMP) computing. We
developed a multi-threaded implementation of our reconstruction method that parallelized the
optimization across multiple CPUs. In tests with a 4-processor server, we were able to achieve
speed-up factors of approximately 3.4 relative to a single processor. Unfortunately, the number
of processors in most entry level or midrange servers is often limited to four, and the cost
relative to single or dual processor systems is very high. For this reason, we investigated the
use of PC clusters, often referred to as Beowulf clusters (Sterling et al 1995). This allowed us
to use a large number of low-cost systems to achieve a substantial speed-up relative to a single
computer.

Other researchers have also developed distributed computing approaches for PET image
reconstruction. Labbé et al (1999) developed a library for parallel and distributed PET
reconstruction called PARAPET that provides parallel implementations of many functions
needed for PET image reconstruction, such as forward and backprojection operators. Vollmar
et al (2000, 2002) recently presented a cluster approach to reconstruction of images from the
high-resolution CTI HRRT brain scanner. In their paper in this special issue they describe
implementations using Fourier rebinning and 2D OSEM and fully 3D OSEM in a distributed
Windows NT environment.

A Beowulf cluster is simply a network of workstations, typically using Unix or Linux as
an operating system. For the purposes of code parallelization, the cluster is usually configured
with a head-node that controls the program and a set of worker-nodes that handle processes
spawned by the head-node. The difference between the cluster system and a multiple CPU
server is that the former does not have shared memory; thus data must be transferred via a
local ethernet between processors. This is often the bottleneck in the performance of these
clusters and is of particular importance in PET image reconstruction where the datasets and
image volumes are large. For this reason, many cluster implementations rely on high-speed
interconnections running at 1 Gbit/s or higher. Such components can significantly increase
the cost of the nodes on a system. Here we report on our progress in using a combination
of multithreading and distributed computing on a Beowulf cluster consisting of nine dual
processor 933 MHz Pentium III computers connected via a 100 Mbit/s switched ethernet.

A second goal of our work was to decouple the computer used for reconstruction from
that used to acquire data. To do this, we developed a web-browser-based interface to our
distributed computing code using Java. Thus data can be processed using the cluster from
any Java-enabled computer connected to the Internet. While data transfer times may be
unacceptable for standard Internet connections, the availability of higher speed Internet2
connections at many research facilities makes this approach viable. We describe and report

Internet2-based 3D PET image reconstruction using a PC cluster 2787

on an experiment we have performed by reconstructing data residing on the PET system
computers in the Nuclear Medicine clinic at UCLA using the cluster at the Signal and Image
Processing Institute at USC.

2. Methods

2.1. MAP image reconstruction

We use an MAP estimation algorithm to reconstruct PET images (Qi et al 1998b). In this
approach, the data are modelled as

y = Px + r + s (1)

where y is the mean of the data, x is the source distribution, r is the mean of the randoms, and
s is the mean of the scattered events. Randoms are estimated using delayed windows, while
scatter is estimated using a model-based approach for the ECAT HR+ scanner (Watson 2000)
and a Monte Carlo approach for the microPET P4 scanner (Holdsworth et al 2002). P is the
system matrix describing the probability that an event is detected, which we factor as

P = PnormPblurPattnPgeom (2)

where Pgeom is the geometric projection matrix describing the probability that a photon pair
reaches the front faces of a detector pair in the absence of attenuation and assuming perfect
photon pair colinearity. Pblur models photon pair non-collinearity, inter-crystal scatter and
crystal penetration, Pattn contains attenuation correction factors for each detector pair, and
Pnorm is a diagonal matrix containing the normalization factors.

Reconstructions are computed as the maximizer of a posterior probability equal to the
sum of the log-likelihood of the data, y, conditioned on the image, x, and the log-prior, which
has the form of a Gibbs energy function

L(x; y) = ln p(y|x) + ln p(x)

=
∑

i
{yi + yi ln(yi)} −

∑
j

∑

k∈N j

k > j

βjk(xj − xk)
2

(3)

where βjk is the smoothing parameter, which may vary spatially to control the resolution
properties of the reconstructed image (Qi and Leahy 2000). Nj is the neighbourhood of
voxels about j ; in our case, we use a 26 nearest-neighbour model.

As in our previous work on PET image reconstruction, we use a preconditioned conjugate-
gradient algorithm for optimization. The specific algorithm we use is the Polak–Ribiere form
of the conjugate gradient method. This uses an iterative update rule

x(n+1) = x(n) + α(n)s(n)

s(n) = d(n) + γ (n−1)s(n−1)

d(n) = C(n)g(n)

γ (n−1) = (g(n) − g(n−1))′d(n)

g(n−1)′d(n−1)

(4)

where x(n) is the image at iteration n, s is the direction of the update, g is the gradient of the
cost function at x(n), and C(n) is the diagonal EM-based preconditioning matrix. The gradient
of the cost function (3) is the sum of the gradients of the log-prior and log-likelihood terms.
The computation cost in the algorithm is dominated by computation of the gradient of the log
likelihood which has the form (Qi et al 1998a)

∂

∂xj ′
ln p(y|x) =

∑

i

pij ′ +
∑

i

pij ′
yi∑

j pijxj

. (5)

2788 D Shattuck et al

In this equation,
∑

j pij xj is a forward projection, while
∑

i pij ′ yi∑
j pij xj

is a backprojection

of the data normalized by the forward projection of the current image estimate. These terms
must be recomputed during each iteration. The remaining term,

∑
i pij ′ , is computed once

and stored.
The PCG algorithm is initialized with s(0) = d(0) and iteratively computes the conjugate

directions. It is necessary to check that s(0) is an ascent direction. In the case that s(n)′g(n) < 0,
s(n) is a descent direction and the algorithm is re-initialized with s(n) = d(n). The step size,
α(n), is computed at each iteration using a Newton–Raphson line search to maximize the
objective function. We incorporate a positivity constraint by using a bent-line search as we
described by (Qi et al 1998a).

2.2. Data

Here we report on application of this algorithm, using the PC cluster, to data collected in
3D mode using an ECAT HR+ whole-body scanner (CTI, Knoxville, TN) and the microPET
P4 small animal scanner (Concorde Microsystems, Knoxville, TN). The data from the HR+
scanner were a standard 3D dataset rebinned with a span of 9 and a maximum ring difference
of 22. There were 239 sinograms each of size 288 (elements) by 144 (angles) elements;
these are sent as 16-bit integers, giving a total emission sinogram size of 20 MB. Attenuation
correction requires a second sinogram of 32-bit floating point numbers with the same number
of elements (40 MB), while normalization is stored in a factored form requiring less than
200 KB. Thus, the total size of the data for a single frame is on the order of 60 MB.

Data from the microPET scanner were rebinned into 703 sinograms each of size 192
(elements) by 168 (angles), for a file size of 45 MB when represented using 16-bit integers.
Currently, transmission-based attenuation correction is not available on this scanner so that
calculated attenuation correction factors are used; these can be calculated by the cluster.
Current practice in the microPET scanner uses a set of normalization sinograms computed
directly from a uniform cylinder scan. The resulting normalization factors, represented in a
32-bit floating point, require an additional 90 MB. This produces a set of data on the order of
135 MB in size. The file sizes are important when considering the impact of reconstruction
via a browser over an Internet connection. The other files that are required are either small
or can be stored on the cluster (such as the forward projection matrix, P). Voxel sizes used
in our reconstructions were 2.25 mm × 2.25 mm × 2.42 mm for the HR+ scanner and
0.6 mm × 0.6 mm × 0.6 mm for microPET, with images of size 128 × 128 × 63. The images
are thus of size 4 MB when saved as 4-byte real (floating point) values. Transfer times for the
reconstructed images back to a remote user are small compared to those for sending the data
to the cluster.

2.3. Clusters and code parallelization

2.3.1. System set-up. We built a cluster consisting of one master node and eight worker
nodes. Each worker node is a rackmounted dual processor Intel Pentium III 933 MHz system
with 512 MB of RAM and 20 GB of disc space. The master node is also a rackmounted
dual processor Intel Pentium III 933 MHz system, but has 1 GB of RAM and a 36 GB
hard drive. The head node has dual network interface cards (NICs), allowing the cluster to
have a private network but still be accessible from the Internet. The head node is connected by
a 1 Gbit/s connection to a switch, which distributes this bandwidth to the 100 Mbit/s NICs in
the worker nodes. This allows each of the worker nodes to communicate with the head node
at full speed. The design of the cluster is shown in figure 1. We configured the system with

Internet2-based 3D PET image reconstruction using a PC cluster 2789

Beowulf Cluster

Master
Node

Node 3

Node 4

Node 1

Node 2

Node 5

Node 8

Node 7

Node 6

1
0

0
M

bs
S

w
itc

h

Remote
User

Internet2

Figure 1. Architecture of the PC cluster.

the Linux operating system (RedHat v. 7.2; Linux kernel version 2.4.10). We also installed
the local area multicomputing (LAM) 6.5.6 version of the message passing interface (MPI)
protocol onto each node (Burns et al 1994). MPI is an open standard for communicating
data between computer processes (Gropp et al 1999); LAM is an implementation for use on
clustered computing systems and provides a programming environment that is portable to
other architectures.

2.3.2. Code parallelization. Analysis of our algorithm’s performance on a single computer
revealed that two operations dominated computation: the backprojection of the sinograms into
image space and the forward projection of the image into sinogram space. Computation of
the gradient in (5) requires a backprojection and a forward projection during each iteration;
a second forward projection may also be required during any iteration in order to maintain
the positivity constraint. We distributed the processing of these two key operations across
the cluster. Ignoring communication costs, we were able to achieve roughly a factor 0.75N

speed-up on the forward and backwardprojections using N nodes of the cluster. This number
is less than N because the workload is not perfectly balanced across the processors, but still
represents a substantial reduction in computing time.

Were we to communicate the sinogram data during the iterations of the algorithm, the high
cost of passing these results among the nodes would rapidly consume the gain in performance.
Fortunately, we can decompose our problem such that the worker nodes never need to receive
or transmit sinogram data once the iterations have begun. Furthermore, each node only needs
to receive a subset of the sinogram data during initialization. The forward and backprojection
operators are both linear transformations and are represented as a factored system matrix
as described above. During backprojection, each element of the image is a function of
several elements of the sinograms. Each sinogram is transformed by a block of rows of the
composited system matrix to contribute to the reconstructed image. We can thus partition
this transformation based on arbitrary sets of sinograms, apply the system matrix separately
to these sinograms to obtain their contribution to the reconstructed image, and then sum
these partial results to obtain the entire transformation. In our distributed implementation, we
assign to each node a range of sinograms for which it is responsible. The node keeps updated
versions of the forward projection of the current image estimate into these sinogram planes,
and backprojects these into the image space when requested by the head node. The image
results are sent back to the head node, where they are combined into a single image.

2790 D Shattuck et al

The forward projection problem can be decomposed into functions producing individual
sinograms. However, each operation will still need to access the full image that is being
forward projected. Fortunately, the communication cost of transmitting images to each node
is relatively small compared to the cost of transmitting sinogram data or performing the
reconstruction computation. During forward projection, the head node broadcasts the image
to each node; each node is then responsible for producing the sinograms it will use during
backprojection. Since the nodes generate any sinogram data they need in addition to their
initial data, they do not need to communicate their sinogram results to other nodes of the cluster.

To completely eliminate the need to send full sinogram data back to the head node,
we distributed some additional computation across the nodes. The overhead costs of this
distributed processing are small compared to the gains from distributing the projection
operations. We also use a second layer of parallelization on each node, each of which has two
processors. The projection operations are again decomposed based on sinograms with two
threads spawned on each node. In this case, we achieve better load balancing since the node
can dynamically assign sinograms to the threads as soon as they are idle. The computation
of the contribution to the cost function from the prior in (3) is also multi-threaded on the
head node. This operation may be distributed to the cluster in future work; however, this
would require broadcasting of image vectors and the cost of communication may outweigh the
benefit of distributed processing. The projection routines are also used during initialization,
so improvements to them reduce start-up costs for the algorithm. Additionally, the geometry
matrices used in projection can be hundreds of megabytes in size and are needed on each node.
These matrices are used repeatedly for a particular scanner and voxel size, thus we store copies
of these files on the local hard drive of each node. This reduces the network burden further.

2.4. Java-browser-based interface

We developed a Java-based interface to the 3D MAP reconstruction program that allows users
across the Internet to run reconstructions on our Beowulf PC cluster. The interface consists
of two components: a client module and a server module. Figure 2 illustrates the architecture
of the interface. The client module was implemented as a Java applet and can run on web
browsers equipped with the Java Run-time Enviroment (available for most computers from
http://java.sun.com). The user supplies the data files (emission file, normalization file, etc)
and parameters (number of bed positions, number of frames, etc) for the MAP reconstruction
and submits a reconstruction request. The files may be uploaded to the server in either ECAT
Matrix7 format or as raw data files; multiple frames can be reconstructed from a single request.

Because the data sizes used in 3D PET reconstructions are large, we gave the client
the capability to compress the data before uploading them to the cluster. The files are
compressed using the popular Zip format. Our programs also accept pre-compressed data
in gzip format, and in the future they will accept data that have been compressed using
our sinogram compression methods (Asma et al 2001). The data size we used for HR+
reconstruction was 60 MB, while data size for the Concorde scanner was 135 MB. All HR+ files
were transfered in ECAT Matrix7 format, while the Concorde data were transfered as 16-bit
integers (emission data) and 32-bit floats (normalization data). The data were transferred over
the network and received by a server module on the cluster.

We implemented the server module as a Java servlet that receives the data from the client
and performs decompression if necessary. As part of our implementation of the server, we
developed a queuing system to handle multiple requests for reconstruction. The servlet will
spawn one reconstruction at a time, in the order received. Once a reconstruction has started,
text messages describing the reconstruction progress are sent to the appropriate Java client,

Internet2-based 3D PET image reconstruction using a PC cluster 2791

SERVER
java servlets java applet

User Inputs Data Files

Reconstruction Request (Compressed Data)

Parameters

Compression

Decompression

Reconstruction
Starts

CLIENT

1:
&

2:

3:

6: Progress Report

Reconstructed Images

5:

7:

4:

Figure 2. Architecture of the web interface to the 3D PET reconstruction program. The user
supplies the data files and parameters to the java applet. If requested, the applet compresses the
data files and submits a reconstruction request to the server. The server decompresses the data files
if necessary, starts the reconstruction and sends the reconstruction progress to the applet, which
displays it in the client browser. When the reconstruction finishes the server sends an e-mail telling
the user that the data are ready for download.

which will display reconstruction progress in the specific user’s browser. The server will also
e-mail the user once the reconstruction has finished, providing the user with a private location
from which files may be downloaded. The user may leave the website once the reconstruction
request has been sent.

2.5. Network connections

Internet2 is a research and development consortium that has established high-speed
connections among hundreds of US universities and companies. Internet2 is a subset of
the standard Internet, where two machines that are both on Internet2 are capable of connecting
at higher speeds. To evaluate performance over Internet2, the PC-cluster server was connected
through a 100 Mbit/s network to the University of Southern California backbone to Internet2.
Client computers containing the data were connected via gigabit connections to two sites on
the UCLA computer network and one site on the same local area network (LAN) as the cluster.
The link between USC and UCLA is part of the California Research and Education Network-2
(CalREN-2). CalREN-2 is a high-performance advanced-services network with a minimum
communication bandwidth of 622 Mbit/s; USC and UCLA are part of an Optical Carrer level
48 (OC-48) ring with a bandwidth of 2.488 Gbit/s.

3. Results and discussion

3.1. Computational efficiency

We performed reconstructions on our cluster using different numbers of nodes to assess the
benefit of using distributed processing. Figure 3 shows the performance gains achieved for

2792 D Shattuck et al

Performance Gain with Number of Nodes

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6 7 8 9

Nodes

S
p

ee
d

g
ai

n

CTI HR+

Concorde P4

Figure 3. Speed increase in MAP PET reconstruction for different sized clusters.

reconstructions of both HR+ and P4 data; all reconstructions used 30 iterations. We observed
the gains to be similar in both the initialization and main loop of the program. The chart shows
that we achieved increases in processing speed greater than N/2, where N is the number of
nodes in the cluster. The HR+ reconstruction was performed on nine nodes five times faster
than the same reconstruction performed on a single node. The cluster version of the code
computed a reconstruction in 19 min and 14 s, as compared to 94 min on a single node; this
represents a performance gain of 5. The reconstruction of the Concorde data took 21 min and
08 s on nine nodes, compared to 1 h and 55 min on a single node. The better peformance gain
of 5.5 was likely due to the larger size of the reconstruction problem.

Figure 4 shows the time spent by the head node in key components of a reconstruction
iteration for the HR+ data as computed with different sized clusters. Forward and
backprojection clearly dominate the computation time when the algorithm is performed on a
single node. When two nodes are used, these times drop significantly. Part of this reduction
is due to load imbalance, as the processing of the sinograms assigned to the head node
requires less time than that required for the sinograms assigned to the other nodes. If the
next computation to be done does not depend on the current results from the nodes, then the
head node can proceed to its next computing task. This explains the better-than-N speed-up
achieved in the forward and backprojection as the number of nodes goes from 1 to 2, while the
overall performance remains slightly less than N. As the number of nodes increases, the times
for these forward and backprojection are greatly reduced. When the ninth node is added to the
cluster, the line search requires almost as much time as the forward and backprojection. This
figure indicates that to achieve further gains by adding more nodes we must either distribute
additional processing or perform better load balancing. With hand-tuned load balancing,
where planes of sinogram data were assigned to nodes based on their known computation
times, we were able to achieve a peformance gain of 6.5 with nine nodes. We will investigate
an automatic load-balancing scheme in future work.

3.2. Remote computing and compression

We reconstructed images remotely using the Java client/server on a local area network at USC,
on a fast connection between USC and UCLA, and on a slower connection between UCLA and
USC. The results are summarized in table 1. Additional overhead for data transfers between
the USC and UCLA sites over Internet2 was minimal. Transfer of the combined transmission,
attenuation correction and normalization files in uncompressed Matrix7 format (60 MB) took

Internet2-based 3D PET image reconstruction using a PC cluster 2793

Allocation of iteration time for clusters of different sizes

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

1 2 3 4 5 6 7 8 9

nodes

se
co

n
d

s

gradient
line search
other
lag (load imbalance)
send image results
forward project
back project

Figure 4. Usage of computing time in a single iteration of reconstruction. Forward projection
lagtime is the difference between when the head node finishes its portion of the forward projection
and when all nodes are finished; some of this time may be used by the head node to perform
additional computation.

(This figure is in colour only in the electronic version)

Table 1. Transfer and reconstruction times for 30 iterations on the PC cluster. UCLA-I2 is
a computer connected directly to the Internet2 via gigabit switching. UCLA-S is a standard
connection using 100 megabit switching. USC-LAN is a computer at USC connected to the same
local area network as the cluster. Note that transfer rates are highly dependent on network traffic.
Compression times shown are for an Intel 933 MHz PIII Xeon client.

ECAT HR+ Concorde P4

Reconstruction time 18:44 21:08
Compression type None Zip None Zip
Transfer data size 60 MB 41 MB 136 MB 36 MB
Compression time n/a 0:42 n/a 0:39
Decompression time n/a 0:06 n/a 0:10

Data transfer times
USC-LAN 0:08 0:05 0:19 0:04
UCLA-S 0:27 0:18 1:05 0:15
UCLA-I2 0:10 0:05 0:20 0:05

10 s on the direct Internet2 connection, while transfer of the P4 transmission and normalization
files (135 MB) took 20 s. These were comparable to the transfer rates achieved on the
local area network at USC. These times are acceptable compared to reconstruction times of
18 min and 44 s and 21 min and 08 s respectively. We expect to reach higher transfer rates
once certain routing issues are resolved; recent tests performed between USC in Los Angeles,
CA, and a USC satellite campus in Washington, DC, have demonstrated that transfer speeds of
600 Mbit/s are currently achievable using Internet2. We can typically achieve 30–75%
compression using the compression applet, which will reduce the transfer time accordingly.

2794 D Shattuck et al

FBP OSEM PCG

FBP OSEM PCG

FBP OSEM PCG

Figure 5. Reconstructions for a fully 3D FDG brain scan: ramp-filtered 3D backprojection, Fourier
rebinned with 2D OSEM reconstruction (40 iterations, 8 subsets), and PCG MAP reconstruction
using our cluster code (30 iterations).

However, the time taken to compress the files is approximately 40 s using a 933 MHz Intel
Pentium III Xeon computer; an additional 5–10 s were required to decompress the files
once they were on the cluster. This cost often exceeds the transfer time required for the
uncompressed files. For systems with slower Internet connections, the trade-off between
compression and transfer times will be different and use of compression may be appropriate.

An example of the advantage in image quality in using this approach is shown in
figure 5. Reconstructions for a fully 3D FDG brain scan are shown using rampfiltered 3D
backprojection, Fourier rebinned 2D OSEM reconstruction (40 iterations, 8 subsets), and MAP
reconstruction (30 iterations) using our cluster code. Improvements in resolution resulting
from the accurate system modelling used in our approach are clear in the improved definition
of cortical and subcortical structures.

This preliminary study demonstrates the feasibility of using remote PC clusters for image
reconstruction for PET sites with access to fast networks. Furthermore, the cluster presents
a relatively low-cost approach to achieving practical reconstruction times using 3D iterative
PET reconstruction.

Internet2-based 3D PET image reconstruction using a PC cluster 2795

Acknowledgments

This work was supported by grant R01-EB00363 from the National Insitute of Biomedical
Imaging and Bioengineering.

References

Asma E, Shattuck D W and Leahy R M 2001 Lossless compression of list-mode 3D PET data Proc. IEEE Nuclear
Science Symposium and Medical Imaging Conference (San Diego, CA)

Burns G, Daoud R and Vaigl J 1994 LAM: an open cluster environment for MPI Proc. Supercomputing Symposium
’94 (University of Toronto) ed J W Ross pp 379–86

Chatziioannou A, Moore A, Annala A, Nguyen K, Leahy R and Cherry S 2000 Comparison of 3D maximum a
posteriori and filtered backprojection algorithms for high resolution animal imaging with microPET IEEE
Trans. Med. Imaging 19 507–12

Comtat C, Kinahan P E, Defrise M, Michel C and Townsend D W 1998 Fast reconstruction of 3-D PET data with
accurate statistical modeling IEEE Trans. Nucl. Sci. 45 1083–9

Defrise M, Kinahan P E, Townsend D W, Michel C, Sibomana M and Newport D 1997 Exact and approximate
rebinning algorithms for 3-D PET data IEEE Trans. Med. Imaging 16 145–58

Gropp W, Lusk E and Skjellum A 1999 Using MPI 2nd ed (Cambridge, MA: MIT Press)
Holdsworth C H, Levin C S, Janecek M, Dahlbom M and Hoffman J 2002 Performance analysis of an improved 3D

PET Monte Carlo simulation and scatter correction IEEE Trans. Nucl. Sci. 48 83–9
Hudson H M and Larkin R S 1994 Accelerated image reconstruction using ordered subsets of projection data IEEE

Trans. Med. Imaging 13 601–9
Kinahan P, Michel C, Defrise M, Townsend D, Sibomana M, Lonneux M, Newport D and Luketich J 1996 Fast

iterative image reconstruction of 3D PET data Proc. IEEE Nuclear Science Symposium and Medical Imaging
pp 1918–22

Labbé C, Zaidi H, Morel C and Thielemans K 1999 An object-oriented library incorporating efficient projection/

backprojection operators for volume reconstruction Int. Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine (Egmond aan Zee) ed F Beekman et al pp 137–40

Liu X, Comtat C, Michel C, Kinahan P, Defrise M and Townsend D 2001 Comparison of 3-D reconstruction with
3D-OSEM and with FORE+OSEM for PET IEEE Trans. Med. Imaging 20 804–14

Mumcuoglu E U, Leahy R M, Cherry S R and Zhou Z 1994 Fast gradient-based methods for Bayesian reconstruction
of transmission and emission PET images IEEE Trans. Med. Imaging 13 687–701

Qi J and Leahy R 2000 Resolution and noise properties of MAP reconstructions in fully 3D PET IEEE Trans. Med.
Imaging 19 493–506

Qi J, Leahy R, Hsu C, Farquhar T and Cherry S 1998a Fully 3D Bayesian image reconstruction for the ECAT
EXACT HR+ IEEE Trans. Nucl. Sci. 45 1096–103

Qi J, Leahy R M, Cherry S R, Chatziioannou A and Farquhar T H 1998b High resolution 3D Bayesian image
reconstruction using the microPET small-animal scanner Phys. Med. Biol. 43 1001–3

Sterling T, Savarese D, Becker D, Fryxell B and Olson K 1995 Communication overhead for Space Science
Applications on the Beowulf Parallel Workstation Proc. 4th IEEE Symposium on High Performance Distributed
Computing (HPDC) (August 1995) pp 23–30

Vollmar S, Lercher M, Knöss C, Michel C, Wienhard K and Heiss W D 2000 BeeHive: cluster reconstruction of 3-D
PET data in a Windows NT network using FORE Proc. IEEE Med. Imaging Conf. (Lyon)

Vollmar S, Michel C, Treffert J T, Newport D, Knöss C, Wienhard K and Heiss W D 2002 HeinzelCluster: accelerated
reconstruction for FORE and OSEM3D Phys. Med. Biol. 47 2651–8

Watson C C 2000 New, faster, image-based scatter correction for 3D PET IEEE Trans. Nucl. Sci. 47 1587–94

