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Abstract— We propose a non-parametric method for incorpo-
rating information from co-registered anatomical images into PET
image reconstruction through priors based on mutual information.
Mutual information between feature vectors extracted from the
anatomical and functional images is used as a priori information
in a Bayesian framework for the reconstruction of the PET image.
The computation of mutual information requires an estimate of
the joint density of the two images, which is obtained by using
the Parzen window method. Preconditioned conjugate gradient
with a bent Armijo line-search is used to maximize the resulting
posterior density. The performance of this method is compared
with that using a Gaussian quadratic penalty, which does not
use anatomical information. Simulation results are presented for
PET and MR images generated from a slice of the Hoffman
brain phantom. These indicate that mutual information based
penalties can potentially provide superior quantitation compared
to Gaussian quadratic penalties.

I. INTRODUCTION

The uptake of radioactive PET tracers typically results in a
spatial density that reflects underlying anatomical morphology.
This results in a strong correlation between the structure of the
anatomical and functional images. Hence, the incorporation of
anatomical information from high resolution MR/CT images
into PET reconstruction algorithms can potentially improve
the quality of low resolution PET images. This anatomical
information is readily available from multimodality imaging
equipment that is often used for acquiring data and can be in-
corporated into the PET reconstruction algorithm in a Bayesian
framework through the use of priors. Previous work on the use
of anatomical priors can be broadly classified into: (i) Methods
based on anatomical boundary information, which encourage
boundaries in functional images that correspond to anatomical
boundaries [1],[2] and (ii) methods that use anatomical segmen-
tation information, which encourage the distribution of tracers
in regions corresponding to anatomical regions [3],[4]. In both
of these approaches, the goal is to obtain a functional image that
has a structure that is similar to the anatomical image. Mutual
information (MI) is a measure of the amount of information
contained by one random vector about the other and therefore
can be used as a similarity metric between the two images [5].
In [4], a Bayesian joint mixture model is formulated such that
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the solution maximizes MI between class labels. A parametric
method is used where each class conditional prior is assigned
a gamma distribution.

We propose a non-parametric method that uses MI between
feature vectors extracted from the anatomical and functional
images to define a prior on the functional image. In this paper
our feature vectors consist of the intensity, local mean in a
neighborhood, and the horizontal and vertical gradients at each
pixel, because we expect the boundaries in the two images to
be similar and the intensities to follow similar homogeneous
distributions within the boundaries. This method does not
require anatomical segmentation information and hence the
algorithm is not constrained by the accuracy of segmentation.

II. METHODS AND RESULTS

A. MAP Reconstruction with Mutual Information Prior

Let f represent the functional image, let a denote the anatom-
ical image and g denote the sinogram data. The maximum a-
posteriori (MAP or equivalently penalized likelihood) estimate
of f is given by,

f̂ = arg max
f≥0

p(g|f)p(f)
p(g)

, (1)

where p(g|f) is the Poisson likelihood function and p(f) is
a prior on the functional image. Let the N feature vectors
extracted from the functional and anatomical images be rep-
resented as xi and yi, respectively for i = 1, 2, .., N . These
can be considered as realizations of the random feature vectors
X and Y. Mutual information I(X,Y) is defined as [6]:

I(X,Y) = H(X) + H(Y) − H(X,Y) (2)

where H(X) denotes the entropy of X given by:

H(X) = −
∫

p(X) log p(X)dX (3)

and H(X,Y) denotes the joint entropy between X and Y:

H(X,Y) = −
∫

p(X,Y) log p(X,Y)dXdY (4)

where dX is shorthand for dX1 . . . dXN . Our mutual informa-
tion based prior is then defined as

p(f) =
1
Z

exp(µI(X,Y)), (5)
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where Z is a normalization constant and µ is a positive constant.
Let there be m features in each feature vector such that X =
[X1, X2, · · · , Xm]. By assuming independence between the fea-
tures, I(X,Y) can be computed from the mutual information
between individual features as follows:

I(X,Y) =
m∑

i=1

I(Xi, Yi). (6)

I(X,Y) is maximized when the joint density p(X,Y) is
sparse with localized peaks, implying that the two vectors are
highly correlated and knowledge of one reduces the uncertainty
(entropy) in the other.

The computation of mutual information requires knowledge
of the joint density p(X,Y). Using a non-parametric approach,
this joint density is estimated from xi and yi, which are the
realizations of X and Y. Differentiable density estimates for
both the functional and anatomical images can be obtained
using Parzen windows [8] in the form of:

p̂(X) =
N∑

i=1

φ

(
X − xi

σ

)
, (7)

where φ is a Gaussian window and σ determines the width
of the window. The window width σ is taken as a design
parameter. Taking the log of the posterior density and dropping
constants, our objective function becomes:

L(f) = log(p(g|f)) + µI(X,Y) (8)

This objective function can be maximized with a precon-
ditioned conjugate gradient procedure with an Armijo line-
search [7]. When the non-negativity constraint was violated, we
used a second line-search between the current estimate and the
projection of the estimate resulting from the first line-search
onto the constraint set to impose non-negativity (i.e. a bent
Armijo line-search). The objective function is a non-convex
function of f , so optimization of this function using gradient
based techniques requires a good initial estimate to converge to
the correct solution. We used 10 iterations of the expectation
maximization (EM) maximum likelihood algorithm to initialize
the conjugate gradient method. Note that we used the Armijo
rule rather than the Newton-Raphson line search because of
the cost involved in computing the second derivative and also
because of the nonconvexity of the objective function.

B. Extraction of Feature Vectors

The feature vectors extracted from the images should be
chosen such that they are correlated in the anatomical and func-
tional images and accurately describe the common structure
of the two images. In this paper, the following features were
considered:

1) Intensity: The intensities in the anatomical and functional
images follow similar distributions, though the actual
values are not similar.

2) Horizontal and Vertical gradients: The edges in the
anatomical and functional images are strongly correlated,

Fig. 1. The phantoms used in the simulations to represent the PET image
(left) and the MR image (right). The line in the PET image represents the
position of the transaxial profile in Figure 4.

since an edge in one image often corresponds to an
edge in the other. The horizontal gradient at each pixel
is computed by taking a left difference between the
pixel intensities and the vertical gradient at each pixel is
computed by taking the difference between the intensity
at that pixel and the one below it.

3) Local mean: We expect generally small variations in
image intensity within anatomical regions compared to
variations from one region to another. Consequently we
would expect to see similarity in the local means in the
anatomical and functional images. The local mean at each
pixel is computed by taking the average of intensities in
a neighborhood of that pixel. This also provides spatial
information, since the value of local mean at each pixel
depends on the intensities of the pixels around it.

In the results presented below, we compare performance of MI-
based reconstruction for the case where we use only image in-
tensity with that where we also use the image gradient and local
mean in the feature vector. Since the former uses no contextual
information, while the latter is specifically dependent on the
local image structure, we expect to find superior performance
using the full feature vector.

C. Simulation Results

We used a 128×128 slice of the Hoffman brain phantom
as our functional image and scaled the three different regions
(gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF)) to generate our anatomical image. Both images are
shown in Figure 1. The feature vectors extracted from the true
PET image are shown in Figure 2. The simulations are based
on a single ring of the microPET Focus 220 scanner, for which
the sinogram dimensions are 288×252. The sinogram data had
approximately 800K counts. We reconstructed all images using
50 iterations of preconditioned conjugate gradient, initialized
by the image reconstructed after 10 iterations of maximum
likelihood expectation maximization (MLEM) algorithm.

Two different MI priors were considered and the strength of
each prior was controlled by varying the smoothing parameter
µ.

1) MI-Intensity: Mutual information between the intensities
of the MR and PET images.

2) MI-Spatial: Mutual information between feature vectors
consisting of intensity, local mean of 8 nearest neighbors
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Fig. 2. Feature vectors extracted from the true PET image. Top Row: Intensity
and Local Mean. Bottom Row: Horizontal and vertical gradients.

and horizontal and vertical gradients at each pixel.

The performance of these priors was compared to the quadratic
prior (QP) with a neighborhood defined by 8 nearest neigh-
bors, which does not use any anatomical information. The
regularization parameter β for the QP was varied to control
the resolution/noise trade-off. The reconstructed images using
MI-Intensity, MI-Spatial and QP are shown in Figure 3. The
transaxial profile of the true and reconstructed images at the
position shown in the PET image of Figure 1 is shown in
Figure 4. The maximum likelihood estimate is typically noisy.
Using the quadratic penalty we reduce noise at the cost of
reduced resolution as we increase β. It can be seen that the
images obtained using MI priors have well-defined edges and
noise is reduced. The transaxial profiles show the images using
MI priors following region boundaries more closely than the
QP images. The reconstructions using the MI-Intensity prior
have some high intensity pixels at random locations in the
image. With the addition of spatial information through local
mean and gradients, this occurence is reduced and the images
have a more homogeneous distribution of intensities within
the boundaries. Normalized root mean squared errors between
the true and reconstructed images are plotted as a function of
iteration number in Figure 5. It can be seen that the overall
normalized mean squared error is considerably lower for the
MI priors in comparison with QP and ML.

The joint density estimate of the anatomical and true PET
image is shown in Figure 6(a) and the joint density estimates of
anatomical and reconstructed PET images using the MI and QP
priors are shown in Figure 6(b)-(d). The x-axis in each of these
figures corresponds to the PET image intensity and the y-axis
corresponds to the anatomical image intensity. In Figure 6(a),
the GM, WM and CSF regions in the true images are seen as
three distinct peaks in the joint density. The smooth variation
in intensities in the images obtained using QP are seen as long
clusters in Figure 6(b). The random high pixel intensities seen
in the MI-Intensity reconstructions are reflected in Figure 6(c)
as small, isolated peaks away from the clusters corresponding to

Fig. 3. Reconstructed images with the MI-Intensity prior (top) for µ=0, 5000
and 1e4, with the MI-Spatial prior (center) for µ=3000, 5000, and 7000, and
QP(bottom) for β=0.1, 0.5, and 1.0

Fig. 4. Transaxial Profile of true and reconstructed PET images

the three regions. These isolated peaks are almost negligible in
the MI-Spatial prior, where the joint density estimate is closest
to that of the true images, with long clusters in the GM and
WM regions, corresponding to a smooth variation in intensities
in those regions.

To evaluate the performance of the MI priors in quantify-
ing uptake, Monte Carlo simulations were performed. Forty
datasets were generated with 800K counts each using the same
scanner model as described above. The bias, standard deviation
and root mean squared (RMS) error of the images reconstructed
using MI-Intensity and MI-Spatial priors with µ = 5000 and
the QP with β = 0.5 are shown in Figure 7. The MAP
estimate using QP has high bias along the boundaries and
uniform standard deviation. The RMS error is also high along
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Fig. 5. Normalized mean squared errors as a function of iteration number for
ML, QP with β = 0.5, MI-Intensity and MI-Spatial with µ = 5000.
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Fig. 6. Joint density estimates of anatomical and (a) true PET image (b)
reconstructed PET image using QP with β = 0.5 (c) reconstructed PET image
using MI-Intensity with µ = 5000 (d) reconstructed image using MI-Spatial
with µ = 5000

the boundaries. The MI priors have lower bias than the QP,
but it is distributed within the boundaries. The MI-Intensity
prior has a structured standard deviation and RMS error that
is higher in the GM, where the random high intensity pixels
were seen. The standard deviation and RMS error for the MI-
Spatial prior are low close to the boundaries and higher away
from them, which is consistent with the fact that the MI-Spatial
prior follows the true boundaries closely.

III. DISCUSSION

We proposed a method for incorporating anatomical informa-
tion in PET image reconstruction through mutual information
based priors. The images reconstructed using MI priors had
well defined boundaries and less noise in comparison with
those obtained using ML and QP. The overall rms error was
also found to be considerably lesser for the MI priors. The

(a)

(b)

(c)

Fig. 7. (a) Bias, (b) standard deviation and (c) RMS error images of
reconstructions using (L to R) QP with β = 0.5, MI-Intensity and MI-Spatial
using µ = 5000

MI-Spatial prior, which included spatial information in the
feature vectors that were extracted from the anatomical and
functional images performed the best, with accurate boundaries
and homogeneous distribution of intensities within them.

These results represent a best-case scenario for the use of
MI since the anatomical and functional images used in our
simulation have identical boundary structure and are uniform
within regions. We do not anticipate that this approach will
prove useful for lesion detection in the form presented here,
since the MI criteria seeks to maximize similarity between
functional and anatomical images and can therefore not be
expected to enhance lesions not visible in the anatomical
image. The non-convexity of the MI prior makes it prone to
local maxima, making it necessary to start with a good initial
estimate. However, the results look promising and indicate that
with a good choice of feature vectors that accurately describe
the structure of the two images, this approach might be useful
in applications where function follows anatomy, like those
involving quantitation of uptake in specific organs.
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