Human Connectome Project: Resting-state MEG

Authors: Francois Tadel, Guiomar Niso, Elizabeth Bock, Sylvain Baillet

This tutorial explains how to download MEG recordings from the Human Connectome Project (HCP) ConnectomeDB database and process them into Brainstorm. The original processing pipeline was described in this article and this reference manual. Here we will focus only on reproducing the results on resting MEG recordings presented in the OMEGA tutorial.

Note that the operations used here are not detailed, the goal of this tutorial is not to introduce Brainstorm to new users. For in-depth explanations of the interface and theoretical foundations, please refer to the introduction tutorials.

The processing pipeline is published in this article:
Niso G, Tadel F, Bock E, Cousineau M, Santos A, Baillet S, Brainstorm Pipeline Analysis of Resting-State Data from the Open MEG Archive, Frontiers in Neuroscience, Mar 2019

License

These data were generated and made available by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657), which is funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems Neuroscience at Washington University.

For additional information on how to acknowledge HCP and cite HCP publications if you have used data provided by the WU-Minn HCP consortium, see http://www.humanconnectome.org/citations.

As a reminder, users of these datasets must comply with the Data Use Terms that were agreed upon when receiving these data.

Presentation of the experiment

Experiment

MEG acquisition

Head shape and fiducial points

Download and installation

We will use only one subject available in the HCP-MEG2 distribution: subject #175237.

Import the anatomy

Create a new subject and import the anatomy, partly processed with the HCP megconnectome v3 scripts.

Access the recordings

Link the resting MEG recordings to the Brainstorm database and run some basic quality control.

Pre-processing

Apply frequency filters to the recordings.

Advanced

Auxiliary channels

The ECG, VEOG and HEOG are available in the recordings in the form of bipolar montages. For each of them, we have access to two channels that need to be subtracted before being visualized or used for artifact detection. If you display the EOG channels, you will observe something like this:

To display these channels properly you can create the following montage, with the help of the Montage editor tutorial.

Artifact cleaning

We will now run the automatic procedure for cleaning the heartbeats, as described in the introduction tutorials (detection, SSP). The results we want to illustrate here are robust enough, the recordings do not need to be processed any further. If you want to improve the quality of the data with more manual cleaning (blinks, saccades, movements, bad segments), please refer to the introduction tutorials.

Source estimation

Power maps

We have now access to continuous recordings in source space, we can estimate the average power over this resting period, for various frequency bands. We propose here to compute the PSD from the first 100s instead of the full 379s rest recordings, it is faster and leads to very similar results. For more stable estimates, you can compute the the PSD over all the data available instead.

References

Scripting

The following script from the Brainstorm distribution reproduces the analysis presented in this tutorial page: brainstorm3/toolbox/script/tutorial_hcp.m

1 function tutorial_hcp(tutorial_dir) 2 % TUTORIAL_HCP: Script that reproduces the results of the online tutorial "Human Connectome Project: Resting-state MEG". 3 % 4 % CORRESPONDING ONLINE TUTORIALS: 5 % https://neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG 6 % 7 % INPUTS: 8 % tutorial_dir: Directory where the HCP files have been unzipped 9 10 % @============================================================================= 11 % This function is part of the Brainstorm software: 12 % https://neuroimage.usc.edu/brainstorm 13 % 14 % Copyright (c) University of Southern California & McGill University 15 % This software is distributed under the terms of the GNU General Public License 16 % as published by the Free Software Foundation. Further details on the GPLv3 17 % license can be found at http://www.gnu.org/copyleft/gpl.html. 18 % 19 % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE 20 % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY 21 % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 22 % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY 23 % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. 24 % 25 % For more information type "brainstorm license" at command prompt. 26 % =============================================================================@ 27 % 28 % Author: Francois Tadel, 2017 29 30 31 %% ===== FILES TO IMPORT ===== 32 % You have to specify the folder in which the tutorial dataset is unzipped 33 if (nargin == 0) || isempty(tutorial_dir) || ~file_exist(tutorial_dir) 34 error('The first argument must be the full path to the tutorial dataset folder.'); 35 end 36 % Subject name 37 SubjectName = '175237'; 38 % Build the path of the files to import 39 AnatDir = fullfile(tutorial_dir, SubjectName, 'MEG', 'anatomy'); 40 Run1File = fullfile(tutorial_dir, SubjectName, 'unprocessed', 'MEG', '3-Restin', '4D', 'c,rfDC'); 41 NoiseFile = fullfile(tutorial_dir, SubjectName, 'unprocessed', 'MEG', '1-Rnoise', '4D', 'c,rfDC'); 42 % Check if the folder contains the required files 43 if ~file_exist(AnatDir) || ~file_exist(Run1File) || ~file_exist(NoiseFile) 44 error(['The folder ' tutorial_dir ' does not contain subject #175237 from the HCP-MEG distribution.']); 45 end 46 47 48 %% ===== CREATE PROTOCOL ===== 49 % The protocol name has to be a valid folder name (no spaces, no weird characters...) 50 ProtocolName = 'TutorialHcp'; 51 % Start brainstorm without the GUI 52 if ~brainstorm('status') 53 brainstorm nogui 54 end 55 % Delete existing protocol 56 gui_brainstorm('DeleteProtocol', ProtocolName); 57 % Create new protocol 58 gui_brainstorm('CreateProtocol', ProtocolName, 0, 0); 59 % Start a new report 60 bst_report('Start'); 61 62 63 %% ===== IMPORT DATA ===== 64 % Process: Import anatomy folder 65 bst_process('CallProcess', 'process_import_anatomy', [], [], ... 66 'subjectname', SubjectName, ... 67 'mrifile', {AnatDir, 'HCPv3'}, ... 68 'nvertices', 15000); 69 70 % Process: Create link to raw files 71 sFilesRun1 = bst_process('CallProcess', 'process_import_data_raw', [], [], ... 72 'subjectname', SubjectName, ... 73 'datafile', {Run1File, '4D'}, ... 74 'channelalign', 1); 75 sFilesNoise = bst_process('CallProcess', 'process_import_data_raw', [], [], ... 76 'subjectname', SubjectName, ... 77 'datafile', {NoiseFile, '4D'}, ... 78 'channelalign', 1); 79 sFilesRaw = [sFilesRun1, sFilesNoise]; 80 81 82 %% ===== PRE-PROCESSING ===== 83 % Process: Notch filter: 60Hz 120Hz 180Hz 240Hz 300Hz 84 sFilesNotch = bst_process('CallProcess', 'process_notch', sFilesRaw, [], ... 85 'freqlist', [60, 120, 180, 240, 300], ... 86 'sensortypes', 'MEG, EEG', ... 87 'read_all', 1); 88 89 % Process: High-pass:0.3Hz 90 sFilesBand = bst_process('CallProcess', 'process_bandpass', sFilesNotch, [], ... 91 'sensortypes', 'MEG, EEG', ... 92 'highpass', 0.3, ... 93 'lowpass', 0, ... 94 'attenuation', 'strict', ... % 60dB 95 'mirror', 0, ... 96 'useold', 0, ... 97 'read_all', 1); 98 99 % Process: Power spectrum density (Welch) 100 sFilesPsdAfter = bst_process('CallProcess', 'process_psd', sFilesBand, [], ... 101 'timewindow', [0 100], ... 102 'win_length', 4, ... 103 'win_overlap', 50, ... 104 'sensortypes', 'MEG, EEG', ... 105 'edit', struct(... 106 'Comment', 'Power', ... 107 'TimeBands', [], ... 108 'Freqs', [], ... 109 'ClusterFuncTime', 'none', ... 110 'Measure', 'power', ... 111 'Output', 'all', ... 112 'SaveKernel', 0)); 113 114 % Mark bad channels 115 bst_process('CallProcess', 'process_channel_setbad', sFilesBand, [], ... 116 'sensortypes', 'A227, A244, A246, A248'); 117 118 % Process: Snapshot: Frequency spectrum 119 bst_process('CallProcess', 'process_snapshot', sFilesPsdAfter, [], ... 120 'target', 10, ... % Frequency spectrum 121 'modality', 1); % MEG (All) 122 123 % Process: Delete folders 124 bst_process('CallProcess', 'process_delete', [sFilesRaw, sFilesNotch], [], ... 125 'target', 2); % Delete folders 126 127 128 %% ===== ARTIFACT CLEANING ===== 129 % Process: Select data files in: */* 130 sFilesBand = bst_process('CallProcess', 'process_select_files_data', [], [], ... 131 'subjectname', 'All'); 132 133 % Process: Select file names with tag: 3-Restin 134 sFilesRest = bst_process('CallProcess', 'process_select_tag', sFilesBand, [], ... 135 'tag', '3-Restin', ... 136 'search', 1, ... % Search the file names 137 'select', 1); % Select only the files with the tag 138 139 % Process: Detect heartbeats 140 bst_process('CallProcess', 'process_evt_detect_ecg', sFilesRest, [], ... 141 'channelname', 'ECG+, -ECG-', ... 142 'timewindow', [], ... 143 'eventname', 'cardiac'); 144 145 % Process: SSP ECG: cardiac 146 bst_process('CallProcess', 'process_ssp_ecg', sFilesRest, [], ... 147 'eventname', 'cardiac', ... 148 'sensortypes', 'MEG', ... 149 'usessp', 1, ... 150 'select', 1); 151 152 % Process: Snapshot: Sensors/MRI registration 153 bst_process('CallProcess', 'process_snapshot', sFilesRest, [], ... 154 'target', 1, ... % Sensors/MRI registration 155 'modality', 1, ... % MEG (All) 156 'orient', 1); % left 157 158 % Process: Snapshot: SSP projectors 159 bst_process('CallProcess', 'process_snapshot', sFilesRest, [], ... 160 'target', 2, ... % SSP projectors 161 'modality', 1); % MEG (All) 162 163 164 %% ===== SOURCE ESTIMATION ===== 165 % Process: Select file names with tag: task-rest 166 sFilesNoise = bst_process('CallProcess', 'process_select_tag', sFilesBand, [], ... 167 'tag', '1-Rnoise', ... 168 'search', 1, ... % Search the file names 169 'select', 1); % Select only the files with the tag 170 171 % Process: Compute covariance (noise or data) 172 bst_process('CallProcess', 'process_noisecov', sFilesNoise, [], ... 173 'baseline', [], ... 174 'sensortypes', 'MEG', ... 175 'target', 1, ... % Noise covariance (covariance over baseline time window) 176 'dcoffset', 1, ... % Block by block, to avoid effects of slow shifts in data 177 'identity', 0, ... 178 'copycond', 1, ... 179 'copysubj', 0, ... 180 'replacefile', 1); % Replace 181 182 % Process: Compute head model 183 bst_process('CallProcess', 'process_headmodel', sFilesRest, [], ... 184 'sourcespace', 1, ... % Cortex surface 185 'meg', 3); % Overlapping spheres 186 187 % Process: Compute sources [2018] 188 sSrcRest = bst_process('CallProcess', 'process_inverse_2018', sFilesRest, [], ... 189 'output', 2, ... % Kernel only: one per file 190 'inverse', struct(... 191 'Comment', 'dSPM: MEG', ... 192 'InverseMethod', 'minnorm', ... 193 'InverseMeasure', 'dspm2018', ... 194 'SourceOrient', {{'fixed'}}, ... 195 'Loose', 0.2, ... 196 'UseDepth', 1, ... 197 'WeightExp', 0.5, ... 198 'WeightLimit', 10, ... 199 'NoiseMethod', 'reg', ... 200 'NoiseReg', 0.1, ... 201 'SnrMethod', 'fixed', ... 202 'SnrRms', 1e-06, ... 203 'SnrFixed', 3, ... 204 'ComputeKernel', 1, ... 205 'DataTypes', {{'MEG'}})); 206 207 208 %% ===== POWER MAPS ===== 209 % Process: Power spectrum density (Welch) 210 sSrcPsd = bst_process('CallProcess', 'process_psd', sSrcRest, [], ... 211 'timewindow', [0, 100], ... 212 'win_length', 4, ... 213 'win_overlap', 50, ... 214 'clusters', {}, ... 215 'scoutfunc', 1, ... % Mean 216 'edit', struct(... 217 'Comment', 'Power,FreqBands', ... 218 'TimeBands', [], ... 219 'Freqs', {{'delta', '2, 4', 'mean'; 'theta', '5, 7', 'mean'; 'alpha', '8, 12', 'mean'; 'beta', '15, 29', 'mean'; 'gamma1', '30, 59', 'mean'; 'gamma2', '60, 90', 'mean'}}, ... 220 'ClusterFuncTime', 'none', ... 221 'Measure', 'power', ... 222 'Output', 'all', ... 223 'SaveKernel', 0)); 224 225 % Process: Spectrum normalization 226 sSrcPsdNorm = bst_process('CallProcess', 'process_tf_norm', sSrcPsd, [], ... 227 'normalize', 'relative', ... % Relative power (divide by total power) 228 'overwrite', 0); 229 230 % Process: Spatial smoothing (3.00) 231 sSrcPsdNorm = bst_process('CallProcess', 'process_ssmooth_surfstat', sSrcPsdNorm, [], ... 232 'fwhm', 3, ... 233 'overwrite', 1); 234 235 % Screen capture of final result 236 hFig = view_surface_data([], sSrcPsdNorm.FileName); 237 set(hFig, 'Position', [200 200 200 200]); 238 hFigContact = view_contactsheet(hFig, 'freq', 'fig'); 239 bst_report('Snapshot', hFigContact, sSrcPsdNorm.FileName, 'Power'); 240 close([hFig, hFigContact]); 241 242 % Save and display report 243 ReportFile = bst_report('Save', []); 244 bst_report('Open', ReportFile); 245 246 247 248





Feedback: Comments, bug reports, suggestions, questions
Email address (if you expect an answer):


Tutorials/HCP-MEG (last edited 2023-03-07 20:37:57 by RaymundoCassani)