Import and process Neuromag raw recordings

This tutorial describes how to process continuous Neuromag MEG recordings. It is based on median nerve stimulation acquired at the Massachusetts General Hospital in 2005 with a Neuromag Vectorview 306 system. The sample dataset contains the results for one subject for both arms: 18 minutes, 300 stimulations per arm.

This document shows what to do step by step, but does not really explain what is happening, the meaning of the different options or processes, the issues or bugs you can encounter, and does not provide an exhaustive description of the software features. Those topics are introduced in the basic tutorials based on CTF recordings; so make sure that you followed all those initial tutorials before going through this one.

The script file tutorial_neuromag.m in the brainstorm3/toolbox/script folder performs exactly the same tasks automatically, without any user interaction. Please have a look at this file if you plan to write scripts to process recordings in .fif format.

Download and installation

Import the anatomy

Access the recordings

Review the recordings

Pre-processing

Evaluate the recordings

Remove: 60Hz and harmonics

Signal Space Projection (SSP) is a method in for projecting away stereotyped artifacts (such as eye blinks and heartbeats) out of the recordings.


[ATTACH]

Importing MEG recordings

Detecting bad channels

Run the pipeline

Click on run. Wait. With all those process tags added, the comments of the files are getting a little too long. Rename them respectively Right and Left, by renaming directly the list (the node that contains all the epochs in each condition). It takes a while but will improve a lot the readability later.

Expand the list of trials Left, and notice that the icons of a few trials have a red flag.

Review the epochs manually

It is always very important to keep an eye on the quality of the data at the different steps of the analysis. There are always a few epochs that are too artifacted or noisy to be used, or one bad sensor. An automatic detection was already applied, but here is the procedure if you need to do it manually.

Calculate the average

Review the average

Forward model

First step of the source estimation process: establishing a model that describes the way the brain electric activities influence the magnetic fields that are recorded by the MEG sensors. This model can be designated in the documentation by the following terms: head model, forward model, lead field matrix.

MEG / MRI registration

An accurate forward model requires first of all an accurate registration of the anatomy files (MRI+surfaces) and functional recordings (position of the MEG sensors and EEG electrodes). A basic registration is provided by the alignment of the fiducials (Nasion, LPA, RPA), that were both located before the acquisition of the recordings and marked on the MRI in Brainstorm. This registration based on three points only can be very inaccurate, because it is sometimes hard to identify clearly those points, and not everybody identify them the same way. Two methods described in the ?introduction tutorial #3 may help you to improve this registration.

Compute head model

Right-click on any node that contains the channel file (including the channel file itself), and select: "Compute head model". When the computation is done, close the "Check spheres" figure. The lead field matrix is saved in file "Overlapping spheres" in "Common files", in a the "Gain" field.

Noise covariance matrix

To estimate the sources properly, we need an estimation of the noise level for each sensor. A good way to do this is to compute the covariance matrix of the concatenation of the baselines from all the trials in both conditions.

Source estimation

Reconstruction of the cortical sources with a weighted minimum norm estimator (wMNE).

Feedback





Feedback: Comments, bug reports, suggestions, questions
Email address (if you expect an answer):


Tutorials/TutMindNeuromag (last edited 2014-06-27 20:28:22 by agrippa)