Full analysis with one script

Authors: Francois Tadel

This tutorial explains how to use the Brainstorm scripting interface to run a full analysis, from the raw recordings to the source reconstruction. It is based on a median nerve stimulation experiment recorded at the Montreal Neurological Institute in 2011 with a CTF MEG 275 system. The sample dataset contains 6 minutes of recordings at 1200Hz for one subject and includes 100 stimulations of each arm.

The tutorial follows the analysis steps detailed in the three advanced tutorials in the category Processing continuous recordings. You should read them before reading this tutorial, to have the explanations that go with the analysis steps.

Creating the analysis pipeline

Select the menu File > Create new protocol. Name it "TutorialScript" and select the options:

To start building your analysis pipeline, just click on the "Run" button in the Process1 tab. We don't need any file in input, as we are going to select the files to import in the script itself. Then add all the processes listed below. The output of each process is the input of the following one, this is why the order of the processes is important.

Import > Import anatomy > Import anatomy folder

process_import_freesurfer.gif

process_import_data_raw.gif

Pre-process > Notch filter

Input: Raw file ; Output: Raw file (new)

process_sin_remove.gif

Input: Raw file ; Output: Raw file

process_evt_detect_eog.gif

Input: Raw file ; Output: Raw file

process_ssp_eog.gif

Import > Import recordings > Import MEG/EEG : Events

Input: Raw file ; Output: 199 epochs in 2 conditions

process_import_data_event.gif

Pre-process > Remove DC offset

Input: 199 epochs ; Output: 199 epochs

process_baseline.gif

Pre-process > Add time offset

Input: 199 epochs ; Output: 199 epochs

process_timeoffset.gif

Sources > Compute noise covariance

Since the epochs are currently selected and pre-processed: we can use them to estimate the noise covariance matrix before we move on with the calculation of the average.

Input: 199 epochs ; Output: 199 epochs

process_noisecov.gif

Average > Average files

Input: 199 epochs ; Output: 2 averages

process_average.gif

File > Save snapshot: Sensors/MRI registration

Input: 2 averages ; Output: 2 averages

process_snapshot.gif

File > Save snapshot: Recordings time series

Input: 2 averages ; Output: 2 averages

process_snapshot2.gif

Sources > Compute head model

Input: 2 averages ; Output: 2 averages

process_headmodel.gif

Sources > Compute sources

Input: 2 averages ; Output: all the source files (1 raw + 2 average + 199 epochs = 202 files)

process_inverse.gif

Save the pipeline

Save in current workspace

Use the menus on top of the pipeline editor to save this list of processes on your computer. The menu "Save > New..." will create an entry readily available in your Brainstorm installation in the Load section of the same menu.

savePipeline.gif

Export as script

Use the menu "Generate .m script" to create a Matlab script that would have the exact same result as running this analysis pipeline from the Brainstorm interface.

This script is also available in the Brainstorm distribution: brainstorm3/toolbox/script/tutorial_raw.m

% Script generated by Brainstorm v3.2 (22-Jul-2014)

% Input files
sFiles = [];
SubjectNames = {...
    'Subject01'};
RawFiles = {...
    'C:\Work\RawData\Tutorials\sample_raw\Anatomy', ...
    'C:\Work\RawData\Tutorials\sample_raw\Data\subj001_somatosensory_20111109_01_AUX-f.ds'};

% Start a new report
bst_report('Start', sFiles);

% Process: Import anatomy folder
sFiles = bst_process('CallProcess', 'process_import_anatomy', ...
    sFiles, [], ...
    'subjectname', SubjectNames{1}, ...
    'mrifile', {RawFiles{1}, 'FreeSurfer'}, ...
    'nvertices', 15000, ...
    'nas', [127, 212, 123], ...
    'lpa', [55, 124, 119], ...
    'rpa', [200, 129, 114], ...
    'ac', [129, 137, 157], ...
    'pc', [129, 113, 157], ...
    'ih', [129, 118, 209]);

% Process: Create link to raw file
sFiles = bst_process('CallProcess', 'process_import_data_raw', ...
    sFiles, [], ...
    'subjectname', SubjectNames{1}, ...
    'datafile', {RawFiles{2}, 'CTF'}, ...
    'channelreplace', 1, ...
    'channelalign', 1);

% Process: Notch filter: 60Hz 120Hz 180Hz
sFiles = bst_process('CallProcess', 'process_notch', ...
    sFiles, [], ...
    'freqlist', [60, 120, 180], ...
    'sensortypes', 'MEG, EEG', ...
    'read_all', 0);

% Process: Detect eye blinks
sFiles = bst_process('CallProcess', 'process_evt_detect_eog', ...
    sFiles, [], ...
    'channelname', 'EEG058', ...
    'timewindow', [], ...
    'eventname', 'blink');

% Process: Detect heartbeats
sFiles = bst_process('CallProcess', 'process_evt_detect_ecg', ...
    sFiles, [], ...
    'channelname', 'EEG057', ...
    'timewindow', [], ...
    'eventname', 'cardiac');

% Process: SSP EOG: blink
sFiles = bst_process('CallProcess', 'process_ssp_eog', ...
    sFiles, [], ...
    'eventname', 'blink', ...
    'sensortypes', 'MEG, EEG', ...
    'usessp', 0);

% Process: Import MEG/EEG: Events
sFiles = bst_process('CallProcess', 'process_import_data_event', ...
    sFiles, [], ...
    'subjectname', SubjectNames{1}, ...
    'condition', '', ...
    'eventname', 'left, right', ...
    'timewindow', [], ...
    'epochtime', [-0.1, 0.3], ...
    'createcond', 1, ...
    'ignoreshort', 1, ...
    'usectfcomp', 1, ...
    'usessp', 1, ...
    'freq', [], ...
    'baseline', [-0.1, -0.0008333333333]);

% Process: Add time offset: -4.20ms
sFiles = bst_process('CallProcess', 'process_timeoffset', ...
    sFiles, [], ...
    'offset', -0.0042, ...
    'overwrite', 1);

% Process: Compute noise covariance
sFiles = bst_process('CallProcess', 'process_noisecov', ...
    sFiles, [], ...
    'baseline', [-0.1042, 0], ...
    'dcoffset', 1, ...
    'method', 1, ...  % Full noise covariance matrix
    'copycond', 0, ...
    'copysubj', 0);

% Process: Average: By condition (subject average)
sFiles = bst_process('CallProcess', 'process_average', ...
    sFiles, [], ...
    'avgtype', 3, ...
    'avg_func', 1, ...  % Arithmetic average: mean(x)
    'keepevents', 0);

% Process: Snapshot: Sensors/MRI registration
sFiles = bst_process('CallProcess', 'process_snapshot', ...
    sFiles, [], ...
    'target', 1, ...  % Sensors/MRI registration
    'modality', 1, ...  % MEG (All)
    'orient', 1, ...  % left
    'time', 0, ...
    'contact_time', [0, 0.1], ...
    'contact_nimage', 12, ...
    'comment', 'MEG/MRI Registration');

% Process: Snapshot: Recordings time series
sFiles = bst_process('CallProcess', 'process_snapshot', ...
    sFiles, [], ...
    'target', 5, ...  % Recordings time series
    'modality', 1, ...  % MEG (All)
    'orient', 1, ...  % left
    'time', 0, ...
    'contact_time', [0, 0.1], ...
    'contact_nimage', 12, ...
    'comment', 'Evoked response');

% Process: Compute head model
sFiles = bst_process('CallProcess', 'process_headmodel', ...
    sFiles, [], ...
    'comment', '', ...
    'sourcespace', 1, ...
    'meg', 3, ...  % Overlapping spheres
    'eeg', 3, ...  % OpenMEEG BEM
    'ecog', 2, ...  % OpenMEEG BEM
    'seeg', 2, ...
    'openmeeg', struct(...
         'BemFiles', {{}}, ...
         'BemNames', {{'Scalp', 'Skull', 'Brain'}}, ...
         'BemCond', [1, 0.0125, 1], ...
         'BemSelect', [1, 1, 1], ...
         'isAdjoint', 0, ...
         'isAdaptative', 1, ...
         'isSplit', 0, ...
         'SplitLength', 4000));

% Process: Compute sources
sFiles = bst_process('CallProcess', 'process_inverse', ...
    sFiles, [], ...
    'comment', '', ...
    'method', 1, ...  % Minimum norm estimates (wMNE)
    'wmne', struct(...
         'NoiseCov', [], ...
         'InverseMethod', 'wmne', ...
         'ChannelTypes', {{}}, ...
         'SNR', 3, ...
         'diagnoise', 0, ...
         'SourceOrient', {{'fixed'}}, ...
         'loose', 0.2, ...
         'depth', 1, ...
         'weightexp', 0.5, ...
         'weightlimit', 10, ...
         'regnoise', 1, ...
         'magreg', 0.1, ...
         'gradreg', 0.1, ...
         'eegreg', 0.1, ...
         'ecogreg', 0.1, ...
         'seegreg', 0.1, ...
         'fMRI', [], ...
         'fMRIthresh', [], ...
         'fMRIoff', 0.1, ...
         'pca', 1), ...
    'sensortypes', 'MEG, MEG MAG, MEG GRAD, EEG', ...
    'output', 1);  % Kernel only: shared

% Save and display report
ReportFile = bst_report('Save', sFiles);
bst_report('Open', ReportFile);

Report viewer

Click on Run to start the script.

As this process is taking screen captures, do not use your computer for something else at the same time: if another window covers the Brainstorm figures, it will not capture the right images.

At the end, the report viewer is opened to show the status of all the processes, the information messages, the list of input and output files, and the screen captures. The report is saved in your home folder ($home/.brainstorm/reports). If you close this window, you can get it back with the menu File > Report viewer.

report1.gif

report2.gif





Feedback: Comments, bug reports, suggestions, questions
Email address (if you expect an answer):


Tutorials/TutRawScript (last edited 2018-06-28 12:33:45 by ?MartinCousineau)