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Magnetoencephalography (MEG) and electroencephalography (EEG) (collectively E/MEG)

are noninvasive methods for monitoring brain function. To estimate the location of the current

sources that produce E/MEG signals, we must first solve the quasi-static forward problem relating

a putative source to the E/MEG fields that it would produce. The head models that determine these

solutions generally assume that the head is a piecewise homogeneous conductor. E/MEG models

contain an incremental field element, commonly known as the “lead field,” that linearly relates an

incremental source element (the current dipole) to the magnetic field or voltage potential at a dis-

tant point. The explicit form of the lead field is dependent on the head modeling assumptions and

sensor configuration. The lead field can be partitioned into the product of a vector dependent on

sensor characteristics and a matrix kernel dependent only on head modeling assumptions. Here we

review analytic solutions for the spherical head model and boundary element methods (BEMs) for

arbitrary head geometries. These results are presented in a unified form in terms of their matrix

kernels. Using this formulation and a recently developed approximation formula for EEG, based

on the “Berg parameters,” we present novel reformulations of the basic EEG and MEG kernels that

dispel the myth that EEG is inherently more complicated to calculate than MEG. We also present

novel investigations of different BEM methods and present evidence that improvements over cur-

rently published E/MEG BEM methods can be realized using alternative error weighting methods.

This work supported by the National Institute of Mental Health Grant R01-MH53213, and by Los Alamos

National Laboratory, operated by the University of California for the United States Department of Energy under con-

tract W-7405-ENG-36.
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I. I NTRODUCTION

Neural current sources in the brain produce external magnetic fields and scalp surface potentials

that can be measured using magnetoencephalography (MEG) and electroencephalography (EEG),

respectively. The current fields in the head that produce these EEG and MEG (collectively E/MEG)

signals can be separated into two components, theprimary current term (cf.[56]), representing the

impressed neural and microscopic passive cellular currents, and the secondary or volume currents

that are a result of the macroscopic electric field. The primary currents are considered to be the

sources of interest in E/MEG, since they represent the areas of neural activity associated with a

given sensory, motor or cognitive process. The recent development of systems with whole-head

coverage offer the potential for E/MEG to produce accurate estimates of the location and time

courses of these underlying primary sources. In the context of the localization of neural sources,

theforward problem is then to determine the potentials and magnetic fields that result from primary

current sources. Theinverse problem is to estimate the location of these primary current sources.

The emphasis in E/MEG modeling is therefore the relationship between aprimary current

source distributionand the data at the sensor array. As reviewed by Tripp[56], the linearity of the

forward model can be expressed as the inner product of a vectorlead field[6] and the primary cur-

rent. Since the majority of inverse methods for E/MEG are based on linear algebraic formulations,

a matrix formulation is a natural framework for the solution of the forward problem. In this paper,

we describe solutions to the forward problem for both MEG and EEG by partitioning the lead field

into functions of the sensor parameters andfield kernelsthat are primarily functions of the head

model and dipole location. One of our goals here is to provide a summary of the principal calcula-

tions in a common framework, tying together many other prior publications. In this framework, we

present novel formulations of the calculations in order to highlight the similarities of E/MEG com-

putations, as well as to provide explicit formulations of the “gain” matrix[40].

To simplify the presentation here, we restrict the primary current to current dipoles, since more

complicated sources can be expressed as sums or integrals of these elemental sources. We are there-

fore interested in the vector lead field for arbitrary sensor locations, evaluated at a single dipole
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location. The determination of the explicit functional form of the lead field for an arbitrary dipole

location effectively solves the forward problem. The key distinction in these functional forms is the

assumptions made concerning the conductivity and shape of the head.

In addition to the field kernel matrices that can be generated for spherical and realistic head

geometries, the forward problem also requires specification of the sensor orientations (MEG) and

“switching matrices” to model gradiometer effects in MEG and differential pairs in EEG. In some

inverse methods, we also introduce constraints on the dipole orientation. All of these effects can be

combined with the field kernels to produce the lead fields, which in discrete form over many sen-

sors and dipoles yields an overall gain matrix that relates the measured data to one or more current

dipoles of known location. By describing the forward solution in terms of these gain matrices, we

are able to easily switch between different sensor and head models and therefore develop generic

inverse algorithms for EEG and MEG[42]. This separation of field kernel and sensor characteris-

tics should also prove useful in clarifying the differences between competing MEG sensor config-

urations (e.g., planar versus axial gradiometers) and in discussing the possible effects of the

reference electrode in EEG recordings, since the field kernels should be held constant in these com-

parisons.

The main application of the formulations described here is as part of an inverse procedure. In

[40] we placed existing MEG models into a common linear algebraic framework that emphasized

the generation of the gain matrix. We showed how this gain matrix could be efficiently used in a

directed search that was an explicit function of the nonlinear location parameters only, an efficiency

that markedly reduced the number of parameters in the search. We then presented a technique new

to E/MEG, multiple signal characterization (MUSIC), which exploited possible time independence

in the dipole time series to greatly reduce the computational complexity of searching for multiple

dipoles. For exemplary purposes, we restricted our gain matrix in[40] to the simple case of radially

oriented MEG sensors outside of a sphere. In[41], using this same spherical model for both EEG

and MEG, we presented an error analysis providing lower bounds on the ability to locate one and

two dipoles in the presence of additive white Gaussian noise. The development presented here can
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be used to extend these inverse and analysis methods to the more complex models for both MEG

and EEG. Many imaging methods have also been described for E/MEG[30], [33], [34], [35], [36],

[49], [52], [56], [58]. In many of these cases, the common formulation relates the data and image

through a gain matrix. While it is well known that these methods can be applied for the range of

models described above, the vast majority of these publications use the simple radial MEG sensor

and spherical head assumption. Similarly, many EEG investigations still retain relatively simple

spherical model approaches. The results presented here may be helpful in applying these methods

with different forward models.

High resolution anatomical imaging of subjects is becoming routine, and the trend in the bio-

physics community is to move towards more realistic non-spherical head models. By far the most

common approach in E/MEG for arbitrary head geometries is the boundary element method

(BEM). Here we review the E/MEG BEM literature in terms of themethod of weighted residuals

[5], [55]. We also include comparisons of different methods including the collocation and Galerkin

methods[55], with and without the “isolated skull approach”[29], showing that a “linear Galerkin”

method yields markedly improved BEM results.

The paper is organized as follows. InSection II, we review the basic quasi-static assumptions

used in E/MEG, both to establish notation and to clarify where some of the simplifying assump-

tions arise that allow the BEM approach to solving the forward problem. InSection III, we present

the analytical solutions for the spherical head models in a form suitable for generating gain matri-

ces. InSection IV, we develop discrete formulations of the BEM solutions using the method of

weighted residuals, then compare the effects of the choice of basis and weighting functions. In

Section V, we discuss in particular the issues and implications of the various approaches to BEM,

and review several recent publications in the framework presented here.

II. T HE FORWARD PROBLEM

We review here the assumptions that form the basis of most of the E/MEG forward models. For

the biological signals of interest in E/MEG, the time-derivatives of the associated electric and mag-
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netic fields are sufficiently small that they can be ignored in Maxwell’s equations. Recent discus-

sions and details of this quasi-static approximation can be found in[30], [31], [56]. The static

magnetic field equations are  and , i.e., the curl of the magnetic

field at location  is proportional to the current density, and the divergence of the magnetic field is

zero. We are interested in the current density  in a closed volume of finite conductivities. Out-

side this volume the conductivity and current density are zero. The integral equation relating

and  is the widely-known integral form of the Biot-Savart law,

, (1)

where  (with magnitude ) is the distance between the observation point  and the

source point , and the integration is carried out over a closed volume .

We divide the current into two components,passive andprimary. We define as passive those cur-

rents that are a result of themacroscopic electric field in the conducting medium of the volume,

. All other currents are considered primary, , which, as

described by Tripp[56], can be considered to be the sum of theimpressed neural current and the

microscopic passive cellular currents. The division of the current as primary  and passive

 is to emphasize that neural activity in a region gives rise to macroscopic primary currents in

that same region that may then flow passively throughout the rest of the conducting medium.

Because of the quasi-static assumptions, the electric field can be modeled as the gradient of a

scalar potential, . Substituting our interpretation of  into(1) yields

. (2)

The typical head model assumes that the head may be represented by three to five regions, e.g.,

scalp, skull, cerebrospinal fluid, gray matter, white matter, and that the conductivity  is con-

stant and isotropic within these regions. The gradient of the conductivity is therefore zero except

∇ b r( )× µ0 j r( )= ∇ b r( )⋅ 0=
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at the surfaces between regions, which allows the volume integrals to be reworked into surface inte-

grals. We assume our volume can be divided into  regions with conductivities ,

, which includes the nonconducting region outside of the head. These regions are

separated from adjacent regions by a total of  surfaces . Through simple vector identities,

we can rewrite the volume integral in(2) as a sum of surface integrals ([21], cf. [30], [52], [56]),

(3)

where is the “outward” directed unit vector normal to the th surface, and the “+” (“-”) super-

script indicates the conductivity outside (inside) the th surface. Theprimary field  is

, (4)

which is the magnetic field observed at  due to the primary current only. If no boundaries were

present, then  would represent the magnetic field generated by a primary source in an infinite

homogeneous medium.

To compute the magnetic field using(3) we must first know the potential  on all boundaries.

Using Green’s theorem, we can obtain a surface integral equation for  (see[2], [19], [20], [52]

for details):

, (5)

where we have assumed all surfaces are smooth, and  is theprimary potential,i.e., the solu-

tion for the infinite homogeneous medium due to the primary current ,

. (6)
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Equations(3) and(5) therefore form our general set of boundary integral equations for solving

the forward problem for scalp potentials (EEG) and external magnetic fields (MEG). If we assume

that the primary current exists only at a discrete point, i.e., the primary current source is a current

dipole with moment  located at , then and  can be simplified as

, (7)

. (8)

The key modeling assumptions are that the fields are quasi-static and that the macroscopic regions

of the head are anatomically known and of known constant isotropic conductivity. Refinements of

the models for anisotropic conductivities may be found in[45], [51], [60] and references therein,

but we will restrict our attention to the isotropic case.

III. S OLUTIONS FOR SPHERICAL HEAD MODELS

For the case where the head is assumed to comprise a set of nested concentric spheres, each of

constant conductivity, analytic solutions exist for both MEG (cf.[52]) and EEG (cf.[6]). Analytic

solutions for other head shapes have been presented, such as prolate and oblate spheroids[14] or

eccentric spheres[11], and numerical solutions for narrow or wide ellipsoids are presented in[12].

In these presentations of other head shapes, dipole localization errors are presented for the simpli-

fying case of spherical models, and the conclusions are that the deviations between spherical mod-

els and these other smooth shapes did not appear to greatly affect source localization. We will

therefore focus this review on the spherical solutions only.

A. MEG, Spherically Symmetric Conductor

In general, to solve the forward MEG problem(3), we must first solve(5) for the surface poten-

tial  on all surfaces, which therefore also solves the EEG forward problem. An important

exception to this “two-step” process is in the case of the concentric spherical head model, where

the MEG forward problem can be solved directly. The radial component of the field at sensor loca-

q rq b∞ r( ) v∞ r( )

b∞ r( ) µ0 4π⁄( )q d d
3⁄×=

v∞ r( ) 1 4π⁄( )q d d
3⁄⋅=

v r( )
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tion  is computed as , and for a spherically symmetric conductor, the vector

normal to the surface is easily expressed as  for all  on all surfaces. In this case,

the contribution of the passive currents to  vanishes, since substitution and expansion of(3)

yields . Thus  is simply calculated from the well-knownprimary current

model,

. (9)

This formula is deceptively simple, and it correctly implies that a radially oriented MEG sensor

sees only the dipole moment and not the volume currents.

If the sensors are not radially oriented, then the effects of the volume currents must be included;

however, as shown by Ilmoniemi et al.[32] and Sarvas[52], the full magnetic field for non-radially

oriented sensors outside a set of concentric spheres may still be calculated without explicit consid-

eration of the volume currents. Since no currents exist outside the head, both approaches use the

radial magnetic field  to derive the scalar magnetic potential ; the full magnetic field is

then derived as the gradient of this scalar. Sarvas’ formula for  outside the spher-

ical conductor in Cartesian coordinates is ([52], cf. [30] Eq. (34),[31])

(10)

where the scalar function  and the vector function  are

(11)

. (12)

B. EEG, Spherically Symmetric Conductor

The simplest case in EEG is a single spherical shell head model, i.e. the entire conducting vol-

ume is modeled as a sphere of constant conductivity . Brody et al.[6] review earlier formulations
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---------------+ + 
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and present a generalized expression for this single sphere case. Similarly, Rush and Driscoll[51]

review some of the early solutions to single and homogeneous spheres, then present solutions for

both anisotropic and multisphere models. We give here the form of the solution as recently pre-

sented by Zhang in[60], with reference to the geometry inFig. 1. The signed dipole intensity can

be represented by its radial and tangential components,  and . The poten-

tial can then be expressed as the sum of two potentials, ,

where

, (13)

. (14)

Our explicit statement of the dependence of the potential on  will be made clear below.

The single spherical shell is too unrealistic as a model for the head due to the large difference

between the conductivities of brain and skull. The typical multi-shell spherical model includes

three layers for the brain, skull, and scalp; some also include a cerebrospinal fluid layer. The

multi-shell case of  spherical shells requires the evaluation of an infinite series. The infinite

series presentation by Zhang in[60] is especially compact compared to earlier presentations (cf.

[51]),

(15)

where  and  are the Legendre and associated Legendre polynomials, respectively, and

. (16)

The coefficients  and  are found from:

qr q αcos= qt q αsin=

v
1 r r q q,;( ) vr
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4πσ
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3
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(17)

where the conductivities are arranged from the innermost sphere to the outer most, ,

corresponding to the radii of the spheres, , and the matrices in(17) are non-com-

muting with the highest index matrix applied first. See[60] for details. Similarly, see[45], in which

the infinite series analytic solution to the multi-layer isotropic model is presented in Cartesian coor-

dinates and the dipole moment clearly separated.

When computing the solution to this forward problem, the infinite series in(15) must be trun-

cated or approximated. Various approximations for the multishell case have been proposed[1], [3],

[45], [60]. In [45], de Munck considers the more general case of anisotropic conductivities, and the

infinite series is substituted with one which converges more rapidly. Recent empirical work on

closed-form approximations by Berg and Scherg[3], and related theoretical studies by Zhang[60],

describe a valid method for approximating the infinite series with as few as three evaluations of

scaled forms of the single shell model(13) and(14). For a given -shell head model, these

so-called “Berg parameters”[60] can be designated as  (see[3] and[60]

for definitions). The potential in the -shell is then approximated as

(18)

This method uses the true dipole location  to select three dipole locations along the same

radial line and uses these dipoles to evaluate the single shell model(13) and(14) three times. These

three evaluations are then scaled and summed. The scalar values are a pre-determined function of

conductivities and shell thicknesses, and evaluation of the  shell model becomes quite fast and

accurate. See[3] and[60] for examples and details on computing these “Berg parameters.” These
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approximations are enhancements to an earlier approximation presented in[1] (the “Airy correc-

tion factor”), as well as extensions of the approximation theory presented by de Munck in[45].

C. Matrix Kernels for Spherical Heads

If the primary sources were completely specified in both location and moment, then implemen-

tation of the above formulae could proceed directly. The inverse problem, however, involves find-

ing a suitable set of primary sources that adequately describe the data recorded by a limited set of

sensors. As we showed in[40], the inverse problem can often be better approached if we separate

the linear moment parameters  from the nonlinear location parameters . The inverse problem

can then be approached as an explicit function of just the location parameters, reducing the com-

plexity of the solution search.

In this section we factor the solutions from the preceding section as the product of a “field ker-

nel” and the dipole moment. We will represent each model solution as the MEG vector

 or the EEG scalar , where  is a matrix kernel

and  is a vector kernel. These field kernels are then combined with the sensor char-

acteristics to yield discrete matrices of lead fields[6], [56] that are clearly separated from the dipole

moments.

Before presenting the table of field kernels, we mention several properties useful in reducing the

solutions to kernel forms. We first note the triple scalar product identity , and

the anti-commutative property of the cross-product, , both of which are useful in

the reduction of the formulae. To simplify the algebraic manipulation of the cross-product, we con-

vert the operation to the product of a matrix and a vector and explicitly state all vectors in their

Cartesian forms,

. (19)

q rq

b r( ) K r r q,( )q= v r( ) kT r r q,( )q= K r r q,( ) 3 3×

k r r q,( ) 3 1×

a b× c⋅ a b⋅ c×=

a b× b– a×=

a b× Cab

0 a– z ay

az 0 a– x

ay– ax 0

bx
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= =
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These identities and substitutions are useful in reducing the Sarvas formula(10) to the product of

a matrix kernel and the dipole moment.

For the EEG solutions, we prefer to avoid calculations involving explicit transcendental func-

t ions ,  wh ich  a re  computa t iona l l y  expens ive .  In(13),  we  no te  tha t

. With similar conversions for the other transcendental functions,

we note that  may be equivalently expressed as .

Using these substitutions in(13) and(14) yields

(20)

(21)

and

(22)

(23)

(24)

where the scalar coefficients  and  are defined as

(25)

. (26)

Thus the single shell EEG model solution can be expressed as

(27)
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This novel form of the EEG single-sphere solution is an algebraic reformulation of the original

presentation in[6], but with an emphasis on vector notation. Our form includes the term ,

which also appears in the MEG solution(11). This reworking of the single shell EEG solution now

has a clear separation between the vector kernel and the dipole moment, and all calculations are in

vector Cartesian coordinates. Additionally, our simplification to the coefficients in(25) and(26)

highlight the computational similarities between the Sarvas formula in(10) and this single-shell

formula. For the multi-shell formula, similar reductions may be applied to the infinite series in(15),

as presented by de Munck[45]. Our preference is to use the Berg parameters in(18) to effect the

approximation to the multi-shell model using a single shell equivalent. Using these properties and

observations, the E/MEG solutions presented in the previous section can be reduced to their kernel

forms as listed inTable 1.

IV. B OUNDARY ELEMENT METHODS

Clearly the head is not spherical, and improvements in the forward calculations can be effected

by replacing the spherical geometry with a more realistic head shape extracted from anatomical

images. Since it is not currently possibly to obtain accurate estimates of spatially varying tissue

conductivities, the head is typically assumed to consist of a set of contiguous isotropic regions,

each of constant conductivity, yielding the boundary integral equations ofSection II. Equation(5)

is a Fredholm integral of the second kind for the unknown surface potential , and must be

solved numerically for realistic head geometries.Boundary element methods (BEM) for solving(5)

have been widely studied in the MEG and EEG literature (cf.[4], [12], [13], [17], [18], [29], [30],

[37], [38], [39], [42], [43], [44], [46], [47], [50], [53], [54], [57]). Here we review the BEM

approach to solving the E/MEG forward problem using themethod of weighted residualsas a

framework. We then describe how most of the previously published methods in this field are of the

“constant collocation,” “linear collocation,” or “constant Galerkin” forms. We also present our own

novel investigations of “linear Galerkin” weighting, as well as the effects of the “isolated skull

approach”[29] on MEG and EEG solutions.

F r r q,( )

v r( )
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A. Method of Weighted Residuals

We can express the right hand side of(5) as a linear operator acting on the potential function

, i.e. . In the forward problem, the source and hence the function  is

known, and the task is to determine , such that the residual  is as small as pos-

sible. The standard method of weighted residuals solves this problem using a weighting function

, i.e., we solve the related problem

(28)

or equivalently,

(29)

where  denotes the inner product of the two functions. The integration is over the domain of

the unknown potential function , which in(5) is restricted to the two-dimensional surfaces.

The selection of a particular weighting function determines the class of error method. For

instance, a “least-squares” approach might set . To numerically solve(29),

however, the boundary element method restricts the weighting functions to a finite combination of

known linearly independent basis functions ,

. (30)

The coefficients  are arbitrary, such that  spans this  dimensional space. Therefore,(29)

must hold for each of the individual basis functions , yielding  equations

. (31)

We next need to transform the unknown potential function  into something more tractable

for numerical computing. The boundary element method approximates  as another finite com-

bination of  known linearly independent basis functions ,

v r( ) L v r( )( ) v∞ r( )= v∞ r( )

v r( ) L v r( )( ) v∞ r( )–

w r( )

L v r ′( )( ) v∞ r ′( )–( )w r ′( ) s′d∫ 0=

w r( ) v∞ r( )( , ) w r( ) L v r( )( )( , )=

• •,( )

v r( )

w r( ) L v r( )( ) v∞ r( )–=

N ψn r( )

w r( ) βnψn r( )
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N
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ψn r( ) N
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(32)

The unknown coefficients  are thenodal parameters, which are functions of thenodes or nodal

points . The basis function  is chosen with the property that  at the nodal point

and is otherwise zero at all other nodes. This choice of nodal points and basis functions yields the

equivalence in(32) between a nodal parameter and nodal point as . Substituting(32)

into (31) yields a system of equations:

(33)

Thus(33) represents the boundary element method in its more general form. By design, the only

unknown components are now confined to the vector of  coefficients, . Once the coefficients

have been calculated, then  can be computed on any surface using(32). The proper selection

of the potential basis functions determines not only the adequacy of the approximation in(32), but

the selection of both weighting and potential basis functions will also determine the complexity of

inner product calculations in(33). We discuss first the selection of the weighting function, then the

potential function.

The two most common weighting functions in the E/MEG literature are the collocation and

Galerkin forms. In thecollocation form,  is chosen as the Dirac delta function ,

where  is the corresponding nodal point. In other words, the weighted residual problem(28) is

satisfied at certain collocation points instead of in an average sense, such that(33) becomes

(34)

The obvious advantage of(34) is that the inner products in(33) reduce to simpler function evalu-

v r( ) vnϕn r( )
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ations at the nodal points. TheGalerkin form is a weighted residual method for which the weight-

ing basis functions are identical to the potential basis functions, i.e. .

The two most common potential basis functions used in E/MEG areconstant andlinear. Each

surface is first tessellated into planar triangles, for  total triangles, yielding for closed surfaces

 vertices. The constant potential basis function assumes that for  on the th

triangle. For  on the boundary between two triangles or at a vertex, this function is discontinuous.

The nodal point for each potential basis function is usually assumed to lie at the centroid of the

triangle, and the result is  basis functions.

For the linear potential basis function, let , , and  be three vertices of thenth triangle

ordered in such a way that the permutation  corresponds by the right-hand rule to the

outward normal of the surface. The linear basis functions are then defined as (cf.[44])

(35)

where  is in the interior of the triangle. Thus any point in the interior of a triangle is represented

by three basis functions, any point along a border between two triangles is represented by two basis

functions, and the points at the vertices are the nodal points, represented by a single basis. For

triangles on a closed surface, the linear approximation yields  basis functions.

Theses weighting and potential basis functions can be substituted in the  system of equa-

tions in(33), which we can represent as

(36)

where  is an  vector,  is an  matrix, and  is the  vector of unknown coeffi-

cients. The matrix  is a function of just the known basis functions  and  and the head

geometry, and this “geometry matrix” can be precomputed without knowledge of the primary cur-

rents or sensor locations. Depending on the choice of weighting and potential basis functions, the
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inner products in  may be computed analytically or by using a numerical integration scheme.

In E/MEG, the Neumann boundary condition used to generate(5) leads to a well-known ambi-

guity; an arbitrary constant potential may be added to any valid solution. The result is a singularity

in the matrix , but the eigenvector associated with the zero eigenvalue is simply the constant vec-

tor (all elements equal). The matrix can be therefore “deflated”[7], [38] to yield a generally

well-conditioned matrix  that is directly invertible. With this deflation, the vector of unknown

basis coefficients is

. (37)

The potentials are then found from(32) for an arbitrary point  on a surface using:

. (38)

As discussed in Hämäläinen and Sarvas[29] and Meijs et al.[39], numerical implementations

for multi-layer models may yield unacceptable errors in voltage potentials at the scalp surface.

They introduce an approximate approach denoted as theisolated skull approach(ISA) in which the

skull is modeled as perfectly insulating, then map this result back into the multi-shell model.

Although presented in[29] as a “two-pass” algorithm (first calculate the one shell model, then the

updated multi-shell model), the effects of their approximation are readily folded into a single mod-

ified matrix . Srebro[29] presents a recent modification of this concept to yield an alternative

“one-pass” algorithm.

B. Matrix Kernels

To reduce the BEM equations to the inner product of a kernel and the dipole moment, each ele-

ment in the vector  in(38) can be represented as

, (39)

where the specific form will be dependent on the choice of the weighting function , and

 is defined inTable 1. The dipole moment can therefore be separated from the inner prod-

H

H

H̃

v H̃
1–
g=

r

v r( ) ϕ1 r( ) … ϕN r( ), ,[ ]v≅ ϕ1 r( ) … ϕN r( ), ,[ ]H̃
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uct, and for the  basis functions we define an  matrix  such that

. (40)

From(32), we see that the potential on any surface is therefore

, (41)

and the EEG forward problem is solved.

For the MEG solution, we insert(38) into (3). Ferguson et al.[17] and de Munck[44] have

shown that the resulting integrations in(3) can be performed exactly for the constant and linear

basis functions. The MEG forward problem is therefore solved for arbitrary point  as

(42)

where  is a  matrix analytically found by inserting the basis functions into the integral

in (3). We refer the reader to ([44], Eq. (13)) and ([17], Eq. (12)) for the explicit calculation of

, since the definition of terms used becomes quite involved.

C. Matrix Inverses and Transfer Matrices

As noted, the solution of the forward problem is usually incorporated into an inverse solution

method. The inverse problem may require computation of the forward fields for thousands of

dipole locations. With the sensor locations known, efficiencies can be realized by precomputing

terms independent of the dipole locations. These terms can be combined intotransfer matricesthat

are stored and retrieved at “run-time” for more efficient generation of the gain matrices.

Since the matrix  is independent of both the dipole location and sensor location, it can be pre-

computed and stored prior to the determination of the sensor locations. In some early work, such

as[2], the computational resources were not available to invert  directly, and iterative techniques

were instead discussed. While some recent papers continue to use Gauss-Seidel or Jacobi iterations
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[39], or power series expansions[13], these approaches are generally not numerically advisable

[22], and the inverse can be more efficiently and stably computed using an LU decomposition as

suggested in[28], [47] and subsequent works. Let the LU decomposition be denoted as .

The LU decomposition allows efficient and stable calculation of the transfer matrix using Gaussian

backsubstitution, and we will emphasize this efficiency by denoting the inverse as .

If we assume a single common reference electrode, the EEG BEM kernel can be concatenated

for  sensors as

(43)

We can generate the full EEG gain matrix by premultiplying the kernel by the “switching matrix”

 which subtracts the st sensor from the  single-ended electrode locations[42]. Com-

bining this matrix with(43) allows us to pre-compute a “transfer matrix”  that is independent of

the dipole location,

(44)

where Gaussian backsubstitution is used to efficiently generate . For  EEG channels and

BEM basis functions this transfer matrix is . The extension to multiple reference electrodes

and differential pairs follows easily. At “run-time,” one or more candidate dipole locations are

selected, the matrix  is formed using(40), then the gain matrix is formed as the product .

The development of the magnetic field transfer matrix follows similarly.

The precomputation of these EEG and MEG transfer matrices can greatly increase the efficiency

of inverse procedures. We note similar descriptions, alternative decompositions (such as the SVD),

and the use of such transfer matrices in[4], [18], [28], [46], [47], [50].
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D. Comparisons of Error Weighting

The performance of BEM methods is dependent on the selection of the basis and weighting func-

tions. To demonstrate the effects of these weightings, we have applied BEM to a three-shell spher-

ical model, so that numerical comparisons could be made with the known analytic solution. The

radii of the model were 88, 85 and 81 mm, and the conductivities were 0.33, 0.0042, 0.33

for the scalp, skull and brain respectively. The MEG sensors were placed 120 mm from the center,

i.e. 32 mm from the “scalp” and all oriented in the x-direction; the use of non-radial MEG sensor

orientations highlights the effect of volume currents on the BEM calculations. The EEG electrodes

were assumed to be at the nodal points of the triangles (i.e. centroids for the constant basis and ver-

tices for the linear basis) on the upper hemisphere of the outer most surface.

For the potential basis sets we applied both the constant and linear basis functions, and for the

weighting functions we used both collocation and Galerkin methods. Computations were per-

formed with and without the isolated skull approach (ISA)[29]. We used 492 and 1016 nominally

equilateral triangles per surface for the constant and linear BEM respectively, so that the degrees

of freedom for the linear and constant cases were approximately equal. The average length of the

side of triangle on the inner skull was 20.0 mm in the constant case and 13.9 mm in the linear case.

The matrices for the forward model were “deflated”[7], [38] and the forward gain matrices were

computed as described above. We used the approach in[17] to compute the MEG solutions from

the BEM calculated potentials.

The dipole was moved along the -axis from [0,0,3] mm to [0,0,78] mm, i.e., to within 3 mm of

the vertex of a triangle tessellated on the inner most shell. The dipole was oriented in each of the

three orthogonal directions, , and the EEG and MEG forward fields calculated for each ori-

entation. The comparison metric used was the relative difference measure, defined as:

(45)

where  and  denote the analytic and numerical EEG or MEG sensor values.

Ω 1– m 1–

z

x y z, ,

RDM bth b–( )T bth b–( ) (bth
T bth)⁄=

bth b
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In Fig. 2, the RDM for EEG and MEG are shown for the dipole oriented in the x-direction. Since

the MEG sensors are also oriented in the x-direction, the contribution in(42) from the primary cur-

rent is completely suppressed, and the RDM reflects the error from calculating the contributions

from the volume currents only. For the EEG results without ISA, we observe that “constant Galer-

kin” (effectively the original Lynn and Timlake[37] approach) and “linear collocation” do not gen-

erally improve the RDM over that of the simpler “constant collocation” method. These results are

consistent with Schlitt et al[53] who show errors on the outermost surface using the linear approx-

imation (analogous to our case of linear collocation) that are almost twice as great as when using

the constant basis (our constant collocation case). “Linear Galerkin” achieves a better RDM over

constant collocation. In all EEG cases without ISA, the RDM is on the order of 100% error as the

dipole approaches the innermost surface. The EEG results with ISA show a remarkable improve-

ment in the RDM, and we see that both the constant collocation and the linear Galerkin results are

about 8% error as the dipole approaches the inner surface.

In the MEG plots, we observe that in general the RDM is below 10%, a significant improvement

over the EEG RDM. This low RDM confirms the generally held belief that the MEG forward solu-

tion is less sensitive to BEM errors. We note that both constant collocation and constant Galerkin

are in general better than the linear collocation, particularly for dipoles near the surface. We note

that ISA doesnot improve the MEG results, which suggests that although ISA improves the scalp

potentials for EEG, the cost is a perturbation of the stronger innermost currents that are detected

by MEG. Near the innermost surface, the constant model results show errors of only a few percent,

but we see that the linear Galerkin results are dramatically superior to all others, with RDM below

1 % even directly below the surface.

In Fig. 3, we repeat the analysis for a y-directed dipole. By rotational symmetry, the EEG results

are virtually identical; however, the x-directed MEG sensors now measure contributions from both

the primary and volume currents. At the sphere center, all dipoles are virtually radially oriented,

such that the external MEG should be zero, and therefore the primary and volume current terms in

(42) must now cancel each other. We see that the y-directed dipole generates relatively larger RDM
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than the x-directed dipole, for dipoles near the center of the sphere. At shallower depths, both “tan-

gential” directions yield similar RDMs.

In Fig. 4, the dipole is now z-directed. Since the dipole was positioned on the z-axis, then the

z-directed dipole represents a radial dipole, for which the external magnetic field is zero and the

MEG RDM therefore undefined. In this case, we calculated for MEG the root mean square error

for a 10 nA-m dipole moment,

(46)

which gives an indication of the amount of error across the MEG array of 104 sensors, for a putative

dipolar source.

Again, by spherical symmetry, radial dipoles near the center of the head yield EEG RDMs sim-

ilar to the tangential directions. As this radial dipole approaches the surface, however, the differ-

ences in the various approximations become dramatic. At shallow depths, the radial orientation

yields a strong potential gradient across the tessellated surface, severely “straining” the constant

and linear assumptions. Without the ISA, the EEG RDMs exceed 100 % near the surface, except

for the linear Galerkin case. With ISA, the constant Galerkin RDM remains remarkably consistent

at all depths, but the linear Galerkin RDMs are again superior, remaining below 6 % even just

inside the surface.

For MEG the radial dipoles generate no external magnetic field and the primary and volume cur-

rents in(42) should cancel. The RMS values in this case reflect the BEM error in canceling the

numerically-calculated volume current term versus the analytically-computed primary current

term. As the dipole approaches the innermost surface, we see that the RMS error for a 10 nA-m

dipole exceeds 100 fT, except for the linear Galerkin case. Again, in all cases ISA doesnot improve

the MEG RMS. In the linear Galerkin case without ISA, the RMS error remains below 6 fT, an

error level dramatically below all other cases.

These results demonstrate the importance of proper basis selection for both the weighting and

potential functions. Since most primary activity is presumed to lie in the cortex, the accuracy of the

forward solution for sources within a few millimeters of the inner skull is of vital importance in

RMS bTb( ) 104⁄=
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E/MEG. We have shown that with the number of nodes held constant, differences in RDM error

can exceed factors of 100, particularly in the critical region near the inner skull. The isolated skull

approach in general yields a dramatic improvement for EEG for dipoles near the surface; however,

the approximation is somewhat detrimental to MEG calculations.

V. DISCUSSION

A. Summary

In developing the kernels listed inTable 1, we were attempting to address aspects of the forward

problem in E/MEG that are of particular interest in the development and implementation of inverse

methods. One important issue addressed here is the ability to factor out the dipole moment in a

matrix formulation of the inverse problem, for both spherical and realistic head geometries. In[40]

we showed that the least squares localization problem can be solved efficiently for a complete set

of spatio-temporal data by first solving for the linear parameters as a function of the nonlinear ones;

this linear solution reduces the problem to a search over the nonlinear parameters only. To do this

we first need to cleanly separate the nonlinear dipole location parameters from the linear moment

parameters. Although this separation is theoretically straightforward (cf.[6], [45], [56]), a unified

presentation of the concise forms listed inTable 1 has not previously been published.

A second goal of our work was to explicitly compare the computational complexity of EEG and

MEG forward models. In recent review papers such as[30], [52], and[59], the MEG spherical solu-

tions are nicely developed, but the EEG spherical solutions are omitted, with the possible impres-

sion that their formulation is perhaps too complicated to present. When combined with the “Berg”

parameters, our reformulations of the single-shell field kernel show computation of the EEG solu-

tion to be of the same complexity as the MEG solution.

As the acquisition of anatomical MR images as part of an experimental or clinical E/MEG par-

adigm becomes routine, spherical representations of the head in E/MEG can be replaced with more

realistic geometries. In general, these geometries require numerical solutions, and our development

and presentation show EEG and MEG BEM kernels to be of similar complexity. Both modalities
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require the specification of the conductivities and boundaries in generating the final transfer matrix.

Finally, we note that when using realistic geometries, numerical solution of the forward problem

involve several design parameters. The numerical results in the previous section highlight the dra-

matic effects that these parameters can have. In an attempt to explain these effects, we discuss next

an illustrative example. We follow this with a review of the existing E/MEG BEM literature in

terms of the development presented inSection IV.

B. Weighted Residuals

A simple illustrative example will serve to explain the effects that different error weightings can

produce in E/MEG forward solutions. Let  be a quadratic function to be approximated

by a constant or a linear basis function, as illustrated inFig. 5. The weighted residual expression is

therefore , which we will evaluate on the interval . For constant colloca-

tion, we approximate  as a constant function, , with a nodal point at the midpoint,

. Substitution into the weighted residual expression and minimization yields .

Similarly, for linear collocation, the two basis functions are  and  with

corresponding nodal points  and . Minimizing this weighted residual yields

and .

Both the constant and linear approximations to  are overlaid inFig. 5, and we see that both

collocation error methods yield the correct values of  at their nodal points. Next we consider

Galerkin weightings over the same interval,

(47)

yielding  for constant Galerkin, and ,  for linear Galerkin. These

solutions are overlaid onFig. 5.
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Two features distinguish the Galerkin solutions from the collocation methods: (i) the Galerkin

approximations to  have larger errors at the nodal points than the collocation results (which

are perfect at the nodal points in this example); and (ii) both Galerkin approximationsintegrate to

the same value as the true function over this interval, . By comparison, the con-

stant and linear collocation forms integrate to  and  respectively, where we note that the

linear collocation error is twice as great as the constant collocation error.

The differences in integration error versus nodal evaluation error in this example has implica-

tions for EEG and MEG. In EEG, we are primarily interested in the evaluation of the potential at

discrete sensor sites about the scalp. Thus the collocation approach implies we might actually

achieve better error performance than Galerkin if we assign nodal points to the sensor sites. In

MEG, however, the sensor sites are a measurement of the integral of the potential over all surfaces,

and the Galerkin approach implies that we might achieve better error control over the continuum

of potentials and hence better MEG approximations.

This example helps explain some of the differences we note among linear collocation and both

forms of constant bases in our simulations; however, we found linear Galerkin to be generally supe-

rior. For the same number of degrees of freedom, the triangles can be smaller in the linear case than

in the constant case, and we are weighting the error over the entire triangle, not just the nodal

points. These differences are most notable near the inner skull surface; we contrast these with the

much larger relative errors in the same region in[18], [54] (most other BEM publications do not

include error results for sources so close to the inner skull).

C. Other BEM Approaches

The weighted residual approach inSection IV is not the only numerical approach to solving an

integral equation. This approach, however, is a useful interpretation for much of the work on

boundary element methods in E/MEG forward problems, although the terminology “collocation”

and “Galerkin” as presented here and in[43] is not often used. One of the first papers often cited

for the computational solution of the E/MEG integral equations is Lynn and Timlake[37], which

f x( )

f x( ) xd∫ 1 3⁄=

1 4⁄ 1 2⁄
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presented a formal error analysis for the case of the average error across planar triangles, over

which the potential had been assumed constant. Lynn and Timlake noted that the work of[2] and

others weread hocspecial cases of their rigorous method, which we have referred to as constant

Galerkin, since their average error is the same as the method of weighted residuals with constant

basis sets for both the weighting and potential functions.

In many other papers, the “geometry” matrix in the Galerkin form of(33) is approximated by

the values at the triangular centroids (cf.[30]), which some authors also refer to as the “discretiza-

tion points” (cf.[39], [44]). Many of these forms may be more formally described as constant col-

location, since the weighting function is the Dirac delta. Often, however, authors begin with the

constant Galerkin form of Lynn and Timlake, then shift to a collocation form for the geometry

matrix, yielding (probably) a hybrid mix between collocation and Galerkin.

Another hybrid based on the constant assumption is that of Meijs et al.[39]. They assume a con-

stant potential across each triangle, but their discretization points (or nodal points) are at the trian-

gle vertices (rather than centroids), where the potential is generally discontinuous. In Schlitt et al.

[53], their “vertex method constant” potential follows the constant hybrid method in[39], and their

center of gravity “COG” technique is denoted by us as constant collocation.

Other work has focused on assuming a linear variation across each triangle. In[44], de Munck

presents a linear basis for the potential across each triangle, with the equations assessed at discrete

points, yielding our equivalent of linear collocation BEM. He presents analytic solutions for some

of the central integrations in the linear collocation approach for EEG. Schlitt et al.[53] compare a

linear collocation BEM to the two constant BEMs discussed above, as well as present analytic solu-

tions to some of the integrations. In[17], Ferguson et al. present analytic solutions for both constant

and linear assumptions for the integrals in the MEG forward model(3), formally completing the

model for these basis functions.

In solving for(5), two boundary constraints were used; the potential must be continuous across

the boundary, as well as the currents normal to this surface. As detailed in[2], [19], [20], [52], these

constraints were used analytically to yield(5), which is a function of the unknown potentials only.
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In [5], Brebbia et al. denote this approach to the boundary element method as “indirect,” since the

potential function(5) is first analytically derived, before applying the BEM. The “direct” method

sets up a system of equations based on both the potentials and their normal derivatives, then pro-

ceeds to solve numerically for the unknowns. Examples of the “direct” method in E/MEG are

Boemmel et al.[4], Urankar[57], and Fletcher et al.[18], who apply collocation BEM to these

“direct” equations. Boemmel et al.[4] and Urankar[57] have also presented analytic solutions for

these “direct” kernels using a linear basis function. Fletcher et al.[18] present comparisons of their

direct technique with other BEM forms. See[5] for a more complete discussion on “direct” versus

“indirect” methods.

In Gonzalez et al.[23], a collocation technique is described where the number of collocation

points may exceed the number of potential basis functions, and the potential basis functions them-

selves are drawn from a Fourier description of the surfaces rather than planar triangles. Hafner[26]

refers to this overspecification of collocation points as “generalized point matching,” and multipo-

lar expansions of surface boundary parameterizations are discussed in the framework of “general-

ized multipole technique” or “multiple multipoles”[26]. Approaches of this type have not been

widely studied in the E/MEG literature (but see also[27]).

From this brief review of BEM as applied to E/MEG, we observe many variations and hybrids,

yet few of these publications place their methods into a common framework or standard BEM ter-

minology, such as used in[5] and[55]. We hope that the framework presented here illustrates the

important issues of “constant” vs. “linear” (with some presentation of “quadratic” in[17], [18],

[44]) potential basis function, and “collocation” vs. “Galerkin” weighting basis functions. We note

also that these issues are also discussed in the more general computational electromagnetics com-

munity - see[16], [25] for example.

Even with the numerical technique and bases selected, each of the elements in the geometry

matrix  in (36) generally still requires an integration or multiple integrations. The works in[4],

[17], [44], [48], [53], [57] present analytic solutions to many of these integrals. We note, however,

that Strang and Fix[55] (p. 98) caution that accurate analytic integration of the matrix elements

H
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doesnot necessarily lead to better results when compared to numerical integration of these ele-

ments: “We regret to report that these inexact numerical integrations have even been shown in some

cases toimprove the quality of the solutions. This is one instance . . . in which computational exper-

iments yield results which are frustrating to the mathematical analyst but nevertheless numerically

valid and important.”

VI. C ONCLUSIONS

We have shown that the forward problem in MEG and EEG can be expressed in a matrix formu-

lation in which the various components of the model are factored. This common framework

includes MEG and EEG data, spherical and realistic head geometries, sensor orientation, gradiom-

eter and differential measurement effects, and constrained and unconstrained dipole orientations.

A key component of this factorization is the field kernel that relates a dipole with arbitrary orien-

tation and location to the surface potentials and the (vector) magnetic field outside the head for

spherical and realistic head geometries. These field kernels are summarized inTable 1.

In the case of MEG, the lead field can be specified as separate matrices for the field kernel, sensor

orientations and gradiometer configurations. For methods using constrained dipole orientations,

the dipole moments are explicitly factored, such that their orientations are easily incorporated in

the gain matrix. Similarly for EEG we can separate the field kernels and switching matrices, as well

as reduce the “run-time” computations for inverse techniques using precomputation of source inde-

pendent terms and, in the case of BEM methods, through calculating the surface potentials at the

sensor locations only.

Using the recent theoretical work in approximating the infinite series for the EEG spherical cal-

culation, we have shown that the computational complexities of EEG and MEG are approximately

equal for both spherical and BEM models. Through the use of our gain matrix framework, we can

easily compare different modeling assumptions using a common inverse method, or conversely,

compare different inverse methods using a common forward model. Combining the two modalities

into a single gain matrix is relatively simple using the formulation presented here, although scaling
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differences in the data and noise must be accounted for to effectively use this combined E/MEG

matrix in an inverse procedure.

Although the spherical head model may be not be sufficiently accurate, we have presented

numerical results demonstrating that BEM methods can also produce large errors. Consequently,

details of specific BEM implementations are necessary when they are used as part of inverse pro-

cedure, in order to delineate the effects of numerical errors in the forward solution on the inverse

method. More sophisticated head models employing anisotropic conductivities will need to address

these same numerical issues in their BEM or finite element method (FEM) solutions to the forward

problem.
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Fig. 2: The RDM (in percent log scale) versus an x-directed dipole. The dipole is positioned
along the z-axis from 3 mm to 78 mm, i.e. to within 3 mm of the radius of the innermost of the
three spherical shells; see the text for descriptions of the model and the locations of the EEG
and MEG sensors. Since the MEG sensors and dipole are both aligned in the x-direction, the
MEG sensors measure only the contributions from the volume currents. The top row is the
results using a constant basis function across each triangle; the bottom row assumes a linear
basis function. The left two columns use collocation for the weighted residuals, and the right
columns use the Galerkin approach, i.e. the error basis is the same as the model basis. The
solid line denotes the RDM using the Isolated Skull Approach (ISA) [29], and the dashed line
is without ISA. We note that ISA improves the EEG solution for a dipole near the surface, but
generally degrades the MEG solution.
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Fig. 3: The RDM (in percent log scale) versus a Y-directed dipole along the z-axis from 3 mm
to 78 mm. See Fig. 2 for simulation details. Contrasted with Fig. 2, the MEG sensors in this
simulation measure contributions from both the primary and volume currents. By symmetry,
the EEG results are virtually the same as Fig. 2.
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Fig. 4: The RDM (in percent log scale) and RMS (in fT log scale) versus an Z-directed dipole
along the z-axis from 3 mm to 78 mm. See Fig. 2 for simulation details. Since the dipole is radi-
ally oriented in this simulation, the MEG sensors should theoretically measure a zero external
field, and the RDM is undefined. In this instance, we plot instead the root mean squared (RMS)
error (in fT) for a 10 nA-m dipole moment. For example, a 10 nA-m radial dipole generates
about a maximum 6 fT RMS error, in the linear Galerkin case without ISA. The radial direction
appears to “strain” the assumptions of constant or linear potentials as the dipole approaches
the inner surface, but the linear Galerkin results are dramatically improved over the other tech-
niques.
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Fig. 5:  Simple example suggested by Dr. Stuart Ferguson (private communication,
Biomag ‘96, Santa Fe, New Mexico, February 1996) to show the effects of approximation
and error weighting. The true function over the interval is , and its true integral
over the interval is 1/3. The collocation forms precisely match the true function at their
respective nodal points, x = 0.5, and x = 0,1. The linear collocation has twice the integra-
tion error over that of constant collocation for this interval. The Galerkin forms are in error
at the nodal points, but both forms precisely integrate to the correct value, 1/3. Thus col-
location may be seen as minimizing the error at specific points, while Galerkin weighting
minimizes the error in a more global sense.
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Table 1. The E/MEG models for different head models are presented in the left column, with the corre-
sponding equation from the text indicated in parentheses. The solution kernels are given either in a
matrix form  or a vector form , and the subscripts on the kernels relate to the specific
E/MEG model. The kernels can be applied as  or , where
and  are the location and moment of an equivalent current dipole.

Model Solution Kernel

EEG, Infinite Homogeneous Model (8)
(Primary Potential)

where

MEG, Infinite Homogeneous Model (7)
(Primary Field)

where  is defined in (19).

MEG Spherical, Radial Field (9)

( )

MEG Spherical, Full Field (10)
(Sarvas Model)

where  and  are defined in (11) and (12)

EEG Spherical, Single Shell (13), (14)
where  and  are defined in (25) and (26).

EEG Spherical,  Shell, Approximate (18)

where  are “Berg Parameters”[3], [60]

EEG BEM (41)
where  is “deflated” from (33), and

 is defined by (40)

MEG BEM (42)

where  is from [17] or [44]
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