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Abstract—An important class of experiments in functional (PET) and functional magnetic resonance imaging (fMRI) acti-
brain mapping involves collecting pairs of data corresponding vation studies, differences between the two conditions are deter-
to separate “Task” and “Control” conditions. The data are then | .qaq using methods ranging from simple image subtraction to

analyzed to determine what activity occurs during the Task histicated statistical vsis of diff bet ts of
experiment but not in the Control. Here we describe a new method sophisticated statstical analysis or diiférences between Sets o

for processing paired magnetoencephalographic (MEG) data Controland Taskimages [1]. Equivalently, magnetoencephalog-
sets using our recursively applied and projected multiple signal raphy (MEG) data could be analyzed by separately estimating
classification (RAP-MUSIC) algorithm. In this method the signal  all sources in the Control and Task data and then performing

subspace of the Task data is projected against the orthogonal 4 giatistical analysis of the differences between the two. How-
complement of the Control data signal subspace to obtain a

subspace which describes spatial activity unique to the Task. A ever, when gsmg Qonllnearlocallzatlon or.lmaglng methods, th?
RAP-MUSIC localization search is then performed on this pro- accuracy with which sources can be estimated decreases with
jected data to localize the sources which are active in the Task but increasing complexity of the sources [2]. This has motivated
not in the Control data. In addition to dipolar sources, effective a number of researchers to investigate methods for estimating

blocking of more complex sources, e.g., multiple synchronously oy those sources which are present in the Task but not in the
activated dipoles or synchronously activated distributed source Control data

activity, is possible since these topographies are well-described ha ) . o
by the Control data signal subspace. Unlike previously published ~ Variations in latency from epoch to epoch will result in dif-
methods, the proposed method is shown to be effective in situations ferences between two data sets even when the sources in the
where the time series associated with Control and Task activity two data sets are nominally the same. Consequently, as shown
possess significant cross correlation. The method also allows for in [3], simple waveform subtraction between Task and Control

straightforward determination of the estimated time series of the dat ts fails if th . lat iation in th
localized target sources. A multiepoch MEG simulation and a ala-sets Talls It there 1S any fatency variation in theé common

phantom experiment are presented to demonstrate the ability of Source activity between the two sets of data. Sekikeagd. [3]
this method to successfully identify sources and their time series describe an alternative method based on a covariance difference

in the Task data. algorithm. In this method, a MUSIC localization search ([4],
Index Terms—Array signal processing, magnetoencephalog- [9]) is performed using the subspace of the difference matrix
raphy, signal subspace methods, source localization. formed by the subtraction of the Control covariance matrix from

the Task covariance matrix. One of the underlying assumptions
in this method is that the cross correlation between the Control
and Task source time series is zero. This method was shown
O ISOLATE the components of the complex processes be effective at blocking out Control sources (and localizing
involved in sensorimotor and cognitive brain activationtarget sources) in cases where cross correlation between Task
brain imaging studies are often performed to examine the diffetad Control source time-series was minimal (i.e., the cross cor-
ence in response between a baseline or “Control” condition argation was less than 0.3). However, in situations where signif-
a specific “Task” condition. In positron emission tomographjcant cross correlation exists between the time series of Control
and Target sources, this method was ineffective. Another limita-
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method is that it allows for reconstruction of the time series as- Theforward modetelates a current dipole of momepéat lo-

sociated with the “abnormal” target activity. As was the casmtionr, to the magnetic field(r) at locatiorr. This “primary”

in [3], this method operates under the implicit assumption thatirrent generates volume (or “return”) currents that must also

Control (normal) and Task (abnormal) activity are uncorrelatelde included in the forward model. We will limit our discussion
Here, we present an alternative method for determining there to the case of spherically symmetric head models for which

sources spatially unique to the Task data. The method represetased form solutions of the forward problem are well known.

an extension to the RAP-MUSIC algorithm in which the signdbee [9] for a review of other forward models in EEG and MEG

subspace of the Control data is estimated and its orthogoaat explicit formulations in the linear algebraic framework used

complement computed. The signal subspace of the Task dia¢ge.

is then projected into the orthogonal complement of the Control The general expression for the magnetic field outside a spher-

data signal subspace to obtain a subspace which describescadly symmetric volume is given by Sarvas [10]. For the spe-

tivity unique to the Task data. A standard RAP-MUSIC search@al case where the MEG sensor is radially oriented, the con-

then performed to estimate the Task source parameters. In doibbution due to passive volume currents in the spherical model

trast to the methods in [3] and [6], this method does not requinéll vanish, and the forward model simplifies to the following

that the sources unique to the Task data set be uncorrelated wigil-known result

those in the Control. Furthermore, the method allows accurate

extraction of the associated time series. One of the other advan- fHo T XTq

tages of this and other subspace-based methods is that complex br) = a5y 1 1)

source distributions in the Control data can be represented di-

rectly from their measurement signal subspace withoutresortifgere 4 is the distance between the observation and source
to specific assumptions or models. _ locations,d = |r — 7,|. Regardless of the specifics of the
The layout of paper is as follows. Section Il provides the basfgrward model, by electromagnetic superposition the forward
definitions and an overview of the RAP-MUSIC algorithm. Anqdel is linear in the moment, and we may write the relation-
description of the proposed method is presented in Section Bhip hetween the dipole moment and the sensor measurement
Results from a multiepoch Monte Carlo simulation and phantog the inner product of a “lead field” vector and the moment,
study are presented in Sections IV and V, respectively. Fir‘,;{lr) =g(r,7y) - q.
conclusions are drawn in Section VI. _ We assume an MEG array ef sensors sampling the mag-
The notation used throughout this paper is as follows. In geRatic field of the dipole. By concatenating the measurements

eral, an italicized plain font is used to denote scalar quantitiggyo 4 vector, we can represent the “forward field” of the dipole
and boldface is used to indicate column vectors and matricgs.

The superscriptZ?™ is used to denote the transpose operator.

For any matrix or vector, the subscripts'” “T,” and “D" are b(ry) g(r1, rg)"
used to denote Control, Task, and Distinct Task (i.e., sources in ak = e q=G(rg)q 2
“T™ but not in “C”), respectively. b(rm) g(rm, T7¢)"
where the “gain matrixG(r,) is also a function of the set of
Il. BACKGROUND discrete sensor locatiofs; }.
A. The Forward Model B. Independent Topographies

The objective of MEG inverse methods is to estimate neural To maintain consistency with our terminology in [11], we de-
current source characteristics given an observed set of noiee a p-dipole independent topograplas a set ofy dipoles
corrupted magnetic field measurements. For the biological sitaving the same quasistatic time course. For any arbitrary set of
nals of interest in MEG, the time-derivatives of the associatedlipoles, the forward model can be found by summing (2) over
electric and magnetic fields are sufficiently small that the fieldsl dipole locationgr,; } and momentsg; },j = 1, ..., p. For
may be considered quasistatic (e.g., [7] and [8]). Under the quax independent topography sampled awesensors and time
sistatic approximation, the magnetic field resulting from an amstances, we can express the resultingk »n spatiotemporal
bitrary static current distribution (e.g., discrete dipoles, multipléata matrix as
synchronously activated dipoles, synchronously activated cur-
rent f_ields, or combinations thereof) can be determined usi_n bre, t) o b(ry, ta)
the Biot—Sarvart law. The inverse problem can be solved by in . .
verting the Bi_ot—Sa_va_rt_Iaw; unfortunately, the sqlutioq is n_ot BT, t1) -+ BT, ta)
unique. That is, an infinite number of source configurations in-
side the brain can account for a given set of magnetic field mea- (G ..
surements. The problem is often further complicated by the lim- — Tq1) (rap)]
ited number of measurements available. As a result, physical Bp(t) o gp(tn)
models for the underlying current distribution are employed [8].

Here we will restrict ourselves to distinct Task sources that carhereg; (¢;) represents thgth dipole sampled at theth time
be well modeled as collections of equivalent current dipoles.instance.

g (t) - q(tn)
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By definition of ap-dipole topography, all of these dipolesgeneralized the development for this case, but it can be handled
have the same time course and therefore the matrix of dipole nuging a simple modification of the method as discussed in Sec-
ments in (3) is rank one. A singular value decomposition (SVQipn 111,
yields a single nonzero singular valaeand the corresponding Under the assumption that the signal is not correlated with
set of singular vectora andw, such that the dipole momentsthe noise, the autocorrelation matrix for the Control data is
matrix is represented as

R- = E{FcF } Ac(s Sc)AC + aC‘e -1 (8)
a.(t) - q(tn)
wovt = . (4)

and similarly for the Task data
a,,(t) - gp(tn)

— Ty _ T T, 2
Defining the scalar time series of this independent topography Ry = E{FrF1} = Ar(S757)Ap + o7 I (9)

to bes = ow, we can rewrite (3) as o N )
The corresponding eigendecomposition of these matrices can be

[Glrgy) -+ Glrgp)]uls(ty) - s(tp)]=alp, w)s?. represented as follows:

(5)
Thep-dipolar topography vectar(p, u) = G(p)w is a function Re = [@cs|®c] {ACS A0 } @7 0L, ] (10)
of the setp of p dipole locationsp = {r,; } and the unit norm 0 Ce

vectoru from (4). The vector: can be viewed as a generalization Ay, O T
of an “orientation” vector by alternatively concatenating all of Ry =[@7,|Pre] [ 0 ATJ (@7, P7] (11)
the dipolar moments and scaling by the resulting vectors norm '

- - - - where in either data set the diagonal matxix= A+ o2 - I rep-
v=[g - g l/lla - Gl (6) resentspc the (orpr) largest “signal plus noise” eigenvalues.
Their corresponding orthonormal eigenvectors form the matrix
The full forward model considered here comprisésdepen- &,. The diagonal matrixA, = (o2 - I) represents the smallest

dent topographies in the presence of noise producing the meise” eigenvalues and their corresponding eigenvectors form

surement matrix the matrix®.. Using the standard terminology, we will refer to
the space spanned k¥ as thesignal subspacand that spanned
F=A(p,w)S" + N by ®. as thenoise-only subspace
sT In practice, we are limited to a finite sebf temporal samples
=Tlalp1, w) --- alpp,w)]|---| +N (7) inFandthesignab, and noiseb. subspace basis vectors must
Pey be estimated by eigendecomposition of the outer product
where eachn x 1 column vectola(p;, u;) = G(p;)u; repre- R=FF' = [(i)s (i,e} [As 0 } [(i)T 2 } _ (12)
sents theth independent topography corresponding toithe 0 A e

time seriess;. The sefp comprises the sets of source locations

{p;} and the sew the corresponding topography orientationélternatively, the spatiotemporal data matrix may be decom-
{u;}. By definition, the matrix of time serieSis rankr, and the posed directly via the SVD a& = [@,|®.]S¥7 to obtain the
matrix of topographiegd(p, ) is assumed to be unambiguousame singular vectori@,|®.], where the eigenvalues are the
and therefore also of rank The matrixV represents additive square of the singular valug® = A.

noise, which we will assume to be zero mean and spatially and

temporally white with variance?. The case of colored noise is [ll. M ETHODS
readily handled by “prewhitening” of the data and model ([12] rap-muUSsIC
[13]).

Before describing the algorithm for paired data sets, we first
C. Task and Control Spatiotemporal Measurements summarize the RAP-MUSIC algorithm in [14], an extension of
the original MUSIC algorithm [4], [5], [11]. The first source is

We assume a paired study comprise®agkand aControl . . :
f%Lg]d as the source location that maximizes the metric

component. The Task measurements are represented by the
trix F'r, and we assume that the Task contaipdgndependent .
sources. Similarly, we assume the Control measurement ma- p1 = argmaxsubcorr(G(p), ,)1) (13)

trix F containspc independent sources. We also assume that

sources active in the Control data are also active in the Task datar the allowed source space. The maiyp) is the gain ma-

such thapr > pe. The number of sources present only in théix for the first source, is the matrix spanning the estimated
Task data, which we will refer to in the following as tfiarget signal subspace of the data, and we assume that all appropriate
sources, i9p = pr — pe- In practice, it is likely that the Con- forward modeling assumptions of head and sensors have been
trol data may also contain sources which are not present in theorporated into the gain matrix. The functisabcorr(e); is

Task data. In order to maintain reasonable notation, we have tta cosine of the firsprincipal anglebetween the subspaces
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spanned by the columns 6#(p) and b,. Principal angles are B. Paired RAP-MUSIC Algorithm

defined in [15]; applications in the context of dipole localiza- £4qh iteration of the RAP-MUSIC algorithm begins by pro-

tion are described in [11] and [14]. For descriptive purposes, We.ting hoth the signal subspace and the model into a reduced
will refer to the cosines of the principle anglessabspace cor- §imensional subspace “away” from the existing solution set.

relations . _ This orthogonal projection operation of the existing solution
If we define Ug to be the orthogonal matrix spanning thee js easily extended to include the subspace associated with
same space &(p), then the square of the subspace correlatioRgs conrol data. We will continue to assume that the distinct

are found as the eigenvalues of the matrix (cf. [3], [11], and [145 et activity is represented by one-dipolar independent to-

pographies, but we will allow the sources in the Control data
T& &T to be more generally specified as independent topographies,
Ua:¢, Ve (14) where each topography may be arbitrarily specified, e.g., a syn-
chronous nondipolar distributed source. We continue to assume
By maximizing the subspace correlation in (13), we identifthat this same set of independent topographies is also present
the source locatiom and corresponding gain matrix that ha#n the Task data, so that the- independent topographies in
the smallest principal angle with respect to the estimated sigiiag¢ Task data contain- arbitrary independent topographies in
subspace. To complete the first independent topography modeimmon with the Control data ang> Target one-dipolar to-
we need the corresponding source orientation vector, whichpiggraphiespr = pc + pp.
a simple linear transformation of the eigenvector of (14) corre- We estimate the two signal subspaces as in (10) and (11),
sponding to the maximum eigenvalue; see [11] for details. THeen initialize the RAP-MUSIC algorithm for the Task data with
resulting estimates yield the first estimated independent topafy = .. In other words, we use the estimated signal subspace

raphy,a(p1, w1) = G(p1)u1. from the Control data as a “prior data subspace” in the initial

For the kth RAP-MUSIC recursionk = 1, 2, ..., r, the recursion of the Task data. For thth Paired RAP-MUSIC re-
nonlinear source location parameters are found as cursion, the algorithm proceeds as before, with (16) modified to

be
P = al’gma><subco7’7’ (ij G(p), ij és) ) (15) dcy k=1
:—1 c—1 1 “ R
A= 4 (S| la(pr ) o alper, )] (19)

where k=23, ---.

A The recursion halts after the last source unique to the Task data
Apy =la(pr, @) - a(Pr—1, U 1)] (16) is identified, i.e., aftepp recursions under our assumption of
pp one-dipolar sources. A flow chart summarizing the Paired
. ) RAP-MUSIC algorithm methodology is shown in Fig. 1.
represents the independent topography matrix found through thgyi, 41 gistinct Target sources identified, estimates of the
!orewous recursion. The orthogonal projection operﬁ[ﬁ[il corresponding time series associated with just Target source ac-
is computed as tivity can be determined as

I =1 Aady 17) 8§ = (I Ap)'II; Fr (20)
where A = [a(p1, 1) - - - (pr, 1s)] is the submatrix in (19)

~TF AT A ~T . . . . . .

whereA, | = (A,_,A,_1)"'A,_, is the pseudo-inverse of representing the Target topographies found during the paired

Ay;._1, and we initialize the topography matrix & equal to RAP MUSIC search.

the “null matrix” and thereforél, = 1.

At each iteration, the source location geih (15) may rep-
resent one or more dipolar sources. Here, we will restrict theln the description above and in the simulations and experi-
search to one-dipolar models only, halting the recursion whrents that follow, we have considered the case where the Con-
the one-dipolar maximum subspace correlation drops too Il sources are also present in the Task data. We have addition-
Extensions to multiple synchronous sources are discussedity assumed that the correct rank of the Control and Task are
[11], [14] in which the complexity of the model is increased aselected when forming the signal subspace estimates. We now
the simpler models fall below a correlation threshold. describe extensions of the Paired RAP-MUSIC algorithm to the

With all sources in the data identified and their independeg@se of distinct activity in both the Control and Task data, as
topographies represented in the final topography mati>gan well as overspecified ranks of both signal subspaces.

be used to estimate the corresponding time series The rank of the signal subspace is typically selected by vi-
sual inspection of the singular value spectrum (e.g., [5], [11]).

. o . If there is not a clear drop in the singular values to clearly indi-
A)TA F=AF. (18) cate the rank, then it is safer to overestimate the assumed rank.

C. Extensions
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Fig. 1. Paired RAP MUSIC algorithm flow chart.

Selecting too large a rank will result in additional “noise” eigermethod is applied, however, the projection of the Task signal
vectors being included in the signal subspace estimate; hawbspace away from the additional eigenvectors may unnec-
ever, the probability is quite small that these additional noigssarily suppress signal energy in the distinct Target sources.
eigenvectors will actually correlate with the source models (c€onsequently, localization accuracy of the Target sources may
[16]). Conversely, selecting too small a rank can be detrimentakedlessly suffer. We can instead find the component of the
in some cases resulting in an inability to localize any sourceSontrol subspace which is also in the Task subspace, and
In this extension, we will therefore assume that the ramks project away from only this component in (19). We identify
andpy for the Control and Task data may be overspecified. Thiis common subspace from the subspace correlations between
number of distinct Target one-dipolar independent topographtbe two spaces as

remains designated ag, butin this extension this number may

no longer be the simple difference betwegnandpy. subcorr(®es, Prs). (21)

The Paired RAP-MUSIC algorithm described in the previous
section may still be used even in the case where the Controln the noiseless case, if the Control sources are all present in
subspace contains these additional eigenvectors. When tte Task data, then the rapk: of the Control data is less than
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Ay Search Area

-2<X<4 cm

//’_‘\ 3<Y<7 cm
1<Z<5 cm

Exterior Sensor
Array (10 cm Radius)

\ . Location Orientation
\ Dipole
\ [x y z] (cm) (xyz]
- S T [306.020] | [0.000.0071.00]
~Se_ _ - § P [254540] | [1.000.000.00]
3|9 3 [[155083.0] | [0.710.710.00]
O~ :Control L 4 [155535] | [0.710.71 0.00]
. =
O- :Target 5| s [0.04020] | [0.710.00071]

Fig. 2. Source locations, orientations, and search limit boundaries used in computer simulation.

the rankpr of the Task data, and the analysis will reveal time series. Our goal was to generate realistically shaped
subspace correlations equal to unity. In the presence of mode@terlapping time series possessing moderate cross correlations
noise, thesgc correlations will be near unity. In the case wher€0.3—-0.6). The dipole time series were generated using expo-
the Control subspace contains additional sources not foundnientially decaying sinusoids of varying frequencies to simulate
the Task data, then only a subset of the subspace correlatitiiesshapes of the time series shown for example in [8]. A total
will be near unity. More generally, we will finé correlations of 500 samples were generated for each time series using a
near unity, wheré < min(pc, pr). Thesek correlations cor- sample rate of 1 ms. Location and orientation were assumed to
respond to &-dimensional subspace common to the two signak fixed for each dipole. A peak dipole moment of 10 nA-m
subspacesin (21). As described in [11], [15], the correspondimgs used for each dipole. The location and orientation of each
k principal vectordrom each signal subspace are readily identdipole is summarized in Fig. 2. A plot of the time series for
fied as part of the subspace correlation calculation. We can foaach dipole is shown in Fig. 3.
the common subspacerc, from the corresponding principal A total of 100 epochs were generated for each Monte Carlo
vectors in the Control data and use this subspace in plaﬁz@pf trial. Each epoch was allowed to vary in both amplitude and
in (19). latency. Latency variations were Gaussian with a standard de-
With the common subspace identified, Paired RAP-MUSI@ation of 10 ms. Amplitude variations were generated using a
proceeds as above to identify the distinct Target activity in thmiformly distributed scaling factor between 0.5-1.5, yielding
Test data, halting aftes,, recursions of a one-dipolar topog-peak dipole moments between 5-15 nA-m. A depiction of the
raphy. Note that this procedure does not estimate the activity disst ten epochs in the presence of amplitude and latency varia-
tinct to the Control data. To model the distinct Control activitytions is shown in Fig. 3.
we simply reverse the role of Task and Control in the above dis-Sensor Measurement GeneratioRadially oriented mag-
cussion. netic field measurements were generated and white Gaussian
noise added to each measurement sample. Two different
IV. SIMULATION STUDIES noise levels were investigated in this study (see Table I). The
single-epoch SNR is defined as the square of the Frobenius
Norm (F-norm) of the noiseless signal matrix divided by the
In order to assess the viability of the proposed method, wsguare of the F-norm of the noise-only data matrix. The spa-
performed a multiepoch Monte Carlo simulation. This simulaiotemporal matrix used for source localization was obtained
tion employed a 64-sensor hemispherical array with data cbly averaging over all epochs, as shown in Fig. 4. The effective
lected over 100 epochs. Each epoch comprised 500 time s&@MNR following averaging is increased in proportion to the
ples and the amplitude and latency were varied between epochsnber of trials.
One hundred independent Monte Carlo trials were performed. Baseline RAP-MUSIC LocalizationThe RAP-MUSIC al-
MEG Array Geometry:We simulated an array of 64 radi-gorithm described in Section Il was used to localize each of the
ally oriented magnetometers along the outer circumferencefioe sources on a 0.05-cm grid in the range2.0 < z < 4.0
a 10-cm hemisphere. The sensors were nominally uniformdyn; 3.0 < y < 7.0 cm; and1.0 < z < 5.0 cm. A dipole
spaced with approximately 3.8 cm between sensors. localization was declared for a maximum subspace correlation
Multiepoch Current Dipole Time Series GeneratioRive greater than 0.95. In order to maintain consistency throughout
dipolar sources were generated with linearly independehis study, the rank of the data matrix signal subspace was al-

A. Dipolar Source Study
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Fig. 3. Dipole source time series used in computer simulation. Control set consists of dipoles 1-3 shown on top row. Target dipole set consistd-€5 dipol
bottom row. Example of epoch-to-epoch amplitude/latency variations is shown for first ten epochs of dipole 3 in lower right plot.

ways correctly specified; see the Extensions section above éotumn in Table I. In each case, sources in the Control data were

discussions on overspecifying the rank. effectively blocked while Target sources were successfully lo-
The RAP-MUSIC localization procedure was repeated faalized. Localization accuracy of Target dipoles 4 and 5 using

each of 100 Monte Carlo trials. The mean and standard dettie paired data was found to be nearly identical to that obtained

ation of each of the following metrics was computed. via direct localization on the 5-dipole Task data-set. In nearly

1) Localization Accuracy: Vector distance = ||#, — r,|| all cases, the difference in localization error between the two
between the true dipole locatiory and the localization results was within 1 mm. Direct extraction of Target Source
estimater,. time-series activity utilizing equation (20) is shown in Fig. 5,

2) Subspace Correlation: Cosine of the smallest principle where the extracted target dipole time series is plotted alongside
angle between the signal subspégespanned by the datathe true dipole time-series. This figure demonstrates the ability
and the subspace spanned by the forward m&gg) at of the paired RAP MUSIC method to successfully extract the
the locationp. Target time series even when they are partially correlated with

Localization results for this case are shown in Table |. Standdiw sources in the Control data.

deviations in the localization errors ranged from fractions of a For comparison, we also performed a localization study using
millimeter in the high SNR case up to 3.7 mm for the weake#ite Covariance Difference method described in [3]. For this

dipole inthe lower SNR case. In all cases, a very strong subspatedy the sources in Control and Test were identical to those
correlation (greater than 0.99) was observed. used in the Paired RAP MUSIC study except that the dipole time

Paired RAP-MUSIC LocalizationTask data were identical series was fixed for all epochs (i.e., no amplitude or latency vari-

to that used in the above baseline study. The Control data watm®ns). In addition, a RAP-MUSIC search was employed rather
generated using dipoles 1 to 3 only. The Control data were gehan a classical MUSIC search. Localization results for this ex-
erated independently from the Task using different realizatiopsriment are presented in the final result column in Table I.
of the noise, dipole latency, and amplitude variations. Localvhile Control source activity was successfully blocked, only
ization results after projecting the Task signal subspace awaye of the two Target sources was successfully localized. The
from the Control subspace are summarized in the second resutbr associated with this localization was in excess of 1 cm. In
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TABLE |
RAP-MUSIC DPOLE SEARCH RESULTSUSING FIVE ONE-DIPOLAR SOURCES IN THETASK DATA AND THREE ONE-DIPOLAR SOURCES IN THECONTROL DATA.
RESULTS SHOWN FORDIRECT RAP-MUSIC LOCALIZATION ON TASK DATA, PAIRED RAP-MUSIC LOCALIZATION USING TASK AND CONTROL DATA, AND
PAIRED DATA LOCALIZATION USING COVARIANCE DIFFERENCEMETHOD [3]. STATISTICS COMPUTED OVER100 MONTE CARLO TRIALS

5 Dipole Task data w/ | 5 Dipole Task data w/ 5 Dipole Task data w/
no Control data 3 Dipole Control data 3 Dipole Control data
(RAP-MUSIC) (Paired RAP-MUSIC) | (Covariance Diff Method)
HIGH SNR CASE
Loc Subspace Loc Subspace Loc Subspace
Dipole | SNR (1-Epoch) | Error (cm) | Correlation | Error (cm) | Correlation | Error (cm) | Correlation
Mean/s.d. | Mean/s.d. | Mean/s.d. | Mean/s.d Mean/s.d Mean/s.d
1 0.302 0.0027 0.9999 Ng Datection [ No Detection | No Detection | No-Detection
: 0.01201 0.00002 (Blocked) | (Blockéd) (Blocked) (Blocked)
2 0.154 0.0464/ 0.9994/ No Detection | No'Detection |:No'Detection’ | No Detection
: 0.04141 0,00031 (Blocked) | (Blocked) (Blocked) (Blocked)
3 0.089 0.0318/ 0.9993/ No: Detection | No Detection |- No'Détection: | No Detection
: 0.034487 | 0.00026 (Blocked) | (Biocked) (Blocked) (Blogked)
4 0.010 0.0547/ 0.998/ 0.0604/ 0.9976/ 1.1318/ 0.9893/
' 0.03903 0.00032 0.033335 0.000407 0.024863 0.000405
0.0682/ 0.9985/ 0.0777/ 0.9981/ . .
5 0.080 0038322 | 000070 | 0.045045 | 0000407 | 'O Petection | No Detection
LOW SNR CASE
SNR Loc Subspace Loc Subspace Loc Subspace
Dipole (1-Epoch) Error (cm) | Correlation | Error (cm) | Correlation | Error (cm) | Correlation
poc Mean/s.d. | Mean/s.d. | Mean/s.d. | Mean/s.d Mean/s.d Mean/s.d
5 0.048 0.0887 0.99927 No Detection | No Detection | No Detection |.NO Deteciion
: 0.041620 | 0.000169 | (Blocked) | " (Biocked) (Blockeid) (Blocked)
2 0.025 0.1829/ 0.9926/ No Detection | No-Detection | No Detection | No Detection
' 0.085843 0.003657 (Blocked) {Blocked) ({Blocked) (Blocked)
3 0.014 0.1329/ 0.9918/ No' Detection | No Detection| No:Detection' | No:Detsction
: 0.079747 | 0.003875 | (Blocked) | (Blocked) (Blocksd) (Blocked)
4 0.016 0.1743/ 0.9854/ 0.1861/ 0.9832/ 1.1242/ 0.9881/
' 0.077907 0.003313 0.091795 0.003158 0.031321 0.001093
0.3710/ 0.9948/ 0.2299/ 0.9858/ . .
s 0.0009 0171198 | 0004998 | 0111124 | 0002582 | N Detection | NoDstection

comparison, localization errors using the Paired RAP-MUSI&so conducted using Control data-sets containing distributed

method were between 0.1-2.3 mm (Table I). sources containing two or three synchronously activated
dipoles. In each case, these distributed source topographies
B. Distributed Source Study were successfully blocked with no observed degradation in the

In order to determine the algorithm performance in the prelcalization error of Target source activity.
ence of more complex distributed sourced, & 1 x 1.5 cm
rectangle “distributed current field” was created by generating V. PHANTOM EXPERIMENTS
27 synchronously activated sources all within the vicinity of
dipole 2. The moment of each of these sources was scaled’%y
27 such that the total source moment remained unchanged. This method was also evaluated using MEG data collected

The results are shown in Table Il. Baseline RAP-MUSI@ a controlled phantom experiment. In these experiments, a
localization was performed on the five source Task data-sphantom containing 32 programmable dipoles was used to si-
The Paired RAP MUSIC method was then applied to the fivaultaneously collect EEG and MEG data. MEG data was col-
source Task data with three source Control data. The singgeted using a Neuromag-122 (Neuromag Ltd., Helsinki, Fin-
epoch F-Norm SNR of the Task data was on the order of ddnd) whole head system at the Neuroimaging Center of the
(giving a 100-epoch post averaged SNR of approximately tetew Mexico Regional Federal Medical Center in Albuquerque,

A one-dipolar forward model was utilized in the RAP-MUSIONew Mexico. This machine contains 61 dual-channel planar-
search. gradiometer sensors giving a total of 122 spatial measurements.
As shown in Table II, the baseline study shows a dipole itn X-ray computed tomography (CT)-generated side view of

the vicinity of the simulated 27-dipole “current field,” albeitthe phantom is shown in Fig. 6.

with a somewhat large localization error of 4.5 mm (the error Evaluation of data collected directly from a physical system
was computed with respect to the centroid of the distributéds the advantage that effects associated with forward model
source). In the paired experiment, the distributed source waaccuracies, the nonideal nature of the sensors, and correlated
successfully “blocked” with no adverse affect on the localizdsackground noise are present in the data. These effects are not
tion solution of the Target sources. As was the case with thell modeled (and often ignored) in simulation studies. The use
one-dipolar sources, target source localization accuracy usofgphantom data has the secondary advantage that dipole lo-
either direct localization or the Paired RAP-MUSIC methodation, orientation, and time-series “ground truth” can be es-
were observed to be nearly equivalent. Paired experiments wilglished. In this study, true dipole locations and orientations

Overview
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Fig. 4. Computer simulation Task (upper left) and Control (upper right) waveform sets. Each plot shows radial magnetic field measurement fbe élch of t
sensors averaged over 100 epochs. The 20 largest singular values corresponding to the Task data (lower left) and the Control data (lowepwghtraae sh
low SNR case.
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Fig. 5. Plot of recovered time series for Target sources 4 and 5 using computer simulation data described in Section IV. Task data consistegahfive 1-di
sources while Control data consisted of three 1-dipolar sources. Time series estimated using equation (20).

were extracted from X-ray CT scans of the phantom and tigeammable dipole driver. A comprehensive description of the
dipole time series were those used in the source file for the ppitrantom physical model, experimental observations, and indi-
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TABLE I
PAIRED RAP-MUSIC DPOLE SEARCH RESULTSUSING TASK DATA (CONTAINING ONE DISTRIBUTED SOURCE& FOUR ONE-DIPOLAR SOURCES WITH CONTROL
DATA (CONTAINING ONE DISTRIBUTED SOURCE& TWO ONE-DIPOLAR SOURCES. STATISTICS COMPUTED OVER100 MONTE CARLO TRIALS

5 Source Task data w/ 5 Source Task data w/
no Control data 3 Source Control data
(RAP-MUSIC) (Paired RAP-MUSIC)
Loc Loc
Source SNR (1-Epoch) Error (cm) }\/S[z::/:n(-i Error (cm) NS[::L(:Z
Mean/s.d. o Mean/s.d. o
] 0.033 0.14447 0.99887 NG Detections NG Detections -
0.046136 0.000212 (Blocked) (Blocked)
) 2 0.017 0.4468/ 0.9839/ No Detections No‘Detections
(Dist Source) 0.096436 0.002724 {Blocked) (Blocked)
3 0.001 0.2366/ 0.9718/ No Detections No Detectighs
0.19779 0.008129 (Blocked) (Blocked)
4 0.011 0.2470/ 0.9654/ 0.2012/ 0.9684/
0.107836 0.007778 0.084013 0.005620
5 0.008 0.6034/ 0.9959/ 0.3208/ 0.9703/
0.117227 0.006228 0.168079 0.005874

Fig. 6. X-ray CT view of skull phantom and EEG electrodes. The tips of

32 coaxial cables inserted through the base form the individual dipoles.

nA-m. MEG measurements were sampled at a rate of 500 sam-
ples/s. Observed SNRs for the subset of dipoles used in this
study (expressed as the square of the F-Norm of the spatiotem-
poral data matrix divided by the square of the F-Norm of “noise-
only” data collected under prestimulus conditions) were in the
range of 5.9-10.9. These SNRs represent single-epoch values
computed from data sets which included all post-filtering oper-
ations. All phantom localization experiments in this paper were
performed using one epoch of data. It should be noted that this
data is somewhat noisier than data collected in a typical MEG
experiment where spatiotemporal data-sets are averaged over
multiple epochs to smooth out uncorrelated background noise.
Raw data collected on the phantom showed significant signs of
60 Hz background noise interference. To minimize the effects
of this noise, the raw data sets were filtered using a four-pole
elliptic low-pass filter with a cutoff frequency of 20 Hz. In [17]
the dipole localization errors due to registration of the MEG
datato the X-ray CT images of the phantom and to extraction of
the dipole locations from the CT images were estimated to be
2-3 mm. All localization experiments presented in this paper
utilized a RAP-MUSIC search incorporating a single locally
fitted sphere forward model [10].

B. Phantom Localization Experiments

Spatiotemporal data collected in the phantom experiment de-
scribed above were used to construct multiple dipole data-sets
possessing correlated time sequences. Given two dipoles with
sinusoidal time-series of the same frequency, the desired cross
correlation was obtained by adding an appropriate phase shift.
This technigue was limited to two sinusoidal time-series since a
third phase-shifted sinusoid can be represented as a linear com-

t;ﬁianation of the other two. Additional data-sets were created by

opposite end of the cables were connected to the source driver via a conned@gampling the original 10-Hz time series to 5.71 Hz. Using this

(shown in the lower left).

vidual dipole localization results are described by Leahwl.

[17].

technique, a set of four dipoles were constructed. The time-se-
ries cross correlation was 0.41 between dipoles 1 and 3 and 0.54
between dipoles 2 and 4.

Multiple dipole data sets were constructed by adding together

In the phantom study, each of the 32 dipoles was driven usitige time-series associated with each of the dipoles of interest.
a 10-Hz sinusoid. Dipoles were fired in succession (with no order to avoid any potential transient effects that may have
overlap) so that the activation time for each dipole was 1.0 s. Thecurred at the time of dipole switching during the original
estimated peak amplitude of each dipole was between 200-30@&ntom study, only the central 800 ms (400 samples) of the
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TABLE Il
PHANTOM STUDY: RAP-MUSIC DPOLE SEARCH RESULTS USING FOUR ONE-DIPOLAR TASK DATA AND TWO ONE-DIPOLAR CONTROL DATA. RESULTS SHOWN
FOR DIRECT RAP-MUSIC LOCALIZATION ON TASK DATA AND PAIRED RAP-MUSIC LOCALIZATION USING TASK AND CONTROL DATA

4 Dipole Task data w/ 4 -Dipole Task data w/
no Control data 2-Dipole Control data
(RAP-MUSIC) (Paired RAP-MUSIC)
. True D{I)Ole Localization Localization
Dipole Location Subcorr Subcorr
Error (cm) Error (cm)
[xyz]lem
No Detection “NoDefection -
1 [-8.90 2.25 2.64] 0.77 0.9225 Blockad) (Blocked)
No:Detection No-Detection
2 [-3.950.93 3.83] 0441 0.9930 (Blocked) : (Blocked)
3 [-2.68 1.18 4.60] 0.58 0.9614 0.32 0.9491
4 [-3.08 -0.45 4.04] 0.10 0.9887 0.37 0.9769
DIPOLE 3 ESTIMATED TIME SERIES DIPOLE 4 ESTIMATED TIME SERIES

400 g ; ! : 400 : ; ,
300

200

—
[=]
(=]

Moment (nA-m)
(=]
Moment (nA-m)
(=)

-100 -100
-2001 ~-200
-300 -300t : ]
_ | : i . -400 n : i L
400O 0.1 0.2 0.3 04 0.5 0 0.1 02 0.3 0.4 0.5
Time (Sec) Time (Sec)

Fig. 7. Plot of recovered time series for target sources 2 and 3 using low SNR single-epoch phantom data for the case summarized in Table |l nEstedata co
of four 1-dipolar sources while Control data consisted of two 1-dipolar sources. Time series estimation performed using equation (20). A 10“H#{and 5.
sinusoid (representing the true time series) are shown for reference with a broken line.

TABLE IV
RAP-MUSIC DPOLE SEARCH RESULTS USING TWO ONE-DIPOLAR AND ONE TWO-DIPOLAR SOURCE IN TASK DATA AND ONE ONE-DIPOLAR AND
ONE TwO-DIPOLAR SOURCE IN CONTROL DATA. RESULTS SHOWN FOR DIRECT RAP-MUSIC LOCALIZATION ON TASK DATA AND
PAIRED RAP-MUSIC LOCALIZATION USING TASK AND CONTROL DATA

4-Source Task data w/ 4- Source Task data w/
no Control data 2-Source Control data
(RAP-MUSIC) (Paired RAP-MUSIC)
True Squrce Localization Localization
Source Location Subcorr Subcorr
Error (cm) Error (cm)
[xyz]cm
1 [-3.902.252.64] 101 0.9410 N6 Detettion No Detection
(2-Dipolar) [-3.08 -0.45 4.04] : ’ (Blocked) (Blocked)
No, Detection No Detection
2 {-2.68 1.18 4.60] 0.45 0.9917 (Blocked) Blockéd)
3 [-4.17 2.73 2.10] 0.26 0.9882 0.35 0.9653

each 1.0-s data set were utilized. To ensure that Task and Conairedl 4. When compared to the phantom truth data, the localiza-
data sets each contained independent noise samples, a sept@oaterror using the Paired-RAP method showed a slightincrease
dipole time-series realization was utilized in each data set. T{&7 mm) in the case of dipole 4 and a slight decrease (2.4 mm)
results of two localization experiments using correlated Tagkthe case of dipole 3. The time series for the two Target sources
and Control data are shown in Table Il for a case using dipolesthe Task data are shown in Fig. 7. Note that the method is able
1-4 in the Task data and dipoles 1 and 2 in the Control data.extract the Target time courses even when they are correlated
Baseline localization using the Task data was able to locate with the sources in the Control.

four dipoles. The paired RAP MUSIC search using the Control A second example used two synchronous dipoles and one
data to block dipoles 1 and 2 resulted in detection of dipolesi8lependent dipole in the Control, as shown in Table IV. The
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Task data contained these sources plus a second dipole. Again,
the Paired RAP MUSIC method was able to localize the Target;;;
source in the Task data. In this case, a slight increase in error

(1 mm) was observed. In both examples, a slight decrease in the

subspace correlation using the Paired RAP-MUSIC method wasy)
also observed.

[3

VI. CONCLUSION

We have presented a new method for extracting source ac[—4]
tivity from paired MEG data where the objective is to identify
source activity occurring in the Task data but not in the Control.
The method presented is based on the RAP-MUSIC algorithm,[5
a variant of the well-known MUSIC algorithm. A key feature of
the RAP-MUSIC algorithm is the orthogonal projection oper- [6]
ator which effectively “removes” the subspace associated with
previously located source activity. In the Paired RAP-MUSIC (7]
method, the orthogonal projection operation is extended to in-
clude the signal subspace of the Control data. 8]

Computer simulation and phantom studies show the Pairec}
RAP-MUSIC method is effective at blocking out Control
source activity and identifying Target source activity. In ad-
dition to simple point-dipolar sources, effective blocking of
more complicated sources was demonstrated. Synchronousl
activated sources present a challenge given that their subsp g
collapses into a subspace different than that of the individughzj
sources. Direct localization of complex sources (using subspace
based methods) is often difficult given that the combinatoric:hz]
associated with testing multiple-dipole forward models is often
prohibitive. While distributed source activity may be difficult [13]
to localize, knowledge of its subspace is sufficient to effectively
block the source via application of the orthogonal projection
operator. [14]

Localization accuracy of Target source activity using the
Paired RAP-MUSIC method was found to be nearly equivalent;s)
to results obtained by performing direct RAP-MUSIC localiza-
tion on the entire Task data-set. In some cases, the paired—R,C{ul:6
method produced superior localization results, whereas in
other cases direct localization produced better results. This was
observed in both the simulation and phantom studies wherﬁn
differences in localization accuracy were within 3 mm.

Computer simulation and phantom study results show this
method to be effective in cases where the cross correlation
between Task and Control source time-series was significant
(values of 0.3-0.6 were tested in this study). In comparison,
the method presented in [3] was shown to be ineffective in
cases where source activity possessed significantly correlated
time-series. The Paired RAP-MUSIC method was also shoy
to be effective in the case of a multiepoch computer simulatic
where random signal “jitter” (amplitude and latency variations
occurs between epochs and data-sets. A straightforward exp
sion for estimating the time-series associated with Target sou
activity (20) was also presented and validated in simulation a
phantom studies.

Although the methods presented in this paper focus on
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