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Source Localization Using Recursively
Applied and Projected (RAP) MUSIC

John C. Mosher and Richard M. Leahy

Abstract—A new method for source localization is described be conducted. The problem can become even more involved
that is based on a modification of the well-known MUSIC algo- when the sources are diverse|y po|arized’ such that the ar-

rithm. In classical MUSIC, the array manifold vector is projected oy manifolds required to model the sources with unknown
onto an estimate of the signal subspace. Errors in the estimate larization b ltidi . L Sub thod
of the signal subspace can make localization of multiple sources polarization become multidimensional. subspace methods can

difficult. Recursively applied and projected (RAP) MUSIC uses also be applied to nontraditional array processing problems,
each successively located source to form an intermediate array for example, the localization of quasistatic electromagnetic

gain matrix and projects both the array manifold and the signal  sources from electrophysiological and meteorological data [4],
subspace estimate into its orthogonal complement. The MUSIC 5]

projection to find the next source is then performed in this . . .

reduced subspace. Special assumptions about the array manifold ON€ important application of subspace methods is to
structure, such as Vandermonde or shift invariance, are not the localization of equivalent current dipoles in the human
required. Using the metric of principal gngles, we describe a brain from measurements of scalp potentials or elec-

diversely polarized sources. Through a uniform linear array .
simulation with two highly correlated sources, we demonstrate magnetoencephalogram (MEG) (collectively E/MEG) [6].

the improved Monte Carlo error performance of RAP-MUSIC ~ These current dipoles represent the foci of neural current
relative to MUSIC and two other sequential subspace methods: S sources in the cerebral cortex associated with neural activity
and IES-MUSIC. We then demonstrate the more general utility in response to sensory, motor, or cognitive stimuli. In this case,
of this algorithm for multidimensional array manifolds in a  ne cyrrent dipoles have three unknown location parameters
magnetoencephalography (MEG) source localization simulation. . . . . . .
and an unknown dipole orientation (which is modeled in
_Index Terms—Array signal procesing, EEG, MEG, MUSIC, a similar way to the polarization vector in the diversely
signal subspace, source localization. polarized source problem treated in [1], [2], and [7]). A direct
search for the location and orientation of multiple sources
|. INTRODUCTION involves solving a highly nonconvex optimization problem.
GNAL subspace methods in array processing encompaProbIems with convergence to local minima have motivated
Y o%ﬁer E/MEG researchers to resort to search strategies such

range of techniques for localizing multiple sources b . . . .
- ) s simulated annealing and the use of genetic algorithms. As
exploiting the eigenstructure of the measured data matrixX

Multiple signal classification (MUSIC) [1], [2] and its manyan alternative approach, we investigated a signal subspace

variants are among the more frequently studied subsp eproach based on the MUSIC algorithm [4], [8]. However,

methods [3]. The attractions of these MUSIC methods a?‘é(° pr_oblems often arise in pract|ce_. F'TSF' errors m_esumqtmg
signal subspace can make it difficult to differentiate

twofold. First, they can provide computational advantages ov,t;ge > from “false” peaks in the MUSIC metric. Second

direct least squares methods in which all sources are Iocatgh:e tically findi | local ) in the MUSIC
simultaneously. More importantly, they also allow exhaustidromatically fincing several focal maxima in the
ic becomes difficult as the dimension of the source space

searches over the parameter space for each source, thef@?}’

avoiding potential problems with local minima encountere Reases_. | lied and , 4 (RAP)-MUSIC
in searching for multiple sources over a nonconvex error ecursively applied and projected ( )- over-

surface. Subspace methods have been most widely studied €S these problems by using a recursive procedure in which

application to the problem of direction of arrival estimation fo ach_source is found af] the gl;})b:l ma|>(<|rr;)|zer oflqd|ﬁerent cost
narrowband linear equally spaced arrays. Other applicati ygction. In esser.]c-:e,t e met 00 WOrks Dy applying a MUSIC
involve broadband and near-field sources and arrays Wﬁﬂarch_to a mo<_:i|f|ed problem in which we first prqject both
arbitrary element locations. In these cases, range and azimiith €stimated signal subspace and the array manifold vector

may become additional parameters over which the search &gy from the subspace spanned by the sources that have
already been found. We describe the RAP-MUSIC method
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form of the array manifold. For this reason, we do ndhe estimated noise-only subspafb% using the remaining

consider methods such as ESPRIT [13] or ROOT-MUSIC [3igenvectors.

which exploit shift invariance or Vandermonde structure in Finally, we generalize the array manifold vector for the

specialized arrays. case of vector sources representing, for instance, diverse
In Sections Il and lll, we briefly review the problem for-polarization [1], [2], [7], in conventional array processing

mulation, and for comparative purposes, we describe classioal current dipoles in EEG and MEG source localization

MUSIC in terms of principal angles. We then develop RARS8]. In this case, the array manifold vector is the product

MUSIC in Section IV for the general case of “diverselyof a multidimensional array manifold or gain matrix and a

polarized” sources [1], [2], [7]. A comparison of this methodpolarization or orientation vector

both in terms of formulation using principal angles and Monte

Carlo performance evaluation, is presented for three alternative o0) = G(p)¢ (3)

sequential algorithms: S-MUSIC [14], IES-MUSIC [15] andyng we may view the parameter set for each sourcé &s

R-MUSIC [16]. We then present an MEG example to highlight,, 4y comprising quasilinear orientation parametersind
diversely polarized applications. A preliminary version of thiggniinear location parametes

work was presented in [17].
I1l. MusIiC AND PRINCIPAL ANGLES

The MUSIC algorithm [1], [2] finds the source locations
We consider the problem of estimating the parameters g§ those for which the corresponding array manifold vector is
7 sources impinging on amn-sensor element array. Eachearly orthogonal to the noise-only subspace or, equivalently,
source is represented by an>r (possibly complex) ar- projects almost entirely into the estimated signal subspace.
ray manifold vectora(#). Each source parametéf may For the diversely polarized case, the problem becomes more
be multidimensional, and the collection of the manifold complex since the signal or noise-only subspaces must be
parameters is designatedl = {6:,---,6.}. The manifold compared with the entire span of the gain maifitp). A
vectors collectively form am: x r array transfer matrix natural way to compare these two subspaces is through use of
A©) = [a(fh), - a(60)] ) principal angleg[9] or canonical correlationdi.e., the cosines

of the principal angles) (cf., [11]).
which we assume to be of full column rankfor any set ofr Let ¢ denote the minimum of the ranks of two matrices
distinct source parametefs, i.e., no array ambiguities exist, 4 and B.

The canonical or subspace correlation is a vector
Associated with each array manifold vector is a time seri

Il. BACKGROUND

ggntaining the cosines of thgprincipal angles that reflect the

s(#), and the data are acquired &) = A(6)s(t) + n(t) similarity between the subspaces spanned by the columns of
wheres(#) is the vector of- time series at time. The additive the two matrices. The elements of the subspace correlation

noise vectom(t) is assumed to be zero mean with covarianc§ctor are ranked in decreasing order, and we denote the
E{n(t)n" (t)} = 21, where superscript " denotes the largest subspace correlation (i.e., the cosine of the smallest
nT

Hermitian transpose. principal angle) as

The autocorrelation of(t) can be partitioned as subcorr(A, B); . (4)
R = E{z(t)z" (1)} If subcorr(A, B); = 1, then the two subspaces have at least
= AO)(E{s(t)s" () HAO)" + 21 a one-dimensional (1-D) subspace in common. Conversely, if

—O[A + 21|07 = &, 7,07 4 &, A, F (2) subcorr(4,B), = 0, then the two subspaces are orthogonal.
These subspace correlations are readily computed using SVD’s

where we have assumed that the time series are uncorrela@gdlescribed in [9].
with the noise. We assume that the correlation of the signalThe MUSIC algorithm finds the source locations as those
time series yields a full rank matri® = E{s(t)s"(¢)}, and for which the principal angle between the array manifold
A(©)PA(©)H can be eigendecomposed @sA®, where vector and the noise-only subspace is maximum. Equivalently,
®, contains ther eigenvectors corresponding to the nonzerthe sources are chosen as those that minimize the noise-
eigenvalues, and spa#(©)) = span(®,). Ther eigenvalues only subspace correlaticrubeorr(a(6), ¢,,)1 or maximize the
of this decomposition combine with the noise covariance gignal subspace correlatienbeorr(a(6), ®,);. Since the first
form A, = A + o2I with the eigenvalues in the diagonalargument is a vector and the second is already orthogonalized,
A, arranged in decreasing order. The diagahalcomprises the square of this signal subspace correlation is easily shown

the m — r repeated eigenvalues2, and ®, contains the to be

correspondingn — r eigenvectors. Thus, (2) represents the A (a(e)H(i) @Ha(e))

well-known partitioning of the covariance matrix ingignal subcorr(a(f), ®,)] = ; '*9 (5)
subspace(spar{®,)) and noise-only subspacéspar{®,,)) (a(6)"a(6))

terms. where the right-hand side is the standard metric used in

Let R denote the sample covariance. We designate the filUSIC [1], [2].
7 eigenvectors ofR as @, i.e., a set of vectors that span Principal angles can also be used to represent the MUSIC
our estimate of the signal subspace; similarly, we designatestric for multidimensional array manifolds represented by
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G(p) in (3). In this case, the algorithm must compare the 1 ; : : : : . : :
entire space spanned W¥(p) with the signal subspace. A
linear combination of the columns & (p) that lies entirely
in the signal subspace yields.bcorr(G(p), ®,); = 1, which 0.8
indicates the presence of a source with nonlinear parameters _,,
It is again straightforward to equate the subspace correlatiorp

with Schmidt's metric for diversely polarized MUSIC: <06

0.9

subcorr(G(p), és)% = )\111aX(Ug<i>5<i>fUG) (6)

where U contains the left singular vectors @ (p), and
Amax( ) 1S the maximum eigenvalue of the enclosed expres-
sion. 0.2
The nonlinear source locatiopscan be found as those for
which (6) is approximately unity. The direction of polarization
(in the diversely polarized case) or the dipole orientation (in %y =0 20 =0 0 50 40
MEG and EEG) is then found as the normalized quasilinear DIRECTION OF ARRIVAL (DEG)
parameter vectop that must be multiplied b (p) to produce Fig. 1. Two sources arrive from 25 and3at a uniform linear array. The

the array manifold vectoa(e) that lies in the Spd@S). The MUSIC metric (5) is plotted as a function of the angle of arrival. The two
. . . ks are not readily discernible, as shown in the inset enlargement. An
quasilinear parameters can be derived from the elgenvecgéirithm must be trained to “peak-pick” the second source, shown here at

corresponding to the maximum eigenvalue in (6). Equivae. Such algorithms must also distinguish between the two “true” peaks
Iently, the singular vectors from the SVD's performed t@nd all other “local” peaks, as illustrated in this figure. The projected forms

o of MUSIC presented in this paper make detection of the second peak more
computesubcorr( ) can be used to formp [9], [16]. obvious as well as improve statistical performance in locating the sources.

0.1k

IV. RAP-MUSIC ' . . .
we find the sources asglobal maxima over their respective
If the r-dimensional signal subspace is estimated perfectijodified signal subspaces.
then the sources are simply found as thglobal maximizers  The method can be viewed simply in terms of the subspace

of (6). Errors in our estimaté, reduce (6) to a function with correlation functions described above. Define the orthogonal
a single global maximum and at leggt— 1) local maxima. projector fora(f;) as

Finding the first source is simple: Over a sufficiently densely N T . R
sampled grid of the nonlinear parameter spacefind the gy =1 — (a(6)a”(61))/(a” (61)a(61)) )

global maximum of .
X and apply this operator to both arguments of thécorr( )

p1 = arg max(subcorr(G(p), ®s)1)- (7) function. The second source is then found as the global

r maximizer
We then extract the corresponding eigenvector in (6) to form , L 1=
the quasilinear parameter estimate The estimate of the pz = arg m,?X(Scho”(Ha(é)ﬁa(p)’Ha(el)q)s)l)' (10)
parameters of the first source is denotgd= {p;, ¢1}, and

the first estimated array manifold vector is formed as Here, we have projected both our signal subspace esti-

mate and the multidimensional array manifold away from the
a(fy) = G(p1)r. (8) first solution and then found the maximum subspace correla-
tion (minimum principal angle) between these two projected
Identifying the remaining local maxima becomes morgpaces. After the maximization, the quasilinear parameters are
difficult since nonlinear search techniques may miss shalleygain easily extracted, and the second array manifold vector is
or adjacent peaks and return to a previous peak. We alsstimated aa(éQ) = G(ﬁQ)J)Q, We then form the orthogonal
need to locate the- best peaks rather than any local projection operator for the combination of the first two sources
maxima. Numerous techniques have been proposed in the pagi proceed recursively.
to enhance the “peak-like” nature of the spectrum (cf. [3], [10]) By extension, thekth recursionk = 1,---,r of RAP-
so that identifying these peaks becomes simpler. In highlyusIC is
correlated or closely spaced sources, the peaks become almost n L s
indeterminate, as shown in Fig. 1. These “peak-picking” algo- P+ = & m,?X(S“bCO”’(HAk_IG(p)vHAk_l‘I’S)l) (11)
rithms rapidly become complex and subjective as the number )
of sources and the dimensionality pfincrease. where we define
The novelf[y of RAP-MUSIC is to avoid this peak-picking As_1 = [a(61) - a(Br_1)] (12)
problem entirely. We instead remove the component of the
signal subspace that is spanned by the first source and thgrformed from the array manifold estimates of the previous
perform a search to find the second source as the globkat 1 recursions, and
maximizer over this modified subspace. In this way, we replace T - “H _1hH
the problem of findingr local maxima with one in which g, == A 1A A1) Ay (13)
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is the projector onto the left null space}lg_l.The recursions manifold, but not the signal subspace, and find the second
are stopped once the maximum of the subspace correlatiorsaurce asurg maze g(6), where
(11) drops below a minimum threshold. n Hirl

Practical considerations in low-rank E/MEG source local- 9(0) = (a (9)H a@, )(I) (I) Ha(el) (9))' (15)
ization lead us to prefer the use of the signal rather than the ||Ha(0 ) a(9)|?
noise-only subspace [17]. The development above in terms
of the signal subspace is readily modified to computations in'" /ES-MUSIC [15], the denominator of (15) is dropped,
terms of the noise-only subspace. Our experience in low-raARd the modification used is
fqrms of MUSIC processing is that the_determlnatlon of they(9, p) = a" (O)( I —p Ha(e ))‘Ps‘i’f(l—ﬁﬂa(gl))a(@ (16)
signal subspace rank need not be precise, as long as the user
conservatively overestimates the rank. The additional bad§erellgg \ = I — 1L . . This measure is equivalent to
vectors erroneously ascribed to the signal subspace canSBUSIC for p = 1 and MUSIC forp = 0. In [15], an
considered to be randomly drawn from the noise-only subspaygimal complex scalas is derived for the case of two sources,
[11]. As we described above, RAP MUSIC removes frorwhich minimizes the theoretical asymptotic error variance of
the signal subspace the subspace associated with each sdineesecond source. However, this scalar requires knowledge
once it is found. Thus, once the true rank has been exceedgfdthe two sourced; and 8;. Since these parameters are
the subspace correlation between the array manifold and tiknown, IES-MUSIC first obtains the estimated locatiéns
remaining signal subspace should drop markedly, and thasd 8. from another approach, such as MUSIC, from which
additional fictitious sources will not be found. it forms the estimates. After this step,¢(8, p) is maximized
to find the second source.

For this nonpolarized two-source problem, these algorithms

may be summarized and compared using the subspace corre-
We now compare RAP-MUSIC with three other sequentigdtion function as follows.

forms: R-MUSIC [16], S-MUSIC [14] and IES-MUSIC [15]. MUSIC:
All of the methods used in our comparison find the first . s 9 A R
source in the same way, i.e., as the global maximizer of 02 = arg max subcorr(a(f), ®s)1 02 7 01 17)
subcorr(a(6),®,);. The manner in which the subsequent s-MUSIC:

sources are found differs for each method.

V. OTHER SEQUENTIAL FORMS OF MuUsIC

0, = arg max subcmv’(ﬂé‘(él)a(@), $,)2. (18)

A. R-MUSIC IES-MUSIC (/ defined in [15]):
In [16], we introduced a preliminary version of RAP- b = arg max ||I — p*11 a(0)|?
MUSIC that we refer to as R-MUSIC. The algorithm differs @) .
from RAP-MUSIC in the manner in which the sources that ~subcorr((I — p*1lg g ))a(6), ©.)1. (19)
have already been found are used to alter the search for thgy_vusic:
next. In contrast to (11), théth recursionk = 1,---,r of R R .
R-MUSIC is 62 = arg max subcorr([a(01),a(8)], ©s)2. (20)

pr. = arg max subcorr([Ap_1G(p)], ®,)n (14) RAP-MUSIC:
ra ~

6o = arg max subcorr(

1 1 z
g ,00) g )i (1)

where subcorr([Ax—1G(p)], @, )i denotes theth element of |y (18) and (19), the first argument is a vector, and the
the subspace correlation (i.e., the cosine of ifie ordered second argument is already orthogonal. Thus, (18) and (19)
principal angle) between the estimated signal subspace ajé readily seen to be equivalent to (15) and (16), respectively,
the concatenation ofd;_;, which are the array manifold ysing, for instance, (5). When viewed in terms of the subspace
vectors for sources already found, aGHp), which is the correlations, we see that the clear difference between RAP-
array gain matrix. The basis for this method is as follow$jusIC and the other sequential forms is that the projection
The & — 1 sources already found produce a matd_: operator is applied to both arguments before computing the
whose column space is (approximately) contained in8pan subspace correlation rather than just to the array manifold, as

and, hence, will yields — 1 principal angles (approximately) in the case of S- and IES-MUSIC.
equal to zero. Once the true paramegeis found in G(p),

then the matrix[A;_,G(p)] should yield% principal angles VI. SIMULATIONS
approximately equal to zero. Equivalently, tik¢h ordered

subspace correlation in (14) should be close to unity, We present two different simulations in order to show both

the performance and the utility of RAP-MUSIC. The first
simulation is a conventional two-source uniform linear array
B. S- and IES-MUSIC example to compare with the other sequential forms. The

We now simplify the presentation to the case of twsecond simulation is a three-source multidimensional manifold
nonpolarized sources that is treated in [14] and [15]. In $xample, localizing three dipoles in three-dimensional (3-D)
MUSIC [14], we apply the projection operator (9) to the arragpace in an MEG application.
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TABLE |
COMPARISON OF ANALYTIC STANDARD DEVIATIONS AND RMS ERROR THE NUMBER OF TIME SAMPLES REMAINS CONSTANT AT 1000, AND THE
CORRELATION BETWEEN THE TWO SOURCES ISVARIED. FOR EACH OF THE 2000 MoNTE CARLO REALIZATIONS, SOURCE 1 (EITHER 25 OR
30°) WAS SELECTED AS THE SOURCE WITH THE HIGHEST Music PEAK. THE THEORETICAL STANDARD DEVIATION [15] AND RoOT MEAN
SQUARED (RMS) BERROR OF THE SECOND SOURCE |s TABULATED. IES-MUSIC Is SHowN wiTH ITS SCALAR SET USING BOTH TRUE AND
ESTIMATED VALUES. MusiC WAS UNRELIABLE IN LOCATING THE SECOND PEAK FOR v = 0.975, AS ILLUSTRATED IN FiG. 1

n 1000 1000 1000 1000 1000 1000

Y 0.975 0.950 0.925 0.900 0.850 0.700

0 (deg) 25 | 30 | 25 | 30 | 25 | 30 | 25 30 | 25 30 | 25 | 30

Runs 1009 | 991 | 998 | 1002 | 996 [ 1004 [ 1007 [ 993 | 995 | 1005 | 991 | 1009

Theoretical | 0.531 | 0.555| 0.294 { 0.308 | 0.2140.224 | 0.174 | 0.182 | 0.132 | 0.138 | 0.088 | 0.092

Music (deg)
RMS err -- -- [0.513(0.520|0.215[0.240|0.165| 0.172 | 0.120 | 0.131 | 0.087 | 0.091

Theoretical | 0.534 [ 0.558 | 0.296 [ 0.310 | 0.216 | 0.226 | 0.175 | 0.183 | 0.133 | 0.139 | 0.089 | 0.093

S-Music
RMSerr |0.786|0.799 | 0.275(0.295(0.19210.196 | 0.151 | 0.159 | 0.115 [ 0.124 | 0.084 | 0.088

Theoretical | 0.083 | 0.087 | 0.065 | 0.069 | 0.062 | 0.064 | 0.060 | 0.063 { 0.059 | 0.062 | 0.059 | 0.061

les-Music | RMS err, p | 0.444 | 0.478 | 0.078 | 0.084 | 0.063 | 0.066 | 0.063 | 0.067 | 0.063 | 0.064 | 0.063 | 0.065

RMS err, p [0.867|0.914|0.188(0.210| 0.106 | 0.113| 0.083 | 0.084 | 0.070 | 0.072 | 0.064 | 0.067

R-Music RMS err | 0.913]0.924 | 0.391 | 0.418 | 0.278 | 0.286 | 0.222 | 0.234 | 0.166 | 0.179{0.112 0.116

Rap-Music | RMSerr |0.805(0.854|0.153|0.165|0.087 {0.093 | 0.070 | 0.072 | 0.064 | 0.065 | 0.062 | 0.064

A. Narrowband Uniform Linear Array Example Since IES-MUSIC is a “two-pass” algorithm, i.e., it requires
We follow the simulations in [15] in order to draw perfor-2" initial estimate of both source parameters, we used the RAP-

mance comparisons between the various sequential formIVi¢SIC source estimates for the initial estimate in our Monte
MUSIC. The sensor array is the conventional uniform line&r@/10 study, as the RAP-MUSIC solution was on average
array of sensors spaced a half-wavelength apart. The sourgdeerior to the MUSIC and S-MUSIC estimates. We also ran
are farfield narrowband and impinging on the array frofS & comparison IES-MUSIC with set to the optimal value

scalar directiond. The array manifold vector may thereforefoUnd using the true source angles. For each estimator, we
be specified as calculated a numerical root mean squared (RMS) error,

a(e) — [1763'71'511107 . _7ej7r(rn—1) sin@]T (22) 1 Runs ) 1/2
. . RMS = > (0:() = 62)° (24)
where § = 0 is broadside to the array, anth(6)|| = m. Runs &

The source time series are assumed to be complex zero-mean
Gaussian sequences with covariance ma&iXVe assume 15 wheref,(¢) represents the estimate from tiih Monte Carlo
sensor elements and two sources & @hd 30. The source run. In each of these 2000 runs, we determined which of the

covariance matrix is specified as two MUSIC peaks in the regions about the true answer was
1 greater and declared this sourceffasWe then estimated the
P= {’Y* ﬂ (23) second source and tabulated the actual number of runs used

for both#; = 20° or 37, which is approximately evenly split
where|y| < 1 determines the degree of correlation betweeat about 1000 Monte Carlo runs each.
these two sources of equal power. The variance of the noisén Table I, we held the number of time samples constant at
is set to unity, such that the signal to noise power ratio is= 1000 and varied the degree of correlation between the two
also unity. sources. For uncorrelated sources=f 0), all measures per-
We simulaten samples of both the signal and noise, form thisrmed similarly, as also demonstrated in [15]. The differences
estimated data covariance matrix, and then extract the mairixperformance begin to arise as we increase the correlation to
b, comprising the two estimated signal subspace vectorss= 0.7, where we observe that IES-MUSIC and RAP-MUSIC
The noise variance is estimated as the mean of the noikave RMS error about 25% better than MUSIC and S-MUSIC
only subspace eigenvalues. For each realization, we find @oed 50% better than R-MUSIC. At = 0.925, we see that
maxima of the MUSIC measure in a region about each &AP-MUSIC continues to have performance comparable with
the true solutions. The source with the better correlation tisat of perfect IES-MUSIC but that estimated IES-MUSIC is
considered sourcé;. The second sourcg, is then found by beginning to degrade in comparison; MUSIC and S-MUSIC
maximizing the appropriate measure (17)—(21). In [15], closeldave RMS error almost twice that of IES-MUSIC and RAP-
form formulae are presented for calculating the theoreticlUSIC at this correlation, and R-MUSIC has the largest RMS
error variance of MUSIC, S-MUSIC, and IES-MUSIC. error.
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GAMMA 0.975, SNAPSHOTS 1000, SOURCE 1 AS SECONDARY

S, 1L:0.274,6:0.737
R, IL:0.131,0:0.904
RAP,LL: 0.548, G: 0.589
IES, [L: 0.573, G: 0.650

250 1 M .

30

N
o
o
T
1

TOTAL COUNT 1009
%))
o

100 .

0 05 1 15
DIFFERENCE FROM 25 DEGREES

Fig. 2. From the first column of Table I, histogram of the source localization results for 1009 Monte Carlo runs, a correlation of 0.975 between the two
sources at 25 and 30and 1000 time samples per simulation. For the source @t 26 see that R-MUSIC has the lowest bias, whereas RAP-MUSIC and
IES-MUSIC have developed a more noticeable bias toward the other source. Both RAP-MUSIC and IES-MUSIC, however, exhibit lower &wanidhee (
legend) such that the RMS error of all four sequential techniques is approximately the same for this highly correlated case, as shown in Table I.

91 -0.5 2

By v = 0.975, all methods are experiencing comparablthe number of time samples. As shown in Table II, at lower
difficulty in estimating the sources and have deviated signifumbers of time samples, we generally had a difficult task
icantly from the theoretical variances. MUSIC is particularlgletermining a second MUSIC peak, and the MUSIC results
poor at this correlation since in many trials, an adequatelyere unreliable. As in Table I, RAP-MUSIC consistently
detectable peak did not occur in the region around the trogintained improved performance over the other methods.
answer, as illustrated in Fig. 1. In Fig. 2, a histogram of
Monte Carlo results for this highly correlated case shows MEG Simulation

the bias and variance differences between the competing,. ow illustrate the ability of RAP-MUSIC to extract
sequential te_chnlques. Both S_—MUSIC_and R-MUSIC appeﬁ{ultiple current dipole sources in the brain from MEG data.
much less biased but have higher variance than IES-MUS e [8] and [16] for more details of the formulation and

and RAP-MUSIC, such that all techniques exhibit similajg) o an introduction to this problem. Compared with the
RMS performance for this highly correlated case. At a slightly,owhand simulation above, the MEG source localization

lower correlation ¢ = 0.95), the bias drops markedly in all 55pjem has several additional difficulties. Each dipolar source
techniques to 0:1or less, such that the RMS error reflectpas 4 3-D location parameter and an additional 3-D quasi-
more closely the standard deviation of each technique.  |inear parameter for the orientation of the source. The under-

In general, the RMS error of MUSIC and S-MUSIC matchying physics of quasi-static electromagnetics yields an array
the theoretical asymptotic error variances established in [phnifold that may exhibit partial array ambiguities for multiple
quite well, but the theoretical calculations for IES-MUSIGgyrces, complicating the 3-D peak search. The sources of
tend to underestimate RMS error. IES-MUSIC performanggterest usually have transient time courses that limit the
using the optimally designeg agrees quite well with the humber of time samples that can be used for localization.
theoretical values, but this performance obviously requiresin this simulation, we make the simplifying assumption
prior knowledge of the true solution. RAP-MUSIC consistentlyhat the brain is a spherical homogenous conductor so that
maintains an improved RMS error over that of IES-MUSICglosed-form expressions are available for the external magnetic
and we note again that IES-MUSIC depends on some othigiflds produced by the current dipoles. We arrange 229 radially
technique in order to arrive at an initial set of source estimategiented sensors about 2 cm apart on the upper hemisphere of

These RMS errors were calculated at a relatively large nua-12 cm virtual sphere. Each sensor is modeled as a first-order
ber of time samples. We also tested small sample performamgtadiometer with a baseline separation of 5 cm. For exemplary
in which we held the correlation constantat 0.9 and varied purposes, we arrange three sources in the saplane:z = 7
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TABLE I
NuMBER OF TIME SAMPLES Is Now VARIED, WHEREAS THE CORRELATION BETWEEN THE TwO SOURCES|s HELD CONSTANT AT 0.9.
As IN TABLE |, FOR EAcH oF THE 2000 MoNTE CARLO REALIZATIONS, SOURCE 1 (EITHER 25 OR 30°) WAS SELECTED AS
THE SOURCE WITH THE HIGHEST MusiC PEak. MUSIC WAS UNRELIABLE IN LOCATING THE SECOND PEAK FOR . = 100

n 100 200 400 800
Y 0.9 0.9 0.9 0.9
0, (deg) 25 30 25 30 25 30 25 30
Runs 999 1001 1009 991 1007 993 971 1029
Theoretical 0.550 | 0.575 | 0.389 | 0.407 | 0.275 | 0.288 | 0.194 | 0.203
Music (deg)
RMS err -- -- 1.161 | 1.115 | 0.386 | 0.467 | 0.187 | 0.204
Theoretical 0554 | 0579 | 0.391 | 0410 | 0.277 | 0.290 | 0.196 | 0.205
S-Music
RMS err 0.823 | 0.887 | 0.458 | 0489 | 0.263 | 0.295 | 0.166 | 0.181
Theoretical 0.190 | 0.199 | 0.134 | 0.141 | 0.095 | 0.100 | 0.087 | 0.070
IES-MUSIC RMS err, P 0.390 | 0.410 | 0.158 | 0.164 | 0.096 | 0.095 | 0.067 | 0.075
RMS err, P 0976 | 1.014 | 0.476 | 0.491 | 0.187 | 0.217 | 0.092 | 0.107
R-Music RMS err 0.967 | 1.045 | 0593 | 0638 | 0.374 | 0.410 | 0.245 | 0.264
RAP-MusiC RMS err 0.795 | 0.837 | 0.348 | 0.348 | 0.142 | 0.161 | 0.079 | 0.088
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Fig. 3. Simulated MEG data for 229 sensors by 50 time snapshots. True sources are three asynchronous fixed dipoles. Gaussian white noise was added

such that the squared Frobenius norm of the noiseless data matrix was 3.16 times that of the noise-only matrix, i.e., 10 dB SNR. The signal subspace
was overspecified to be rank 5.

cm. We fix the orientation of each source and assign eashbspace of rank five. We created a 1.5-mm—spaced grid in
an independent time series. We then add white Gaussian i.thte correctz-plane and computed the 3-D gain mat(iXp)
noise on each sensor channel. The noiseless and noisy dataach location on the grid. We then computed the standard
are displayed in Fig. 3. MUSIC metric (5) between each gain matrix and the rank five

An SVD of the noisy spatio-temporal data matrix clearlgignal subspace. The result is shown in Fig. 4 as the image
showed the signal subspace to be rank three; however,1jg1 — s2), wheres; is the value ofsubcorr(G(p), ®,); at
illustrate insensitivity to rank overselection, we chose a signedch grid point.
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Fig. 4. MUSIC scan of MEG dipolar models, imaging the subspace cogjg 5. MUSIC scan of subspace correlation after projecting both the mani-
relation between model and signal subspace in the ptare 7.0 cm. The 54 and signal subspace away from the solution of Fig. 4. The MUSIC peak
arrows indicate the true locations. The noise and partial ambiguities of dipojasm, the first source is suppressed, and we readily performed a directed-search
models makes discerning each peak difficult, particularly in three dimensioR$; the maximum of this second correlation: 99.3% at [1.0, 0.6, 7.0]. The true

the circle indicates a source location nearly ambiguous with the three try8 tion is 1 mm different at [1.0, 0.5, 7.0]. Note the increased suppression
solutions. The maximum correlation was located in the grid and then usedjoi,e ambiguous source indicatéd in' Fig. 4.

initiate a directed search for a refined maximum of 99.3% correlation at the
correct solution of £1.0, —1.0, 7.0] cm (rounded to 1 mm).

Note that in Fig. 4, three peaks correspond to the corre
dipole locations, and a fourth peak (indicated by the circli
represents an incorrect location. This fourth peak correspor,
approximately to a dipole location that would give a locg
minimum in a least squares search. Since the height of {
peak corresponding to this incorrect source location was neg
that of the third true source location, a MUSIC scan thi
picks out the three largest peaks could mislocate one of {
dipoles. Similarly, since we have overspecified the true sigr,
subspace rank, we might erroneously infer that there were f(
sources. This incorrect location was the cumulative result
the partial correlations of the three correct locations yieldir
a near ambiguous additional solution. As we will see beloy
RAP-MUSIC avoided this problem.

The initial location of the first source was taken as the glob
maximum on the grid in Fig. 4. We refined the estimate
location of this first source by searching between the gr
points using a Nelder—-Meade simplex method to find th
source point of maximum correlation. We then projected ti*e
signal subspace, and the gain matrices for each grid poifiti 6. MUSIC scan of subspace correlation after projecting away the first
away from the Subspace spanned by the array manifold vedi¥t solutions_. The MUSIC pea_ks from the first two sources are suppressed,

. . and we readily performed a directed-search for the maximum of this third
for the first source and then ran the second recursion @Frelation: 99.2% at [0, 0.1, 7.0]. The correct solution is 1 mm away, [0.0,
RAP-MUSIC, i.e., computed the subspace correlation in (1®)0, 7.0]. The search for a fourth solution yielded a principal correlation of
In Fig. 5, we see the image resulting from computing the$gly 26.7%, halting the recursion.
subspace correlations for each grid point, and we note that
the first source is now suppressed. We again performed’natl’ix and the subspace correlations computed according to
directed search about the maximum on the grid to refine tkiEl). The resulting image of the subspace correlations used
location of the second source. With the second source locatt find the third source are displayed in Fig. 6. Again, a
we again extracted its orientation and formed the two-sourdigected-search algorithm refined the location of the maximum.
array manifold matrix (12). Each grid point and the signdRepeating the process to look for a fourth source, we found
subspace were then projected away from the span of thismaximum correlation over the set of grid points of 27%,
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indicating that there were no additional identifiable sourceg] M. Hamélainen, R. Hari, R. J. llmoniemi, J. Knuutila, and O. V.
present. Lounasmaa, “Magnetoencephalography—Theory, instrumentation, and

L. - . applications to noninvasive studies of the working human brdrey.
This single example is included to demonstrate the potential \ioqern phys. vol. 65, no. 2, pp. 413-497, 1993.

of RAP MUSIC in higher dimensional source localization[7] E. Ferrara and T. Parks, “Direction finding with an array of antennas

; ; having diverse polarizations,[EEE Trans. Antennas Propagatvol.
problems and to emphasize that the method can cope with AP-31. pp. 231-236, Mar. 1983,

overestimation of the dimension of the signal subspace. £8] J.c. Mosher, P. S. Lewis, and R. M. Leahy, “Multiple dipole modeling
more detailed evaluation of the performance of this approach and loc?liggtion from SpatiO-temporggg/lEG datéFEE Trans. Biomed.
: : : : Eng vol. 39, pp. 541-557, June 1992.
in MEG sourcg localization and exten_S|ons to the Cas_e 0[E)] G. H. Golub and C. F. Van LoanMatrix Computations 2nd ed.
synchronous dipolar sources and nondipolar sources will be Baltimore, MD: Johns Hopkins Univ. Press, 1984. _
resented in a future publication. [10] K. M. Buckley and X. L. Xu, “Spatlal-spec_trum estimation in a location
P P sector,” IEEE Trans. Acoust., Speech, Signal Processira. 38, pp.
1842-1852, Nov. 1990.
VII. CONCLUSIONS [11] J. Vandewalle and B. De Moor, “A variety of applications of singular
value decomposition in identification and signal processing,SWD

We have presented a novel framework, based on the prin- and Signal Processing, Algorithms, Applications, and Architecfufes
cipal angles between subspaces, in which to view MUSIC E.S_Dgelprettere, Ed. Amsterdam, The Netherlands: Elsevier, 1988, pp.
and its variations. The MUSIC methods replace the searp?] H. Wang and M. Kaveh, “On the performance of signal-subspace pro-
for multiple sources with procedures for separately identifying g?SS'f;gp—Paft L Naﬁff%\fé—é}gﬂﬁf}/“ﬂgﬁ’fElgcrgnsc-)Atccilésgé Speech,

. . . ignal Processingvol. -34, pp. — , Oct. .
each source. _FOI’ mUlt'ple sources, Cl_aSSK.:al MQS|C requirs) R.’Roy and T. Kailath, “ESPRIT—Estimation of signal parameters via
the identification of multiple local maxima in a single metric. ~ rotational invariance techniquesEEE Trans. Acoust., Speech, Signal

it i i ; ; i Processing vol. 37, pp. 984-995, July 1989.
Although it is s_tralghtforvv_ard to !der_mf)_/ the first source usng1 4] S K Ohand C. K Un, "A sequenial estimation approach for per-
the global maximum of this metric, finding subsequent sources” formance improvement of eigenstructure-based methods in array pro-
requires a peak-picking procedure and can lead to errors, cessing,”IEEE Trans. Signal Processingol. 41, pp. 457-463, Jan.
) 1993.

pqrtmularly when these sources are weak or strongly correlat[gg1 P. Stoica, P. Handel, and A. Nehorai, “Improved sequential MUSIC,”
with the first source. The other sequential MUSIC forms ~ |EEE Trans. Aerosp. Electron. Syspp. 1230-1239, Oct. 1995.
presented here are measures designed to make localizatiof@fJ- C. Mosher and R. M. Leahy, “Recursively applied MUSIC: A
th d traiahtf d.0 dificati R framework for EEG and MEG source localizatiotfEE Trans. Biomed.

e second source more straightforward. Our modifica ions (R- gng, vol. 45, pp. 1342-1354, Nov. 1998. _ _
MUSIC and RAP-MUSIC) are derived from a canonical correfi7] » “Source localization using recursively applied and projected
lations perspective. Our original R-MUSIC algorithm, which ~ (RAP) MUSIC.” in Proc. Thirty First Annu. Asilomar Conf. Signals,

. Syst. Comput.Pacific Grove, CA, Nov. 2-5, 1997.

has been derived for MEG research, had error performance

comparable to S-MUSIC, but the numerical studies presented

here show RAP-MUSIC to yield improved performance over

the other forms of MUSIQ when the sources are highlv John C. Mosherreceived the B.S. degree in electri-

correlated; all of the techniques performed well for unco cal enginering with highest honors from the Georgia

related or slightly correlated cases. Extensions of the RA Institute of Technology, Atlanta, in 1983. He re-
. . . ceived the M.S. and Ph.D. degrees in electrical

MUS'C approaCh tO many sources and hlgher dlmenSIOﬂa' engineering from the S|gna| and |mage Processing

of the manifold are also more straightforward than the oth Institute, University of Southern California, Los

sequential forms. Finally, the recursive nature of RAP-MUSI Angeles, in 1985 and 1993, respectively.

allows the automatic termination of the search for addition

From 1979 to 1983, he was also a cooperative
sources when the signal subspace rank is overestimated.

education student with Hughes Aircraft Company,
Fullerton, CA. From 1983 to 1993, he worked
at TRW, Los Angeles, researching signal analysis
procedures for electromagnetic pulse effects. In 1993, he accepted a staff
ACKNOWLEDGMENT position at the Los Alamos National Laboratory, Los Alamos, NM, where he
. . researches the forward and inverse modeling problems of electrophysiological
The e}uthors would like to thank.K' Buckley OT V”Ianovarecordings. A member of the Design Technologies Group, his interests
University and the anonymous reviewers for their commenigo include the general source localization and imaging problems, both in

on an earlier version of this paper. neuroscience work and in other novel applications of sensor technology.
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