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Abstract—We describe two approaches to lossless compression
of dynamic PET data. In the first, a sequence of sinogram frames
are compressed using differential encoding followed by lossless
entropy-based compression. The second approach applies lossless
compression to data stored in a sinogram/timogram format in
which the arrival times of each photon pair are stored in spatial
order, indexed by the sinogram. Compression of the timogram is
performed using entropic coding of the differential arrival times
in each sinogram bin. We describe these compression methods
and present results from simulated and real data comparing mul-
tiframe and sinogram/timogram formats. Both formats produce
substantial reductions in data size compared to the raw data, with
higher compression factors achieved using the sinogram/timogram
format when high temporal resolution is required.

Index Terms—Entropy, list-mode data, lossless compression.

I. INTRODUCTION

T HE potential number of lines of response (LORs) in a PET
system increases as the square of the number of detectors.

Consequently, the large numbers of detectors in modern high-
resolution human and animal scanners can produce huge data
sets when stored as sinograms. The growth in recent years in
sinogram size for a number of different scanners is illustrated
in Fig. 1. Large sinogram sizes present problems both in terms
of reconstruction times and data archiving. Here we address the
latter issue.

To reduce data sizes and reconstruction times it is common to
rebin the data by adding adjacent rows of a single sinogram and
combining sinograms with small angular differences. While ef-
fective, this reduces the potential for resolution recovery during
reconstruction. An alternative approach is to store the data in
list-mode in which the LOR index is stored for each detected
event. The format becomes increasingly efficient as the max-
imum number of LORs begins to exceed the number of detected
photon pairs. Recently, reconstruction methods have been de-
scribed that make direct use of this list-mode format [1], [2].

Storing list-mode data in the chronological order in which
events are acquired is inherently inefficient since backprojec-
tion then requires random rather than sequential access to the
image voxels. It is straightforward to rearrange list-mode data
in spatial-order which effectively results in a sparse sinogram.
These can then be stored either with the LOR index for each
event or, as we describe here, directly using a sinogram format
in which lossless compression is used to efficiently store and re-
trieve the data.
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Fig. 1. Illustration of the approximate sinogram sizes for 2-D and 3-D
clinical and small animal scanners shown in comparison to “Moore’s law,” the
observation that single-processor computing power doubles roughly every 18
months. The lower curve for the ECAT systems represents 2-D complexity, the
upper curve represents 3-D complexity.

There are few previous reports of lossless compression
schemes specifically tailored to PET data. Macqet al. [3]
present a scheme in which they use an adaptive pulse code
modulator followed by a universal variable length coder which
operates on short data blocks. Bakeret al. [4] are concerned
with the hardware implementation of Lempel–Ziv coding
which achieves high throughput for PET data. These methods
exclude entropic compression techniques such as Huffman
coding because their objective is to perform on-line compres-
sion without knowledge of the prior probabilities. Since we can
generate histograms of occurrence frequency while collecting
and sorting the data, here we do make use of entropy-based
approaches.

Since many PET studies involve the collection of dynamic
data, it is also important to consider how multiple sinograms can
be efficiently stored. Traditionally, dynamic PET data is stored
as a sequence of contiguous frames with one set of sinograms
in each frame. Clearly, we can apply compression as described
above to each frame in turn. In this case, the total data size in-
creases roughly linearly with the number of frames.

Here we consider an alternative which can preserve high tem-
poral resolution in the data. We avoid sorting of events into sepa-
rate sinograms by using a “sinogram/timogram” format [5], [6].
In this format, all events are collected into a standard sinogram
that represents a single frame of data corresponding to the en-
tire dynamic study. This is then augmented by a “timogram”
that contains the arrival times of each event stored in spatial
order so that they are indexed using the values in the associated
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Fig. 2. Entropy versus� for Poisson (solid) and differenced Poisson (dashed)
random variables;� is the mean and variance of the Poisson random variable.
The differenced Poisson has variance 2� and zero mean. Consequently, for all
values of�, the differenced random variable has higher entropy.

sinogram. In list-mode the arrival times are typically quantized
at intervals on the order of 1 ms. In our work, we have used a
temporal resolution of 256 ms which allows arrival times for a
100 min study to be encoded using 16 bits. Here we describe
our approach to efficient storage of data in the sinogram/tim-
ogram format and compare the results with lossless compres-
sion of multiple frame data. We note that the “timogram” format
and by extension the compression methods investigated here,
can also be used in place of raw list-mode to store other at-
tributes of events that can be appended to the sinogram, such as
depth-of-interaction measurements, energy collected in SPECT
or PET photon detection and attributes of photons detected in
electronically collimated SPECT systems.

II. M ETHODS AND RESULTS

A. Sinogram Compression

The standard data format in many commercial PET systems
represents each sinogram element as 2 or 4 byte integers. There
is a great deal of redundancy in this format since most sino-
gram elements contain few counts. In order to explore this re-
dundancy, we applied Lempel–Ziv [7], Huffman [8], and a com-
bination of run-length [9] and Huffman coding. In each case, we
considered both sinograms and differential sinograms. Differ-
ential sinograms store the first sinogram plane of each segment
and the differences between consecutive sinogram planes. This
can be seen as an attempt to estimate each sinogram plane from
the previous plane in the segment. We explain why such a dif-
ferencing scheme works below.

The number of counts at detector pairare approximately
Poisson( ). Since corresponding entries in consecutive sino-
grams have almost equal means, the difference sinogram will
contain entries that are approximately distributed as the differ-
ence of two independent identically distributed (i.i.d.) Poisson
variables, i.e., Poisson Poisson . In Fig. 2 we show
the entropies of a Poisson random variable and a differenced
Poisson random variable (i.e., Poisson Poisson ) as a

(a)

(b)

Fig. 3. Probability mass functions for uniform mixtures of (a) Poisson and
(b) differenced Poisson random variables with� uniformly distributed on
[0,15]. This demonstrates that the uniform mixture of differenced Poisson
random variables has lower entropy than the uniform mixture of ordinary
Poisson random variables

function of mean . It is clear that for all values of , the dif-
ferenced Poisson random variables have higher entropy. This
means that if we had constant mean sinograms, the differential
sinograms would have higher entropy and, hence, when com-
pressed would require more, rather than fewer, bits than the
original sinograms. In realistic cases, however, sinograms have
spatially varying means. Therefore the probability distribution
of an ordinary sinogram is a mixture of Poisson random vari-
ables with different means. Similarly, the distribution of a dif-
ferenced sinogram is a mixture of difference Poisson variables
with different means. Fig. 3 shows the probability density func-
tions for mixtures of Poisson and differenced Poisson random
variables. The mixtures were formed by sampling from an un-
derlying mean value uniformly distributed on [0,15].

Entropy calculations using the pdfs in Fig. 3 show that the
mixture of differenced Poisson random variables has lower en-
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Fig. 4. Comparison of two differencing schemes. The solid line corresponds to
the scheme in which each sinogram plane is estimated from the adjacent plane in
the same frame. The dashed line represents the scheme in which each sinogram
plane is estimated from the same plane in the previous frame. They give very
similar compression ratios over a wide range of counts.

tropy than the mixture of ordinary Poisson random variables.
Thus, entropy based coding of differential sinograms will, in
general, achieve better compression ratios. Empirical compres-
sion ratios shown in Section III confirm this observation.

We applied the same differencing idea to dynamic studies by
subtracting sinograms corresponding to consecutive frames. In
this case we store the first sinogram of a dynamic study and store
the differences between consecutive frames. This technique cor-
responds to estimating each sinogram plane from the same sino-
gram plane in the previous frame as opposed to estimating it
from the adjacent sinogram plane in the same frame. The re-
sulting compression ratios were very similar to the original dif-
ferencing scheme as shown in Fig. 4.

The entropy of a process is a measure of its information
content and accounts for the impact of correlations in the data.
It is impossible to reduce entropy by applying a one-to-one
transform (sinograms to differential sinograms in our case)
[11]. However, Huffman coding is based on separate coding
of each variable and therefore cannot take advantage of cor-
relations in the data. The Huffman code book is constructed
from the univariate mixture density formed by the data and
approaches the “empirical entropy” limit of this density. Thus,
while Huffman coding is optimal for independent random
variables, performance can be improved when coding strings of
correlated data by first applying a decorrelating transformation.
Thus, since the mean (noiseless) values are highly correlated
between adjacent sinograms, computation of the differential
sinograms reduces the “empirical entropy” resulting in im-
proved compression rates.

Fig. 5(a) shows the average code-length of the compressed
data (in bits per entry) for Huffman and Lempel–Ziv coding
applied to original and differential sinograms with varying
count rates simulated to represent 3-D data from the CTI ECAT
HR+ (span 9, maximum ring difference 22). For counts above
1M, Huffman coding applied to differential sinograms achieves

(a)

(b)

Fig. 5. (a) Bits per sinogram entry for four compression methods versus
count rates applied to data simulated to represent a single frame of 3-D data
from the ECAT HR+ scanner. (b) Direct comparison of Huffman coding of
differential sinograms (solid) versus run-length+Huffman coding of original
sinograms (dashed).

the lowest average number of bits per entry (bpe). At between
1 and 6 bpe, this represents a substantial saving over the typical
16 bpe used in uncompressed formats. Fig. 5(b) shows a com-
parison between pure Huffman coding of differential sinograms
and run-length coding of the original sinograms followed by
Huffman coding. Run-length coding becomes increasingly
advantageous as the number of counts decreases, but performs
best for unrealistically low count rates. For moderate count
rates, run-length coding provides some extra compression but
it becomes increasingly inefficient as the number of counts
increases.

B. Timogram Compression

We store temporal information associated with a sinogram as
a list of arrival times indexed by sinogram entries. We call this
list of arrival times a “timogram” with entries stored as 2-byte
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Illustration of original (a) and differential (b) timogram segments at temporal resolutions of 256 ms; 30 s (c) and (d) and 5 min (e) and (f). The segment
corresponds to sinogram entry (45,50) in the central plane (plane 32) of a dual C-11, F-18 tracer study. As the temporal resolution decreases to the order of minutes,
timogram entries become increasingly similar because an increasing number of events fall into a single time bin and this produces a high number of zeros in the
differential timogram, which can be then be compressed by a large factor.
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integers. To exploit the redundancies in timograms we applied
Lempel–Ziv and Huffman coding to timograms and differential
timograms.

Differential timograms store inter-arrival times as opposed to
actual arrival times. The advantage in using differences is more
obvious here compared to the differential sinogram case because
we know that the th arrival time is greater than or equal to
the ( )st arrival time, . It is redundant to store if

is known, all we need to store is .
We model the positron emissions in each voxel in the volume

as an inhomogeneous Poisson process as in our reconstruction
work [5], [6]. We denote the rate function at voxelby .
If processes at all voxels were homogeneous with rate function

, the detection process at detector pairwould also
be a homogeneous Poisson process with rate function

where is the detection probability.
Inter-arrival times in a homogeneous Poisson process with

rate function are independent and exponentially distributed
with mean [10]. Therefore, the portion of the differential
timogram corresponding to a particular detector pair contains
independent samples from an exponential distribution. In this
case, the histogram of the timogram would be a mixture of ex-
ponential random variables with different means. As the number
of counts increases, the timogram’s empirical histogram ap-
proaches the actual mixture density and Huffman coding would
then encode independent random variables sampled from a mix-
ture of exponentials.

In realistic cases, individual Poisson processes at voxels are
inhomogeneous and therefore the detection process at detector
pair is also an inhomogeneous Poisson process with rate func-
tion . In this case, interarrival times are no
longer independent or identically distributed. Furthermore, the
arrival times form a first order Markov process from which the
conditional distribution of the th interarrival time can be
derived as [10]

(1)
where is the ( )st arrival time.

One possible solution to this complication is to fit a set of
basis functions (such as decaying exponentials or B-splines) to

using either least squares or maximum likelihood estima-
tion and then to scale the arrival times according to the integral
of (i.e., time warping) and finally to generate the interar-
rival times from the scaled arrival times. This would make the
process homogeneous up to the error in the estimation of.
However, this technique is both computationally intensive (re-
quires as many estimations as number of sinogram elements)
and requires storing as many sinograms as the number of basis
functions used in the estimation.

For these reasons, in most cases it is more practical and effi-
cient to apply Huffman coding to loosely correlated interarrival
times and to pay the price due to the correlation rather than at-
tempting to fully decorrelate arrival times at the expense of in-
creased computation and storage requirements. We can say that
the interarrival times are loosely correlated because each inter-
arrival time depends on thesumof previous interarrival times

(a)

(b)

Fig. 7. Bits per timogram entry for four compression methods versus (a) count
rate and (b) scan duration.

and is independent of their actual values as long as their sum
remains constant.

Fig. 6 illustrates the idea of coding interarrival times and helps
explain how high compression ratios can be achieved at low
temporal resolutions such as 30 s and 5 min. As the temporal
resolution is reduced to a few tens of seconds or minutes (as is
typical for most dynamic datasets), Huffman coding of differen-
tial timograms becomes increasingly efficient. For the timogram
entry shown in Fig. 6, the empirical entropies in bpe, for original
and differential timograms respectively are 5.32 and 5.22 bpe at
256 ms resolution; 5.03 and 3.39 bpe at 30 s resolution and 3.69
and 1.19 bpe at 5 min resolution. This shows that a reduction
in temporal resolution not only results in better compression ra-
tios due to loss of information compared to the high resolution
case (lower entropy per timogram entry) but also because the
entropy of the differential timograms drops with count rate far
more quickly than that of the raw timograms.

Fig. 7(a) shows average bpe for Huffman and Lempel–Ziv
coding applied to original and differential timograms with
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(a) (b)

(c)

Fig. 8. Illustration of the procedure for handling negative sinogram entries due to randoms subtraction. (a) Multiframe sinogram entries for a single LOR; (b) the
corresponding PT; and (c) the corresponding differential PT entries.

varying count rates. The advantage in storing interarrival times
is very clear. We also see that Huffman coding outperforms
Lempel–Ziv over all realistic count rates. Run-length coding of
timograms is not efficient and, therefore, was not investigated
for this application. Fig. 7(b) compares the compression ratios
of the same techniques against scan duration with a total of
10M counts in each case. As scan duration grows, the possible
number of interarrival times increases which implies a larger
codebook for Huffman coding and fewer repetitive patterns for
Lempel–Ziv coding. These result in lower compression rates
for all four compression techniques.

C. Multiframe Sinogram Compression

We have also applied our method to standard multiframe data
collected from the ECAT HR + scanner and multiframe data ob-
tained by sorting list-mode data from Concorde P4 and R4 scan-
ners in which we converted the multiframe data to a sinogram
plus pseudo timogram format. The “time” index in the pseudo
timogram is simply the frame number in the multiframe data.
All frames were summed to form the aggregate sinogram.

An interesting problem that we encountered in applying our
method to multiframe data was the presence of negative values
in some sinogram entries due to randoms correction. We han-
dled this situation by storing the negatives of frame numbers
in timogram entries corresponding to negative sinogram values
and storingnegativesof differences between absolute values in
differential timograms.

Fig. 8 illustrates the procedure for a single sinogram bin in a
five-frame study which has nine events. In this example, entries
over five frames are 3, 2, 1, 1, and 2, respectively, as shown
at the top of Fig. 8. The difficulty in generating a timogram from
these data is the presence of negative values at frames 2 and 4.
The basic idea in converting this sequence into a pseudo tim-
ogram (PT) is to store the negatives of the frame numbers of
those frames which contain negative entries. Therefore, entries
corresponding to frames 2 and 4 are stored as2 and 4 re-
spectively as shown in Fig. 8. Finally, the conversion into ”dif-
ferential” pseudo-timograms (DPT) is through taking the dif-
ferences between theabsolutevalues of consecutive PT entries
and using negatives of these differences if the corresponding PT
entries are negative. In our example, the fourth entry in the DPT
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is calculated by first taking the difference between the absolute
values of the fourth ( ) and third ( ) PT
elements. The difference is 1 and since the fourth PT entry is
negative, 1 is stored at the fourth entry of the DPT. The entire
DPT is shown at the bottom of Fig. 8. Note that this procedure
works because a negative entry in the DPT can only be caused
by negative values in the corresponding sinogram entry.

In the deconversion process, when DPTs are converted back
into PTs, the following rule is applied: If a DPT entry is zero, the
corresponding PT entry is the same as the previous PT entry. If a
DPT entry is positive, the corresponding PT entry is the cumula-
tive absolute sum of DPT entries up to and including that point.
Similarly, if the DPT entry is “negative”, the corresponding PT
entry is the “negative” of the cumulative absolute sum of DPT
values up to and including that point. Finally, multiframe sino-
grams are restored by forming a histogram of the PT entries. We
found that this method could handle negative entries with min-
imal increases in the timogram size (increased by the absolute
sum of negative sinogram entries), number of codewords (in-
creased by a factor of two) and compressed filesize.

III. RESULTS

A. Simulation Studies

We applied the compression techniques described above to
multiframe sinogram and sinogram/timogram data representa-
tions of dynamic data. We compared the compressed data to
standard uncompressed 2-byte representations in a multiframe
sinogram format. We simulated brain scan sinograms and timo-
grams for the ECAT HR+ with varying numbers of counts and
varying scan durations.

To make the simulations reasonably realistic we added 20%
scatter and 10% randoms to the simulated sinograms. In the
sinogram-timogram format, we retain only the prompt timo-
gram entries together with separate prompt and delayed event
sinograms, i.e., the arrival times of the delayed randoms are not
stored for reasons described in our previous work on dynamic
list-mode image reconstruction [6].

Table I-A shows the compressed data sizes using lossless
coding of differential sinograms for multiframe dynamic studies
with varying numbers of counts using the best coder for each
case. Huffman coding was used for count levels above 10K
counts and Lempel–Ziv coding for count levels under 10K. The
reason for this is that we use 16-bit Huffman coding (each sino-
gram entry is taken as a symbol) and for counts under 10K, en-
tropy per symbol goes below 1 bpe. To more closely approach
the entropy limit we have to either use a longer word in the
Huffman coder (i.e., 32 or 64 bits) or an algorithm which can
better exploit long strings of similar entries such as Lempel–Ziv
or run-length coding.

Compression factors ranged from 4 to 28 depending on
the number of counts and temporal resolution. In Table I
(B) and (C), we show the data sizes for compression of the
same dynamic data using the sinogram/timogram format.
We show results for 256 ms, 1 s, 30 s, and 5 min temporal
resolution. For counts above 10M we used Lempel–Ziv coding
because in those cases differential timograms have many zeros
which causes the entropy to fall below 1 bpe and, hence,

TABLE I
COMPRESSEDDATA SIZES FORDIFFERENTIAL SINOGRAMS WITH 30 S AND

5 MIN TEMPORAL RESOLUTION (UPPERSINOGRAM/TIMOGRAMS WITH

256 MSEC, 1 S, 30 S AND 5 MIN TEMPORAL RESOLUTION (LOWER TWO

TO SIMULATED SINGLE SLICE HR+ DATA AS A FUNCTION OF TOTAL

NUMBER OF COUNTS IN A 90 MIN DYNAMIC STUDY

Huffman coding based on a 16-bit symbol is inefficient. For
the same levels of temporal resolution and count levels, the
timogram/sinogram format gives higher compression levels
than the multiframe sinogram format data, with the savings
using the former method ranging from a factor of 1.62 to 2.53.

B. Compression of Experimental List-Mode Data

Using the same methods, we also compressed a 90 min
human C-11 raclopride data set collected from ECAT HR++
and a 90 min C-11 and F-18 dual-tracer phantom study,
collected from ECAT HR+. Compression results are shown
in Table II. We are able to achieve 256 ms resolution using
the sinogram/timogram format at approximately the same
compressed file size as is needed for 30 s resolution using the
differentially compressed multiple frame sinogram format.
We achieved similar compression ratios for the C-11 F-18
dual-tracer study. Although the timogram compression results
are shown for 256 ms resolution, as the temporal resolution is
reduced, the timogram file size reduces accordingly.

C. Compression of Multiframe Sinogram Data

As mentioned in Section II(C), the sinogram/timogram idea
is also applicable to multiframe sinogram data with frame num-
bers replacing event arrival times. The results of multiframe
sinogram data compression are summarized in Tables III and
IV. Table III compares Huffman coding of the sinogram/PT
format against Lempel–Ziv coding of the original multiframe
sinograms. We see that unless there is a very high number
of counts and relatively low number of frames, Huffman
compression of sinogram/PTs provide substantial savings over
Lempel–Ziv coding of multiframe sinograms for a wide range
of scans.

Table IV compares Huffman coding of sinogram/PTs against
Huffman coding of differenced sinograms for multiframe HR+
data. The 2-D studies contained 28 frames each and the 3-D
studies contained 6 frames. For the 2-D data, the sinogram/PT
format gives around 25% reduction in compressed file sizes
compared to the differenced sinogram format. In the 3-D data
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TABLE II
COMPRESSIONRESULTS FOREXPERIMENTAL LIST-MODE DATA.

LM: L IST-MODE FILESIZE, CS: COMPRESSEDSINOGRAMS (30 S RES.),
PS: PROMPTS SINOGRAM, DS: DELAYED EVENTS SINOGRAM,

TIMO: TIMOGRAM (256MS RES.), TOTAL:TS+RS+TIMO

TABLE III
COMPRESSEDDATASIZES FORMULTIFRAME DATASETS FROM ECAT

HR+ AND CONCORDEP4 AND R4 SCANNERS BY LEMPEL–ZIV

CODING OF ORIGINAL FILES (LZ) AND HUFFMAN CODING OF

THE SINOGRAM/PSEUDO-TIMOGRAM FORMAT (HCST)

sets, the Huffman compressed differenced multiframe format
is smaller than the timogram/sinogram format. Since this is
counter to all other examples we show here, this may be due to
the relatively small number of frames (6) in these 3-D studies,
indicating that for small numbers of frames, the multiframe
format may be preferable.

IV. CONCLUSION

We have seen that by applying Huffman coding to differential
static sinograms, multiframe differential sinograms and differ-
ential sinogram/timogram formats, we can achieve substantial
compression ratios compared to uncompressed 2 byte per ele-
ment sinogram formats. Compression ratios are slightly lower
in real data than in our simulations, probably because of greater
complexity in the randoms and scatter profiles. However, the
trends that we observe are the same. Entropy based compres-
sion, whether applied to our sinogram/timogram format or to

TABLE IV
RAW DATA AND COMPRESSEDDATA SIZES FORCLINICAL 2-D AND

3-D HR+ MULTIFRAME DATASETS USING HUFFMAN CODING OF

THE DIFFERENTIAL SINOGRAMS (HCDS) AND HUFFMAN CODING

OF THE SINOGRAM/PT (HCST) FORMAT

standard multiframe sinogram data, is very effective at lossless
reduction in data size. These methods are not computationally
demanding and could be routinely used to reduce requirements
for both short-term storage and archiving of raw PET data. If
high spatial and temporal resolution in dynamic data is called
for, then the sinogram/timogram format appears to offer addi-
tional savings compared to sequential sinogram compression.
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