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Lossless Compression of Dynamic PET Data
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Abstract—We describe two approaches to lossless compression o
of dynamic PET data. In the first, a sequence of sinogram frames
are compressed using differential encoding followed by lossless
entropy-based compression. The second approach applies lossless
compression to data stored in a sinogram/timogram format in 107
which the arrival times of each photon pair are stored in spatial
order, indexed by the sinogram. Compression of the timogram is
performed using entropic coding of the differential arrival times
in each sinogram bin. We describe these compression methods
and present results from simulated and real data comparing mul-
tiframe and sinogram/timogram formats. Both formats produce
substantial reductions in data size compared to the raw data, with
higher compression factors achieved using the sinogram/timogram
format when high temporal resolution is required.
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I. INTRODUCTION

HE potential number of lines of response (LORS) in a PE1
system increases as the square of the number of detec_tﬁfﬁ.-l. lllustration of the approximate sinogram sizes for 2-D and 3-D
Consequently, the large numbers of detectors in modern higtlirical and small animal scanners shown in comparison to “Moore’s law,” the
resolution human and animal scanners can produce huge dngﬁﬁrvanon that single-processor computing power doubles roughly every 18
. . months. The lower curve for the ECAT systems represents 2-D complexity, the
sets when ;tored as smograms..The growth in recent yeargfer curve represents 3-D complexity.
sinogram size for a number of different scanners is illustrated
in Fig. 1. Large sinogram sizes present problems both in terms _ _
of reconstruction times and data archiving. Here we address thd héré are few previous reports of lossless compression
latter issue. schemes specifically tailored to PET data. Mastgal. [3]
To reduce data sizes and reconstruction times it is commorP¥gSent @ scheme in which they use an adaptive pulse code
rebin the data by adding adjacent rows of a single sinogram 4Rgdulator followed by a universal variable length coder which
combining sinograms with small angular differences. While efPeérates on short data blocks. Baletral. [4] are concerned

fective, this reduces the potential for resolution recovery duri '

rx%th the hardware implementation of Lempel-Ziv coding
reconstruction. An alternative approach is to store the data/fiich achieves high throughput for PET data. These methods

list-mode in which the LOR index is stored for each detectégkclude entropic compression techniques such as Huffman
event. The format becomes increasingly efficient as the me@ding because their objective is to perform on-line compres-
imum number of LORs begins to exceed the number of detectg@n without knowledge of the prior probabilities. Since we can

photon pairs. Recently, reconstruction methods have been @gherate histograms of occurrence frequency while collecting
scribed that make direct use of this list-mode format [1], [2]. @nd sorting the data, here we do make use of entropy-based

Storing listmode data in the chronological order in whicRPProaches.
events are acquired is inherently inefficient since backprojec-Sinceé many PET studies involve the collection of dynamic
tion then requires random rather than sequential access to 4RE itis alsoimportant to consider how multiple sinograms can
image voxels. It is straightforward to rearrange list-mode dolpg efficiently stored. Traditionally, dynamic PET data is stored
in spatial-order which effectively results in a sparse sinogra@s & sequence of contiguous frames with one set of sinograms
These can then be stored either with the LOR index for eatthéach frame. Clearly, we can apply compression as described
event or, as we describe here, directly using a sinogram forragove to each frame in turn. In this case, the total data size in-

in which lossless compression is used to efficiently store and f&&ases roughly linearly with the number of frames.
trieve the data. Here we consider an alternative which can preserve high tem-
poral resolution in the data. We avoid sorting of events into sepa-
rate sinograms by using a “sinogram/timogram” format [5], [6].
Manuscript received December 21, 2001; revised September 24, 2002. Tr%sth. f 9 ”y 9 I? di 9 dard [ ] [ ]
work was supported in part by the National Institute for Biomedical Imagian Is format, a e\{ents are collected into a stan 5_“ sinogram
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asma@sipi.usc.edu; shattuck@sipi.usc.edu; leahy@sipi.usc.edu). at contains the arrival times of each event stored In spatia
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Fig. 2. Entropy versu for Poisson (solid) and differenced Poisson (dashed) @)

random variables) is the mean and variance of the Poisson random variabl Empirical pmf for a uniform difference Poisson mixture
The differenced Poisson has varianceghd zero mean. Consequently, for all  0-16 ‘ T T : ‘ : ‘
values of}, the differenced random variable has higher entropy.

0.14 1

sinogram. In list-mode the arrival times are typically quantize, Entropy = 3.96 bits
at intervals on the order of 1 ms. In our work, we have usedg ®'? oo
temporal resolution of 256 ms which allows arrival times for e§
100 min study to be encoded using 16 bits. Here we descrig
our approach to efficient storage of data in the sinogram/ting 0.08 |
ogram format and compare the results with lossless compr@
sion of multiple frame data. We note that the “timogram” formag g.o6} |
and by extension the compression methods investigated h('%
can also be used in place of raw list-mode to store other o0.04
tributes of events that can be appended to the sinogram, sucl

0.1

depth-of-interaction measurements, energy collected in SPE' 0.02f 1
or PET photon detection and attributes of photons detected TTT TTT
. . 0 00009? ?%000e
electronically collimated SPECT systems. 20 -15 -10 -5 0 5 10 15 20
Realization of the difference Poisson r.v.
Il. METHODS AND RESULTS (b)

. . Fig. 3. Probability mass functions for uniform mixtures of (a) Poisson and
A. Sinogram Compression (b) differenced Poisson random variables wihuniformly distributed on

The standard data format in many commercial PET System§5]‘ This demonstrates that the uniform mixture of differenced Poisson
. . random variables has lower entropy than the uniform mixture of ordinary

represents each sinogram element as 2 or 4 byte integers. Th&[€on random variables
is a great deal of redundancy in this format since most sino-
gram elements contain few counts. In order to explore this re- ) i
dundancy, we applied Lempel-Ziv [7], Huffman [8], and a comjunction of mean\. It is clear that for all values of, the dif-
bination of run-length [9] and Huffman coding. In each case, wigrenced Poisson random variables have higher entropy. This
considered both sinograms and differential sinograms. Diffdfl€ans that if we had con_stant mean sinograms, the differential
ential sinograms store the first sinogram plane of each segmefograms would have higher entropy and, hence, when com-
and the differences between consecutive sinogram planes. Tissed would require more, rather than fewer, bits than the
can be seen as an attempt to estimate each sinogram plane #Hginal sinograms. In realistic cases, however, sinograms have

the previous plane in the segment. We explain why such a dpatially varying means. Therefore the probability distribution
ferencing scheme works below. of an ordinary sinogram is a mixture of Poisson random vari-

The number of counts at detector paiare approximately ables with .different means. Similarly, the distribgtion of a.dif-
Poissond;). Since corresponding entries in consecutive sinégrénced sinogram is a mixture of difference Poisson variables
grams have almost equal means, the difference sinogram Wiifh different means. Fig. 3 shows the probability density func-
contain entries that are approximately distributed as the diffé{ens for mixtures of Poisson and differenced Poisson random
ence of two independent identically distributed (i.i.d.) Poissoffriables. The mixtures were formed by sampling from an un-
variables, i.e., Poiss6h;) — Poissoii);). In Fig. 2 we show derlying mean value uniformly distributed on [0,15].
the entropies of a Poisson random variable and a differencedntropy calculations using the pdfs in Fig. 3 show that the
Poisson random variable (i.e., Pois&bn— PoissoiiA)) as a mixture of differenced Poisson random variables has lower en-
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Different differencing schemes Compression ratios vs. Counts
0.12 T T 6

T

—— Differential Huffman

Differential Lempel-Ziv
- - Original Huffman .
- - Original Lempel-Ziv p

0.11

o
-

e © © © ©
o o o o o
o =4 ~ =4 o
Bits/entry
W

Compressed filesize/Original filesize
o
S
H

0.03

0.02 L L 0 1 L
10° 10’ 10° 10° 10° 10’ 10° 10°
Counts (log-scale) Number of Counts (log-scale)

@)

Fig.4. Comparison of two differencing schemes. The solid line corresponds *~ Compression Ratios for Run—length vs. Huffman coding
the scheme in which each sinogram plane is estimated from the adjacentplani  0.35 - :
the same frame. The dashed line represents the scheme in which each sinog -~ Run length + Huffman coding ;
plane is estimated from the same plane in the previous frame. They give ve *__Huffman coding K
similar compression ratios over a wide range of counts. o 03 s
(] ’

. . . . E 0.25¢ A

tropy than the mixture of ordinary Poisson random variable<g )/

rigi

Thus, entropy based coding of differential sinograms will, ir:

. . . .. o 0.2r / 4
general, achieve better compression ratios. Empirical compreg J
sion ratios shown in Section Il confirm this observation. 8 0151 J/ |

We applied the same differencing idea to dynamic studies kg //

subtracting sinograms corresponding to consecutive frames.g o1l K |
this case we store the first sinogram of a dynamic study and stcg )/ f
the differences between consecutive frames. This technique c8 0.05k / |
responds to estimating each sinogram plane from the same sil —
gram plane in the previous frame as opposed to estimating pe——— - ‘
from the adjacent sinogram plane in the same frame. The r 10° 10° 10’ 10°
sulting compression ratios were very similar to the original dif- Number of Counts (log scale)
ferencing scheme as shown in Fig. 4. (b)

The entropy of a process is a measure of its informaticip. 5. (a) Bits per sinogram entry for four compression methods versus

ntent an nts for the im f correlations in th unt rates applied to data simulated to represent a single frame of 3-D data
content and accounts for the pact of correlations in the da?rg'om the ECAT HR+ scanner. (b) Direct comparison of Huffman coding of

It is impOSSiple to reduce _entrOp)_/ by.applying a one-t0-ONferential sinograms (solid) versus run-length+Huffman coding of original
transform (sinograms to differential sinograms in our casehograms (dashed).

[11]. However, Huffman coding is based on separate coding
of each variable and therefore cannot take advantage of Cols
relations in the data. The Huffman code book is constructeicg

S : . nd 6 bpe, this represents a substantial saving over the typical
from the unlvan?te ”."?“”re denS|Ey.fo.rmed .by the .data a% bpe used in uncompressed formats. Fig. 5(b) shows a com-
approaches the “empirical entropy” limit of this density. Thus

while Huffman coding is optimal for independent randonganson between pure Huffman coding of differential sinograms

ariables. performance can be improved when coding strin r)fd run-length coding of the original sinograms followed by
varl P X )€ Improved wh NG STNIS P fiman coding. Run-length coding becomes increasingly
correlated data by first applying a decorrelating transformatuaag

lowest average number of bits per entry (bpe). At between

) : . dyantageous as the number of counts decreases, but performs
Thus, since the mean (noiseless) values are highly correl

between adiacent sinogram mputation of the differ ntle(? t for unrealistically low count rates. For moderate count
clween adjacent sinograms, computation ot the ditiere r%tes, run-length coding provides some extra compression but

inograms r the “empirical entropy” resulting in im: . . e
sinograms Educ‘?s € “empirical entropy” resuiting Mt becomes increasingly inefficient as the number of counts
proved compression rates. increases

Fig. 5(a) shows the average code-length of the compresse
data (in bits per entry) for Huffman and Lempel-Ziv codin
applied to original and differential sinograms with varyin
count rates simulated to represent 3-D data from the CTI ECATWe store temporal information associated with a sinogram as
HR+ (span 9, maximum ring difference 22). For counts abowelist of arrival times indexed by sinogram entries. We call this
1M, Huffman coding applied to differential sinograms achievdst of arrival times a “timogram” with entries stored as 2-byte

%. Timogram Compression
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Fig. 6. lllustration of original (a) and differential (b) timogram segments at temporal resolutions of 256 ms; 30 s (c) and (d) and 5 min (e) aneéginérite s
corresponds to sinogram entry (45,50) in the central plane (plane 32) of a dual C-11, F-18 tracer study. As the temporal resolution decreasestotinet@s]
timogram entries become increasingly similar because an increasing number of events fall into a single time bin and this produces a high nusnipethef zero
differential timogram, which can be then be compressed by a large factor.
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integers. To exploit the redundancies in timograms we appliec ¢ Compression Ratios vs. Counts

I__empeI—Ziv and Huffman coding to timograms and differential \\ Oviginal - Hoffman
timograms. 147 '

Differential timograms store inter-arrival times as opposed to
actual arrival times. The advantage in using differences is more ,?
obvious here compared to the differential sinogram case becaus
we know that the:th arrival timeW,, is greater than or equal to
the (» — 1)st arrival time,W,,_;. It is redundant to stor®,, if
W,,_1 is known, all we need to store'§, = W,, — W,,_1.

We model the positron emissions in each voxel in the volume
as an inhomogeneous Poisson process as in our reconstructi
work [5], [6]. We denote the rate function at voxgby n;(t).

If processes at all voxels were homogeneous with rate functior
n;(t) = n;, the detection process at detector paivould also
be a homogeneous Poisson process with rate fungtign =

Original =

Differential - Lempel-Ziv

Bits/entry
=5

<
T

Differential - Huffman

2 L L

Ai = > pijn; wherep;; is the detection probability. 10° 10° 10’ 10°
Inter-arrival times in a homogeneous Poisson process witt, Number of Counts

rate function)\; are independent and exponentially distributed (CY

with mean; [10]. Therefore, the portion of the differential Compression Ratios vs. Scan Duration

timogram corresponding to a particular detector pair contain 16

independent samples from an exponential distribution. In thi:  ,,|
case, the histogram of the timogram would be a mixture of ex
ponential random variables with different means. As the numbe 12}
of counts increases, the timogram’s empirical histogram ag
proaches the actual mixture density and Huffman coding woul_ 10
then encode independent random variables sampled from a mig
ture of eXpOﬂentialS. L 8r Differential — Lempel-Ziv
In realistic cases, individual Poisson processes at voxels a™ |
inhomogeneous and therefore the detection process at detec
pairi is also an inhomogeneous Poisson process with rate fun 4W
tion A;(¢) = >, pijn;(t). In this case, interarrival times are no
longer independent or identically distributed. Furthermore, the ~ 2f
arrival times form a first order Markov process from which the

Original-Huffman

Original - Lempel-Ziv

Bits/e

L L L

conditional distribution of thesth interarrival timeZ,, can be 20 30 20 50 60 70 80 90
derived as [10] Scan Duration (mins)
(b)
Wi 14Tn i . ) .
Fig. 7. Bits pertimogram entry for four compression methods versus (a) count
P (Tu|Wn1) = X(Wyn_1)exp <_ /W /\(U)d0> rate and (b) scan duration.
- n—1
1 (1)

whereW,,_; = 31" T; is the (@ — 1)st arrival time. and is independent of their actual values as long as their sum

One possible solution to this complication is to fit a set akemains constant.
basis functions (such as decaying exponentials or B-splines) td-ig. 6 illustrates the idea of coding interarrival times and helps
A(t) using either least squares or maximum likelihood estimaxplain how high compression ratios can be achieved at low
tion and then to scale the arrival times according to the integtamporal resolutions such as 30 s and 5 min. As the temporal
of A(¢) (i.e., time warping) and finally to generate the interaresolution is reduced to a few tens of seconds or minutes (as is
rival times from the scaled arrival times. This would make thigpical for most dynamic datasets), Huffman coding of differen-
process homogeneous up to the error in the estimatiof tial timograms becomes increasingly efficient. For the timogram
However, this technique is both computationally intensive (rentry shown in Fig. 6, the empirical entropies in bpe, for original
quires as many estimations as humber of sinogram elemerasyl differential timograms respectively are 5.32 and 5.22 bpe at
and requires storing as many sinograms as the number of b&&6 ms resolution; 5.03 and 3.39 bpe at 30 s resolution and 3.69
functions used in the estimation. and 1.19 bpe at 5 min resolution. This shows that a reduction

For these reasons, in most cases it is more practical and dffitemporal resolution not only results in better compression ra-
cient to apply Huffman coding to loosely correlated interarrivdlos due to loss of information compared to the high resolution
times and to pay the price due to the correlation rather than efse (lower entropy per timogram entry) but also because the
tempting to fully decorrelate arrival times at the expense of ientropy of the differential timograms drops with count rate far
creased computation and storage requirements. We can sayhate quickly than that of the raw timograms.
the interarrival times are loosely correlated because each interFig. 7(a) shows average bpe for Huffman and Lempel-Ziv
arrival time depends on theumof previous interarrival times coding applied to original and differential timograms with
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Fig. 8. lllustration of the procedure for handling negative sinogram entries due to randoms subtraction. (a) Multiframe sinogram entrieefbOdrsifmIthe
corresponding PT; and (c) the corresponding differential PT entries.

varying count rates. The advantage in storing interarrival timesAn interesting problem that we encountered in applying our
is very clear. We also see that Huffman coding outperfornmsethod to multiframe data was the presence of negative values
Lempel-Ziv over all realistic count rates. Run-length coding @f some sinogram entries due to randoms correction. We han-
timograms is not efficient and, therefore, was not investigateled this situation by storing the negatives of frame numbers
for this application. Fig. 7(b) compares the compression ratizstimogram entries corresponding to negative sinogram values
of the same techniques against scan duration with a totalasfd storingnegativeof differences between absolute values in
10M counts in each case. As scan duration grows, the possititiferential timograms.
number of interarrival times increases which implies a larger Fig. 8 illustrates the procedure for a single sinogram bin in a
codebook for Huffman coding and fewer repetitive patterns fdéiwe-frame study which has nine events. In this example, entries
Lempel-Ziv coding. These result in lower compression rateser five frames are 352, 1,—1, and 2, respectively, as shown
for all four compression techniques. at the top of Fig. 8. The difficulty in generating a timogram from
these data is the presence of negative values at frames 2 and 4.
The basic idea in converting this sequence into a pseudo tim-
ogram (PT) is to store the negatives of the frame numbers of
We have also applied our method to standard multiframe ddktese frames which contain negative entries. Therefore, entries
collected from the ECAT HR + scanner and multiframe data oberresponding to frames 2 and 4 are stored-dsand—4 re-
tained by sorting list-mode data from Concorde P4 and R4 scapectively as shown in Fig. 8. Finally, the conversion into "dif-
ners in which we converted the multiframe data to a sinograierential” pseudo-timograms (DPT) is through taking the dif-
plus pseudo timogram format. The “time” index in the pseuderences between tlasolutevalues of consecutive PT entries
timogram is simply the frame number in the multiframe datand using negatives of these differences if the corresponding PT
All frames were summed to form the aggregate sinogram. entries are negative. In our example, the fourth entry in the DPT

C. Multiframe Sinogram Compression
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is calculated by first taking the difference between the absolute TABLE |

values of the fourthdbs(—2) = 2) and third @bs(1) = 1) PT COMPRESSEDDATA SiIZES FORDIFFERENTIAL SINOGRAMS WITH 30'S AND
. . . . 5 MIN TEMPORAL RESOLUTION (UPPERSINOGRAM/TIMOGRAMS WITH

elements. The difference is 1 and since the fourth PT entry is>5gvsec, 1's, 30s AND 5 MIN TEMPORAL RESOLUTION (LOWER TWO

negative—1 is stored at the fourth entry of the DPT. The entire 70 SMULATED SINGLE SLICE HR+ DATA As A FUNCTION OF TOTAL

DPT is shown at the bottom of Fig. 8. Note that this procedure NUMBER OF COUNTS IN A 90 MIN DYNAMIC STUDY

works because a negative entry in the DPT can only be cau: Total Counts T30 560

5 min
by negative values in the corresponding sinogram entry. 1101;\44 ;-gg xg 320-57 léB
. In the deconver;ion process, vyhen DPTs are cqnverted bi T00M TI0ME 522;5’;? KE (@)
into PTs, the following rule is applied: If aDPT entry is zero, th: N1000M ggg ﬁg 732.81 KB
corresponding PT entry is the same as the previous PT entry. Sombn ' 280
; i H i Total Sinogram
I?PT entry is positive, the corrgspondlng PTlentry is the cumgl Counts | (prompts) ¢ (delayed)
tive absolute sum of DPT entries up to and including that poir IM | 15.10416.56=31.65 KB | (b)
Similarly, if the DPT entry is “negative”, the corresponding P’ oy §2§§i§§2§i§3'2§ B
entry is the “negative” of the cumulative absolute sum of DP 1000M | 26.74742.26=69.00 KB
values up to and including _that point. Finally, mult|frame.smc Total | Timogram | Timogram | Timogram | Trmogram
grams are restored by forming a histogram of the PT entries. Cci‘lx\zts 256 mseo (1) sec 30 sec 5min
. . . . . 1.30 MB 1.03 MB 379.52 KB | 101.78 KB
_founc_j that this r_nethod_ could han_dle negative entries with mi T0M | 839MB | 569 MB | 108 MB T Tozo7 kg (©
imal increases in the timogram size (increased by the absol 100M | 4023 MB | 2014 MB | 1.95 MB | 284.95 KB
1000M | 105.28 MB | 46.90 MB 2.85 MB 359.70 KB

sum of negative sinogram entries), number of codewords (i..
creased by a factor of two) and compressed filesize.

Huffman coding based on a 16-bit symbol is inefficient. For

the same levels of temporal resolution and count levels, the
timogram/sinogram format gives higher compression levels
A. Simulation Studies than the multiframe sinogram format data, with the savings

We applied the compression techniques described abovel&g the former method ranging from a factor of 1.62 to 2.53.
multiframe sinogram and sinogram/timogram data representa-
tions of dynamic data. We compared the compressed datato
standard uncompressed 2-byte representations in a multiframé/sing the same methods, we also compressed a 90 min
sinogram format. We simulated brain scan sinograms and tinfa#man C-11 raclopride data set collected from ECAT HR++
grams for the ECAT HR+ with varying numbers of counts andnd a 90 min C-11 and F-18 dual-tracer phantom study,
varying scan durations. collected from ECAT HR+. Compression results are shown

To make the simulations reasonably realistic we added 20 Table Il. We are able to achieve 256 ms resolution using
scatter and 10% randoms to the simulated sinograms. In the sinogram/timogram format at approximately the same
sinogram-timogram format, we retain only the prompt timosompressed file size as is needed for 30 s resolution using the
gram entries together with separate prompt and delayed ewvdifferentially compressed multiple frame sinogram format.
sinograms, i.e., the arrival times of the delayed randoms are Mé¢ achieved similar compression ratios for the C-11 F-18
stored for reasons described in our previous work on dynansigal-tracer study. Although the timogram compression results
list-mode image reconstruction [6]. are shown for 256 ms resolution, as the temporal resolution is

Table I-A shows the compressed data sizes using losslégduced, the timogram file size reduces accordingly.
coding of differential sinograms for multiframe dynamic studies ) , .
with varying numbers of counts using the best coder for eafh Compression of Multiframe Sinogram Data
case. Huffman coding was used for count levels above 10KAs mentioned in Section II(C), the sinogram/timogram idea
counts and Lempel-Ziv coding for count levels under 10K. The also applicable to multiframe sinogram data with frame num-
reason for this is that we use 16-bit Huffman coding (each sinbers replacing event arrival times. The results of multiframe
gram entry is taken as a symbol) and for counts under 10K, esinogram data compression are summarized in Tables Il and
tropy per symbol goes below 1 bpe. To more closely approabh Table Ill compares Huffman coding of the sinogram/PT
the entropy limit we have to either use a longer word in thfermat against Lempel-Ziv coding of the original multiframe
Huffman coder (i.e., 32 or 64 bits) or an algorithm which cagsinograms. We see that unless there is a very high number
better exploit long strings of similar entries such as Lempel-Zof counts and relatively low number of frames, Huffman
or run-length coding. compression of sinogram/PTs provide substantial savings over

Compression factors ranged from 4 to 28 depending &empel-Ziv coding of multiframe sinograms for a wide range
the number of counts and temporal resolution. In Tableof scans.

(B) and (C), we show the data sizes for compression of theTable IV compares Huffman coding of sinogram/PTs against
same dynamic data using the sinogram/timogram forméatuffman coding of differenced sinograms for multiframe HR+

We show results for 256 ms, 1 s, 30 s, and 5 min tempométa. The 2-D studies contained 28 frames each and the 3-D
resolution. For counts above 10M we used Lempel-Ziv codirggudies contained 6 frames. For the 2-D data, the sinogram/PT
because in those cases differential timograms have many zdoymat gives around 25% reduction in compressed file sizes
which causes the entropy to fall below 1 bpe and, henammpared to the differenced sinogram format. In the 3-D data

lll. RESULTS

Compression of Experimental List-Mode Data
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TABLE I
COMPRESSIONRESULTS FOREXPERIMENTAL LIST-MODE DATA.
LM: LI1ST-MODE FILESIZE, CS: COMPRESSEDSINOGRAMS (30 S RES),
PS: RROMPTS SINOGRAM, DS: DELAYED EVENTS SINOGRAM,
TIMO: TIMOGRAM (256 MS RES), TOTAL:TS+RS+TMO

TABLE IV
RAW DATA AND COMPRESSEDDATA SIZES FORCLINICAL 2-D AND
3-D HR+ MULTIFRAME DATASETS USING HUFFMAN CODING OF
THE DIFFERENTIAL SINOGRAMS (HCDS) AND HUFFMAN CODING
OF THE SINOGRAM/PT (HCST) FORMAT

Study | C-11 Raclopride | C-11, F-18 Dual Tracer Study RAW HCDS HCST
LM 1.1 GB 2.0 GB 2D, 16.8M | 146.3 MB | 13.10 MB 9.75 MB
PS 2.60 MB 2.59 MB 2D, 19.7M | 146.3 MB | 13.69 MB | 10.45 MB
DS 1.48 MB 1.28 MB 3D, 379M 118.9 MB | 33.54 MB | 37.78 MB
Timo 262.64 MB 427.01 MB 3D, 557M 118.9 MB | 34.20 MB | 41.60 MB
Total 266.72 MB 430.88 MB
CS 242 MB 384.5 MB
standard multiframe sinogram data, is very effective at lossless
TABLE I reduction in data size. These methods are not computationally

demanding and could be routinely used to reduce requirements
for both short-term storage and archiving of raw PET data. If
high spatial and temporal resolution in dynamic data is called
for, then the sinogram/timogram format appears to offer addi-

COMPRESSEDDATASIZES FORMULTIFRAME DATASETS FROM ECAT
HR+ AND CONCORDE P4 AND R4 SCANNERS BY LEMPEL—ZIV
CODING OF ORIGINAL FILES (LZ) AND HUFFMAN CODING OF

THE SINOGRAM/PSEUDO-TIMOGRAM FORMAT (HCST)

Scanner | Counts | Frames | Original TZ TCST tional savings compared to sequential sinogram compression.
P4 133 M 63 57GB | 114 MB | 71 MB
P4 420 M 98 88 GB | 283 MB | 171 MB
P4 | 1240M | 19 | 1.7GB | 201 MB | 221 MB REFERENCES
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