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Abstract - We describe a new approach to imaging neuronal
current sources from magnetoencephalogram (MEG) mea-
surements associated with sensory,. motor or cognitive brain
activation. Previous approaches use weighted minimum norm
inverse methods which produce spatially smooth solutions.
These results are inconsistent with functional activation stud-
ies using fMRI or PET, which reveal a sparse localized nature
of activation in the cerebral cortex. We use a Bayesian tech-
nique with a Gibbs prior reflecting this expectation. The prior,
combined with a Gaussian likelihood function, forms the pos-
terior density, which we can maximize to produce a non-linear
estimate of the primary neural current field. We also investi-
gate marginalizing out the amplitude time-series, and compare
the joint and marginal MAP estimates. We apply the methods
to phantom data and show favorable performance in compari-
son to minimum norm approaches.

1. MmNIMUM NORM APPROACH TO MEG IMAGING

An array of biomagnetometers may be used to mea-
sure the spatio-temporal magnetoencephalogram (MEG) pro-
duced by the brain. We wish to construct an image of the
neural activity that produced the magnetic field. This inverse
problem is highly ill-posed due to the ambiguities inhcrent in
determining the current distribution within an object from
measurements of the external magnetic ficld and by the lim-
ited number of sensor measurements available.

Physiological models for the MEG assume primary
sources are constrained to the cortex with flow oriented nor-
mal to the local surface. By tesselating the cortex with N dis-
joint regions and representing the sources in each region by an
equivalent constrained dipole with amplitude time-series
y{n),t = 1...L, the problem can be expressed in terms of a
linear model. We may relate the time series y (VxL) and the M
MEG measurements b (MxL) as b = Gy + n, where the /’'th
row of the MxN system matrix G is a discrete representation
of the lead field (sensitivity) of the i’th sensor. The j’th column
of G specifies the gain vector for the j’th constrained dipole
component. The MxL matrix n represents noise generated
within the sensor and by unwanted electromagnetic sources.

Due to the ill-posedness of the inverse problem,
imaging methods are concerned with finding a way to choose
within a set of images that produce essentially the same fit to
the data. Weighted minimum l,-norm approaches to the linear
inverse problem solve the constrained optimization problem:
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where C, is an arbitrary symmetric positive definite matrix.
Writing Cy = WW |, we can form the solution as,
Yorn = WWIGT(GWWTGT) 'b. )

Several forms of W have been proposed for MEG
imaging applications. In the normalized minimum norm
method [11, W .. = diag(1/]g,|, 1/]g,].--» 1/||&al) where
lgf is the Euclidean norm of the i’th column of G. Th
weighting is designed to compensate for the reduced sensitiv-
ity of MEG to deep sources. The LORETA technique [2] uses
a weighting matrix W, = WnormB‘l . The Laplacian operator
B tends to smooth the reconstruction.

II. A NEwW BAYESIAN APPROACH

Functional activation studies using fMRI and PET
show the primary sources of MEG to be sparse and focal, so
we use this information in reconstructing the image. We use a
Bayesian paradigm in which the source is modeled as a ran-
dom process. Since we assume sparse sources, most will be
zero amplitude. To facilitate this, we use a Nx1 binary indica-
tor process x to model whether each source dipole is on (x; =1)
or off (x; =0). Those sites that are active are assumed to have a
temporally white Gaussian amplitude time series. We write

= Xz, where X = diag(x) and the NxL amplitude process
z is defined where z; is the amplitude of source i at time j.
Assuming independence of the indicator and amplitude pro-
cesses, we can write the posterior probability as,

_ pbix, z)p(x)p(z)
p(x, z|b) >(b) . 3)
We use a Markov Random Field for the prior on x
where sparse focal sources have a higher occurrence probabil-
ity than more distributed sources. We define p(x) to be a
Gibbs distribution with energy function,
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where o; > 0 and B;> 0 determine the relative weights of the
sparseness and clustering terms, and Q determines the cluster-
ing strength defined over each pixel’s neighbors &,. Note,
since x is constant for the entire time series, we have effec-
tively built a temporal correlation into the prior.

We define z to be a temporally white Gaussian pro-
cess with zero mean and covariance C,. Using the priors on x
and z and assuming the noise process m is zero mean Gaussian
with covariance C, we can form the posterior probability as a
Gibbs distribution with an encrgy function given by,

U(x, z|b) =3Tr{(b-GX2) Co(b-GXz)+ z' C, 2 }+V(x) (5)
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III. JOINT VS. MARGINAL MAP ESTIMATION

The energy function in (5) is quadratic in z. By a
rearrangement of variables, we may form the posterior distri-
bution as the product of a function dependent only on x and a
Gaussian distribution in z with mean,

m(x)= C,XG' (GXC,XG" +C,j'b 6)
and covariance,

Q. = XG' ¢;'6x+ ' 7

In joint MAP estimation, we find the x* and z* which
minimize the energy function in (5). We recognize that the
mean of a jointly Gaussian random vector corresponds to the
maximizer of the distribution, and substitute z*(x) = m(x)
into the energy function in (5) to find a new energy function
I~J(x|b). We can therefore first find the jointly optimal indica-
tor process by minimizing U(x|b), then substitute this result
into (6) to obtain the optimal amplitude process.

In marginal MAP estimation, we marginalize out the
amplitude process from (3) by integrating over all possible z.
The integral over all possible realizations of a Gaussian ran-
dom process is the partition function (ZR)N/zdet(Q Z()())]/2.
Using this property, we can find the marginalized posterior
p(x|b) and find the marginalized MAP solution by minimizing
the resulting energy function U(x|b). Note that this gives us
no indication of the optimal z*, only a binary indicator of
active sites. We can of course solve for the time series after
computing the marginalized MAP estimate of activation sites.

To minimize U(x|b)or U(x|b) over all x, we use a
continuation method based on mean field annealing (MFA)[3].
We visit each pixel in turn with the following update strategy,

S0 = By Y j=id (8)
where the conditional expectation is computed with respect to
the modified probability,

pr(xlb) = Ziexp - —lf Ux|b)} . )
T

The temperature T is slowly reduced as the iterations proceed.
As T — (the iteration will converge to a binary solution [3]
which is a local minimum of U(x|b) or/(x|b) depending on
which MAP estimation method is used.

IV. PHANTOM EXPERIMENTS

We applied the methods previously mentioned to
experimental phantom data collected with a Neuromag-122
system [4] using the 26 dipole phantom supplied by the manu-
facturer. The Neuromag-122 employs 61 dual-channel planar
first-order gradiometer units in a helmet-shaped configuration
at a radius of 10-11 cm, for a total of 122 individual sensor
measurcments. The phantom consists of two half circles with
a 7 cm radius in the x-z plane and y-z plane, with dipoles in
fixed positions in these planes oriented tangential to the outer
edge. The image grid consisted of 768 locations spaced 4 mm
apart on these two half circles (See Fig. 1).
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Fig. 1. (a) The phantom (b) Reconstruction region sur-
rounded by the Neuromag-122 sensors {c) True image
showing the time series of 3 active dipoles.

The phantom data was scaled to reflect a reasonable
evoked field response. We then added data collected in the
same system from a passive human subject (100 averages,
eyes closed, no external stimulus present). This background
was added to the phantom data to obtain a SNR of 8 dB. The
results of one representative experiment arc shown in Fig. 2.
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Fig. 2. Simulation results for the two minimum norm and
the two MAP techniques (Noise added to make SNR 8dB).

V. CONCLUSIONS

All methods produced solutions which fitted the data
well. In this sense, they are all physically (if not physiologi-
cally) plausible. Clearly, in order to select between these fea-
sible solutions, we must have additional information
concerning the expected nature of the source. Qur Bayesian
approaches specifically introduce sparse and focal information
which results in generally superior results for sources that
exhibit these characteristics.
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