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ABSTRACT

Several different techniques have appeared in the magne-
toencephalography (MEG) literature for solving the ambig-
uous inverse problem. We show that if the same second
order statistics are uniformly applied in each case, then the
resulting solutions are the same. Additionally, for the com-
non assumption of independent sources, then the “noise
significance” measure emphasises the need to select the
data and noise covariance stafistics, not the specific values
of source statistics. Thus such algorithms as “dynamic
SPM" and “synthetic aperture magnetoencephalography”
are theoretically equivalent and differ in practice by practi-
cal matters of specification or estimation of data covari-
ances.

1. THE FORWARD MODEL

The reader is referred to [1], [4], [7] as examples of reviews
of magnetoencephalographic terminology and processing,
We define the terminology used here,

d = Lj+v orequivalently d; = Lj,+v, (1)

where: d, m x 1, the data, measured at m external chan-
nels for 1 time sample; L, mx p, the lead-field model,
relating p cortically constrained and oriented current
dipoles to m external measurements; f, p x 1, the signed
amplitudes of the current dipoles; v, mx 1, represents
additive “noise” (anything not explicitly in the model Lj).

2. THE ASSUMPTIONS HERE

The lead-field model L is known. We assume that given a
current dipole’s lecation and moment inside the brain, we
can accurately calculate the corresponding measurement,
including the volume currents driven by the dipole (e.g.
[5]). This assumption ignores registration problems, inaccu-
racies in surface extractions, etrors in forward model calcu-
lations, and errors in acquisition.

The forward model L is the same for all techniques
shown here, i.e, the same set of cortical dipoles are used. In
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practice, researchers often use markedly different grids of
dipoles.

We specify or estimate the first and second moments of
v; idgntica[ly for all techniques, such that E(v) =0 and
E{v,y;) = C, . Inpractice, dramatically different techniques
are used to estimate or specify the noise statistics, if at all.

We, will specify or estimate either E(jj;)= C or
E(d d;}=C,, and both are assumed zero-mean for convc-
nience here. The major difference between techniques will
be differences in these priors.

We will assume independence between noise and cur-
rents, linking the three covariances as

- (cLl+c,). )
3. LEAD-FIELD SURROGATES

The lead field matrix L is assumed here to be a dense
(3,000 - 500,000) mesh of elemental cortical dipoles. The
sensor array is about 100-300 sensors, and L therefore rep-
resents a system of highly underconstrained equations. Var-
ious techniques exist to combine regions of interest into
much smaller moedels, such as equivalent cortical dipoles
(ECDs) or multipoles ([5]), or simply subset selections of
L . We therefore can substitute surrogate models for the
lead-field, and our general linear model is

d=Ax+v, (3)
where x is the corresponding abstract surrogate for j (e.g.
ECD moment). We note that 4 may represent over or
underconstrained equations, while we will always assume
that L is underconstrained and j represents the moments of
a dense grid of cortical dipoles.

4. THE APPROACHES

4.1 Minimum Norm Approach
We concatenate model and noise,

d= [A,I]H =By. )
v

Since B is always “wide” by design (underconstrained),
then no single unique solution for y exists. To limit the
solution uniguely, we constrain y where C is specified and
¢ is arbitrary,

y = CB'e, d = BCB .. (5)
The matrix BCB” is now square and invertible, and we can
estimate ¢ uniquely from the data,



¢ = BCBY'4, 5 = cB'BCBY) 4, ()
which for € = I (C=1T) is the (weighted) “minimum
norm” solution because of all solutions satisfying (4), this
one has the smallest L, norm (in the space weighted by C).

Assuming independence (cf. (2)}, the expected covari-

ance of y is
c. 0
Cy =|* . ‘ (7
0 C,

For statistical reasons discussed below, welet € = C and
expanding B and y yields

. T ~
H - | | acaT+c) e ®)
‘-

and finally (4) for the specific case of cortical dipoles.

4.2 Least-Squares Approach

If A is “tall,” then in general the equations are overcon-
strained and no solution exists. The classical approach is to
form the normal equations that minimize the norm of the
error. The generalized (or weighted) least squares solution
accounts explicitly for differences in noise variances by
forming C, = W W, , then “prewhitening” the equations
to yield

(W, d) = (W' d)x+(W)'v) ©

- T
Maultiplying both sides by (Wle) yields the normal
equations

(A Chd = (ATC x+ (AT (10)
and now (A4 TC;IA) is square and invertible (but only if 4
is tall). The well-known “generalized least-squares” solu-
tion is
R 1 - ~
i="clay A'cla. (1)
We can easily include our prior on x. We augment the
equations and redefine as

S e

5=Bx+v (13)

Gerieralized Linear Solufion with Priors

= cL'cjla = et et +c) d = (1C 'L+ ¢ T : 4
L' Cy LLCLT+C,) d = ( Y )
x‘fC:,. = diag(c?'), then each dipole amplitude is J; = O'i a; Cd d, where L=[a,, a,, ..., ap] . B)

Noise Significance for Diagonal Soun:e Covariance
EGh) = oa’Clla,, ifd=v (no signal), then E{], = ora, C;'C,Cla, ()
and “z-score” is j;/ G,- - v)“ = a; C; d/(a; C; CvC; a,.) (note no explicit G? dependency). (D)
By design, B 15 always tall, regardless of the size of 4 , an

we can proceed as before. We denote the covariance of our
augmented noise vector v as €, , yielding

" — -1 —
x=(8'c)B B'Cs. (14)
Assuming independence between noise and signal (cf. (2))

yields the prior on this augmented noise as C,, = Cy from
{7), yielding after simple substitutions ‘
- T 1 S T N |
x=(AC A+C) AC,d (15)
and identically (4).

Note that (1]) and (15) differ only in the inclusion of the
source prior €, such that (1) is also known as “general-
ized leasl—squares with prior information” ([11]). Note that
if 4 is tall, we can let the source van'ancgl “go to infinity”
(i.e. essentially unknown), such that C, — 0, and (13)
becomes (71). If A is wide, then the matrix in (/]) cannot
be inverted, i.e. prior information is necessary in order to
form (15).

Finally, note that x in (8) and (15} are identical, proven -
by applying the matrix inversion lemma (e.g. [11]} to equate
them, and hence the equality in {4).

4.3 Gaussian Priors: Max Likelihood and MAP
We now validate the above approaches in a more formal
approach, as we first presented in [6]. Consider the proba-
bility density function p(d|x) , also known as the /ikelihood
Junction, since we state the probability of the measured data
as a function of the parameters. Since many pdfs are expo-
nential, we also find it convenient to take the log of this pdf
to obtain the log likelihood function Inp(d|x) . For statisti-
cal reasons (cf. Sorenson) we want those values of x that
maximize this function, found by solving the fog likelihood
equation,
%lnp(dlx) = 0. (16)

If we assume that v is independent of x, then ([11] p.

209)

p(d|x) =p(d - Ax)|x) (17)

=p(v|x} = p(¥) (18)

If we further assume that v is zero-mean Gaussian with

covariance C,, then the maximum likelihood (ML) solution
is identically ¢11).

Next, we may also consider x to also be random. We

compare the a priori density function p(x) to its a posteri-
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ori probability density function p(x|d), i.e. the change in
the density function given the data. Bayes rule allows us to
easily relate the joint and conditional probability density
functions as

plx|dp(d)y = p(d|x)p(x) (19)
from which we readily see the relationship between prior
and posterior pdfs as

plx|d) = (p(d|x}p(x))/p(d). (20)

A second common estimator is to therefore find the
parameters that maximize this alternative likelihood func-
tion p(x|d). The denominator is not dependent on x and
only serves to normalize the pdf, so the common alternative
is to drop the denominator and effectively maximize instead
the joint distribution p(d, x) = p(d|x)p(x) . Following the
same approach as above, we set the partial w.r.t. the param-
eters of the log of the pdf equal to zero. The likelihood equa-
tion becomes equivalent to ([11] p. 201)

é-a;lnp(dlx) + %lnp(x) =0. 2l
Estimators which maximize the posterior pdf are referred to
as the maximum a posteriori (MAP),

If we assume the joint pdf for the p parameters in x and
thg. fiiy parameters in v to be Gaussian
[x",v' ] € N(0, C), and we make the common assump-
tion that x and v are independent (cf. (2)), then C is shown
in (7). The MAP solution is then identically (715} and (4).

4.4 Non-Gaussian Prior: Linear MMS g
We first propose as a loss furction or performance function
the widely-known mean-square error,

Fis = Blx-3" (x-%)}. 22)

The estimator that minimizes this loss function is the mini-
mum mean-square estimator (MMS)

: Xms = E{x|d}, (23)
i.e., the estimator that equals the expected value of x, given
the data. In general, this estimate is more difficult to formu-
late than the MAP.

For the case of our Gaussian assumptions above, how-
ever, the solution is well-known, identically (73}, and there-
fore we see that the MAP for Gaussian assumptions also
achieves the optimal mean-square solution (cf. [11] p. 149).

In this framework, we can further relax our assumptions
about the pdf. We now only assume the following statistics,

PEx, V) = pX)p(¥), @4
E{x} = E[v} = 0, (25)
Eixx"y = ¢, E{w'} = C,, (26)

in other words, we know only the first two moments of our
pdf, and we again assume independence between the noise
and the parameters of interest.

We make the important constrajnt that the estimator
musi be linear in the data, x = W d, a reasonable con-
straint in our case, since our data are linear in the parame-
ters. Under these assumptions, then the linear mean squate
estimator (LMMS) is again the same as the MMS for the
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Gaussian priors above, yielding identically ¢15) and (4)
([11] p. 152).

4.5 Weighted Subspace Fitting

The above approaches specify/estimate C,, and by impli-
cation therefore set C, through (2). Alternative methods
instead directly specify or estimate C;. If 4 is tall, then we
can exploit {2) to yield

C, = AY(C,~Cat’ (27)
and x in (8) specializes to
%= ANC,-CON,C,ld (28)

where I1,=44" is the idempotent subspace projection
operator, and this form of the estimate is referred to as
weighted subspace fitting. This approach has seen little use
in MEG [8].

4.6 Imaging
Looking at the form of (15} and expanding the data
model 4 = Ax +v yields

- — ~1.-1 —
£=Rx+A'Cla+cly AT (29)

-1
R=(4'Cla+ ]y 'clay. (30)
Each column of the resolution kerne! R is the point spread
fuglction for an clement in x. If 4 is tall, we can let
-C,  — 0, then R becomes the identity matrix and we
achieve “perfect resolution,” cf. (11). If A is wide, we must
specify a source prior, limiting the resolution (cf. [3]).

47 Linearly Constrained Minimum Variance

A common assumption is that each source is independent of
all others. The result is that C,_ is diagonal, and the solution
for each element is shown in (B). Most published applica-
tions of (4) to dense cortical sources use a diagonal (e.g. [2])
or a highly sparse covariance matrix.

We combine the above ideas by first restricting all
sources fo be independent, yielding the dipole solution in
(B}. Again inserting (1) yiclds the expression for a particular
element

X = c}'?a?’C;l(aixi+A_ixi+v) (31)
where Z,._x—, is the rest of the rgodel npt igcluding the ele-
ment of interest. If we set ¢; = (a;C; a;) , then we

achieve “perfect resolution™ of this element, and the estima-
tor for each element is

- Tt —l 1 1
x;=(a;,Cpa;) a;Cy d (32}
Although derived from a completely different viewpoint

([10], [12], [13]), this is identically the “linearly constrained
minimum variance” solution.

5. NOISE SIGNIFICANCE

We focus again on the spfc'&ﬁc_qase of ?ssumed diagonal
source covariance x; = 0,a;C; d=w'd, although the
approach can be generalized. If 4 only contains noise, i.c.
d = v, then we expect the variance of our estimate to be



a2 T
E(x;) dv = W C‘,w. (33)

If we therefore scale our estimate by this noise expecta-
tion, we achieve a “z-statistic” (or “t-statistic” if C,, is esti-
mated) shown in (D}, and we declare a particular element to
be significant if it is substantially greater than unity (e.g.

two or three sigma). This approach is the theoretical basis -

for the “neural activity index” of ([13]), the “SPM-z” of
SAM ([10]), and the “dynamic SPM” of {[2]).

Note that as shown in (D), the actual value of 0’? factors
out, such that the important specification is to make C,
diagonal, but the explicit values are not explicitly needed.
We do need, however, C;, which is implicitly dependent on
Cx. ‘We note that for the case of wide 4, most of the fine
detail of the diagonal source covariance matrix C, will be
compressed into a smaller data covariance matrix C;.

6. DIFFERENCES

We have thoroughly manipulated the same basic equa-
tion and shown many forms that should be theoretically
equivalent, Why are there such disparate differences in the
literature? We continue the assumptions that L and C, are
the same in all cases.

+  Obviously, different specifications of the source cova-
riance C :

But conmder that specifying C implicitly specifies C,,
the data covariance. So for the exact same data set, different
“min norm” techniques begin implicitly with different spec-
ifications of a data covariance for these data. Simple statis-
tical tests could be applied to confirm the consistency of the
data with the prior, yet surprisingly, many applications
appear never to check their data.

»  Estimation of C, from the data, rather than specifica-
tion, from which the source covariance C, is estimated,
such as in weighted subspace fitting or LCMV.

Given the same raw data stream, however, different
groups segment the data differently, possibly averaging,
both in time and frequency domains, and “regularizers”
may be added to the estimation. Thus the real distinction
between these groups is the specification of what is signal
vs. what is noise in the estimation process.

important assumption (among many) is that
EGj)= C for all i, but we generally anticipate a dynamic
neural process and thus the data covariance is also a func-
tion of time. Thus it is difficult to estimate €, from the data
without careful extraction of similar time periods elsewhere
in the data stream. Estimating C, from very limited data
sets also leads to estimation instabilities.

Thetefore, gtven that a majority of researchers assume
independence in the source covariance, and if we consider
the useful noise significance conventions, then the primary
difference among techniques is the accurate specification or
estimation of the data covariance, and not the details of the
diagonal elements in the source covariance.

7. SUMMARY

The algorithms commonly in use in EEG and MEG lin—
ear inverse analyses are highly related, if not identical, at the
theoretical level. The primary differences lie in more prac-
tical matters, particularly the estimation or specification of
the data covariance. Since modem arrays and acquisition
systems provide us with an abundance of data, this commu-
nity should be able to establish reasonable guidelines for
building good estimates or specifications of the data covari-
ance.

Nearly an identical and important issue is the specifica-
tion or estimation of the noise covariance matrix, which is
often ignored, assumed, or not well-explained.

Finally, not all researchers use the cortical surface for
mapping current estimations, but rather use volumetric
grids, planes, discs, or remap the data as surface potentials
or external fields. These alternative surfaces are not wrong,
just different, but they make comparisons across studies dif-
ficult.
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