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Abstract
With the increasing availability of surface extraction techniques for magnetic
resonance and x-ray computed tomography images, realistic head models can be
readily generated as forward models in the analysis of electroencephalography
(EEG) and magnetoencephalography (MEG) data. Inverse analysis of this
data, however, requires that the forward model be computationally efficient.
We propose two methods for approximating the EEG forward model using
realistic head shapes. The ‘sensor-fitted sphere’ approach fits a multilayer
sphere individually to each sensor, and the ‘three-dimensional interpolation’
scheme interpolates using a grid on which a numerical boundary element
method (BEM) solution has been precomputed. We have characterized
the performance of each method in terms of magnitude and subspace error
metrics, as well as computational and memory requirements. We have
also made direct performance comparisons with traditional spherical models.
The approximation provided by the interpolative scheme had an accuracy
nearly identical to full BEM, even within 3 mm of the inner skull surface.
Forward model computation during inverse procedures was approximately
30 times faster than for a traditional three-shell spherical model. Cast
in this framework, high-fidelity numerical solutions currently viewed as
computationally prohibitive for solving the inverse problem (e.g. linear Galerkin
BEM) can be rapidly recomputed in a highly efficient manner. The sensor-fitting
method has a similar one-time cost to the BEM method, and while it produces
some improvement over a standard three-shell sphere, its performance does not
approach that of the interpolation method. In both methods, there is a one-time
cost associated with precomputing the forward solution over a set of grid points.
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1. Introduction

The objective of EEG inverse methods is to estimate neural current source characteristics
given an observed set of noise-corrupted scalp-potential measurements. Solution of this EEG
source localization or inverse problem typically requires a significant number of forward model
evaluations. Nonlinear directed searches such as least-squares (Wang et al 1992) and MUSIC
(Mosher et al 1992, Mosher and Leahy 1999) can require evaluation of the forward model at
thousands of possible source locations. Because of their simplicity, ease of computation and
relatively good accuracy, multilayer spherical models (Berg and Scherg 1994, Brody et al 1973,
Zhang 1995) have traditionally been used for approximating the human head. The spherical
model, however, does have several key drawbacks.

Figure 1. (Left) Spatial distortion of true sensor positions (•) due to radial projection onto best-fit
single-sphere model (◦). (Right) Schematic plot of sensor-weighted spheres model.

By its very shape, the spherical model distorts the true distribution of passive currents in the
brain, skull and scalp. Spherical models also require that the sensor positions be projected onto
the fitted sphere (figure 1) resulting in a distortion of the true sensor–dipole spatial geometry
and ultimately the computed surface potential. The use of a single best-fitted multilayer sphere
has the added drawback of incomplete coverage of the inner skull region, often ignoring areas
such as the frontal cortex. In practice, this problem is typically resolved by fitting additional
spheres to those regions not covered by the primary sphere. The use of these additional
spheres results in added complication in the EEG forward model, since a neural source may
be simultaneously inside of some spheres and outside others.

Using high-resolution spatial information obtained from x-ray computed tomography (CT)
or magnetic resonance (MR) images, we can generate a more realistic head model. We represent
the head as a set of contiguous regions bounded by surface tessellations of the scalp, outer skull
and inner skull boundaries. Since accurate in vivo determination of internal conductivities is not
currently possible, we assume that the conductivities are homogeneous and isotropic within
each region. With the exception of simple geometries (e.g. spheres, ellipsoids), analytical
solutions for the potentials over multilayer surfaces do not exist. For a surface of arbitrary
shape, the surface potential can be found using the boundary element method (BEM) or other
related techniques to solve the surface integral equations.

The major drawback of BEM and other numerical techniques is their computational cost,
which can exceed that of multilayer sphere models by two or three orders of magnitude. In the
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past, the use of BEM was also limited by the large memory requirements for matrix inversion
and the lack of reliable surface extraction methodologies. These problems are being overcome
with the availability of high-density low-cost memory and improvements in surface extraction
methodologies. Currently, lack of computationally efficient EEG forward modelling solutions
for non-spherical surfaces appears to be the major barrier to widespread adoption of these more
realistic head models.

Past work in the area of computationally efficient EEG forward models has primarily
focused on multilayer spherical models, most notably in the work of Berg and Scherg (1994),
deMunck and Peters (1993) and Zhang (1995). For realistic head models, Huang et al (1999)
present a sensor-fitted sphere method for MEG whose accuracy approaches that of BEM with
a computational cost on the order of a multilayer sphere. Here we describe an extension
of this method to the forward EEG problem and a second method based on interpolation of
a precomputed BEM solution. We show that the quality of the forward modelling solution
approaches that of BEM, with a recomputation time approximately 30 times faster than that of
a multilayer spherical model. The proposed methodology has the added benefit of providing
whole-head coverage.

The three-dimensional forward-field interpolation methodology described here represents
an extension to methods previously presented by Ermer et al (2000), and algorithms currently
implemented as part of the ‘BrainStorm’ neuroimaging software package (Baillet et al 2000).
We note also the recent publication by Yvert et al (2000), who describe a similar methodology
with results consistent with ours.

The layout of this paper is as follows. Section 2 provides the basic definitions and
an overview of the popular EEG forward models. A description of the proposed methods
are presented in section 3. Results and algorithm computational/memory requirements are
presented in section 4. Final conclusions are drawn in section 5. The notation throughout
this paper is as follows: in general, an italicized plain font is used to denote scalar quantities
and boldface is used to indicate vectors and matrices. A superscript ‘T’ is used to denote the
transpose operator.

2. Background

2.1. The forward model

The forward model relates a current dipole of moment q at location rq to the surface potential
v(r) at location r. Under the assumption that the head is represented as a multilayer surface
composed of non-intersecting homogeneous ‘shells’ of constant isotropic conductivity, the
surface potential at all boundaries can be found using Green’s theorem (Geselowitz 1967)

σ0v∞(r) = σ−
j + σ +

j

2
v(r) +

1

4π

m∑
i=1

(σ−
i − σ +

i )

∫
Si

v(r′)ni (r
′) · r − r′

‖r − r′‖3
dr′, r ∈ Si (1)

where r′ represents the source point, σ−
j and σ +

j represent the conductivity inside and outside
of the j th surface respectively, ni (r

′) dr′ is a vector element of surface Si oriented along the
outward unit norm of Si , and v∞(r) represents the primary potential, i.e. the solution for the
infinite homogeneous medium of unit conductivity σ0 due to the primary current jp(r) is

v∞(r) = 1

4πσ0

∫
G

jp(r′) · r − r′

‖r − r′‖3
dr′ (2)

where the integration is carried out over a closed volume G. Equation (1) is a Fredholm
integral of the second kind for the surface potential v(r). For the special case where the
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surface geometry is spherical, analytical solutions for (1) are well known (Brody et al 1973).
For realistic head geometries of arbitrary shape, the surface potential v(r) must be found using
the computationally intensive BEM, as outlined in section 2.3, or other numerical techniques.

Regardless of the specifics of the forward model, by electromagnetic superposition the
forward model is linear in the moment, and we may write the relationship between the moment
q for a dipole at rq and the measurement at sensor location r as the inner product of a ‘lead field’
vector g(r, rq) and the dipole moment: v(r) = g(r, rq)·q. We assume dipole moments of the
3 × 1 Cartesian form, q = [qX qY qZ]T where the individual components, [qX 0 0]T, [0 qY 0]T,
and [0 0 qZ]T represent ‘elemental dipoles’. The three components of the lead field vector
g(r, rq) are formed as the solution to (1) for each of these elemental dipoles. Concatenating
the measurements of an m-sensor array into a vector, we can represent the ‘forward field’ of
the dipole as 


v(r1)

. . .

v(rm)


 =




g(r1, rq)
T

. . .

g(rm, rq)
T


 q = G({ri}, rq)q (3)

where G({ri}, rq) is the ‘gain matrix’ relating the dipole at rq to the set of discrete sensor
locations {ri}. Assuming multiple time samples, the observed set of measurements over an
m-sensor array for p dipoles can be expressed as a linear forward spatiotemporal model of the
form

F = GQ + N (4)

where the observed forward field F (m-sensors×n-time samples) can be expressed in terms of
the forward model G (m-sensors×3p-elemental dipoles), a set of dipole moments Q (3p×n),
and additive noise N (m × n).

When describing the rows and columns of the EEG forward gain matrix G, we adopt the
convention described in Tripp (1983), whereby the ‘lead-field’ describes the flow of current for
a given sensor through each of the dipole locations (and thus corresponds to each row in G),
and the ‘forward-field’ describes the observed potential across all sensors due to an elemental
dipole (and thus corresponds to each column in G).

2.2. EEG spherical head models

The simplest EEG head model consists of a single-layer spherical shell of uniform conductivity
σ , as originally described by Wilson and Balyey (1950). A closed-form solution for calculating
the potential on the outermost surface is described by Brody et al (1973). In practice, a single-
layer sphere proves too simplistic for the human head, which consists of multiple layers of
conductivity varying by as much as two orders of magnitude between the skull and brain. To
account for the varying conductivity of brain, skull, scalp and optionally cerebrospinal fluid,
three- and four-multilayer concentric-sphere analytic solutions have been derived. These can be
computed numerically using a truncated Legendre series (Cuffin and Cohen 1979). Because of
their simplicity, reasonable computation requirements and relatively good accuracy, multilayer
spherical models are by far the most widely used.

Methods to improve the computational efficiency of multilayer spherical models have
focused primarily on approximating the infinite Legendre series. Ary et al (1981) recognized
that a single-sphere model could, under certain circumstances, approximate a three-shell model
with good accuracy. If we let v1(r; rq, q) represent a single-layer sphere and v3(r; rq, q)

represent a three-layer sphere, then the approximation may be represented as

v3(r; rq, q) ∼= λv1(r;µrq, q). (5)
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In other words, we can approximate v3(r; rq, q) by adjusting the location of the dipole along its
radial direction rq/|rq| by a scale factor of µ, compute the much simpler single-sphere solution
and then scale the solution by λ. Further refinements of this general approximation concept
(Berg and Scherg 1994, deMunck and Peters 1993, Zhang 1995) resulted in the remarkably
accurate approximation (Zhang 1995)

vM(r; rq, q) ∼=
J∑

j=1

λjv
1(r;µjrq, q) (6)

where M is the number of shells and J is the number of dipoles used (figure 2). For commonly
used three- and four-shell head geometries, Berg and Scherg (1994) and Zhang (1995) found
that exceptionally good approximations could be obtained using as few as J = 3 dipoles.
Zhang (1995) refers to these parameters µj and λj as the Berg ‘eccentricity’ and ‘magnitude’
parameters respectively, and hence we will refer to this approach as the ‘Berg approximation’.
As for the Legendre series being approximated, the parameters µj and λj are dependent only
on the sphere radii/conductivity profile and independent of dipole position rq.

2.3. Boundary element method (BEM)

Under the assumption that the head can be modelled as a multilayer surface composed of
non-intersecting homogeneous ‘shells’ of constant isotropic conductivity (see figure 5), the
BEM can be used to solve Green’s theorem (1) for the surface potential v(r). The following
provides a summary of the BEM approach using the method of weighted residuals, which we
have reviewed for EEG and MEG applications in (Mosher et al 1999). The BEM approximates
the potential function v(r) as a linear combination of the n = 1, . . . , N linearly independent
basis functions ϕn(r), a set of corresponding nodal points rn, and a set of corresponding
unknown coefficients v ≡ [v1, . . . , vN ]T at each of the nodes, to yield

v(r) ∼=
N∑

n=1

vnϕn(r). (7)

The most commonly used basis functions are planar triangles with either a constant potential
or linearly varying potential across the surface of each triangle. The unknown coefficients
therefore control these ‘constant’ or ‘linear’ approximations to the true potentials.

These approximations lead to errors in the equations that must also be controlled. Common
error control methods are ‘collocation’ and ‘Galerkin’. In collocation weighting, which is the
simpler of the two methods, the error is controlled at the same discrete locations as the control
points. In Galerkin weighting, the error is controlled as either a constant or linear function
across the entire triangle. Using comparisons with spheres (where analytical truth can be
computed), the results in Mosher et al (1999) show that the simplest linear collocation BEM is
characterized by high (and somewhat erratic) error for dipoles near the inner surface boundary.
In comparison, the more elaborate model provided by both the constant Galerkin and linear
Galerkin forms provide significantly lower error.

In all cases, the selection of a basis and its error control lead to anN×N system of equations
of the form g = Hv whose solution for v (the unknown coefficients) can be expressed as

v = H−1g (8)

where

g = G∞q =



(ψ1(r),k∞(r, rq))
T

· · ·
(ψN(r),k∞(r, rq))

T


 q and k∞(r, rq) =

[
1

4π

r − rq

|r − rq|3
]
. (9)
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ψn(r) represents the weighting basis function, and the operator (f (r), g(r)) denotes the inner
product of the functions f and g formed by integrating over the surfaces. The potential
v(r) function for a surface point can then be found from (7) as a linear combination of these
coefficients:

v(r) ∼= [ϕ1(r), . . . , ϕN(r)]v = ([ϕ1(r), . . . , ϕN(r)]H−1)(G∞q). (10)

As shown in Mosher et al (1999) and implied in (10), we can further partition the
solution into ‘subject-dependent’ and ‘dipole-dependent’ terms. Computational savings can
be realized by performing a once-per-subject computation of the subject-dependent terms
([ϕ1(r), . . . , ϕN(r)]H−1) (commonly referred to as the BEM ‘transfer matrix’) and then at run-
time computing only the dipole-dependent terms in the matrix G∞. While these computational
savings are significant, the computational requirement for the BEM is still significantly higher
than that of a multilayer sphere. Consequently, use of the BEM for the inverse problem
is typically viewed as computationally prohibitive, particularly in nonlinear directed-search
algorithms which must repeatedly evaluate thousands of putative source solutions.

3. Methods

As an alternative to the computationally intensive BEM forward model calculations described
in equations (8)–(10), we propose the following two methods. Each method provides an
approximation to the BEM which is significantly faster to compute at run-time. One-time
precalculation of the BEM solution over a limited set of dipole locations is required for each
method. In our experiments, we use the more accurate constant Galerkin and linear Galerkin
BEM forms. In particular, we used the computationally intensive linear Galerkin form in
order to establish our best estimate of truth for realistic head geometries. We also performed
computations using the isolated skull approach (ISA) described by Hämäläinen and Sarvas
(1989).

Our first method extends the MEG sensor-fitted sphere approach presented by Huang
et al (1999) to the EEG forward model. The objective in Huang et al (1999) is to find the
‘optimally fit’ sphere at each sensor that best approximates the true lead-field for the actual
head volume. In our approach, we estimate the true lead-field by computing the BEM over
a representative dipole grid. Sensor-fitted sphere parameters are then determined using the
methodology described in section 3.1. Our second method consists of a straightforward 3D
forward-field interpolation scheme, again computing the BEM over a representative dipole
grid. This method is described in section 3.2.

3.1. Sensor fitted sphere

A schematic diagram of the sensor-fitted sphere model described in Huang et al (1999) is
shown in figure 1. The goal of this method is to determine the centre C0 and outer radius R0 of
the fitted-sphere that best approximates the true lead field for each individual sensor. We first
compute the lead field for a given sensor located at r over a representative grid of P dipoles
r′ = {r′

1, r′
2, . . . , r′

P } using a high-fidelity EEG forward model solution. In our case, we used
the linear Galerkin BEM form described in Mosher et al (1999), using layer conductivities
of σ = {σ1, . . . , σM}. Assuming a multilayer sphere characterized by conductivity values σ

and sphere radii R0ρ = {ρ1R0, . . . , ρMR0} with fixed relative radii ρ1, . . . ρM , we find the
multilayer sphere centre C0 and outer radius R0 for each sensor as

{R0,C0} = argmin(‖gsph(r, r′, σ , ρR0) − gBEM(r, r′, σ )‖2) (11)
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where gsph(r, r′, σ , ρR0) and gBEM(r, r′, σ ) are the lead field vectors for the spherical and
BEM solutions respectively. Since previously described multilayer spherical models require
the sensor to lie on the outermost surface, we impose the constraint that |r − C0| = R0.
Solution of the sphere parameters using (11) is repeated for each of the m sensors. The EEG
sensor-fitted sphere forward model is then expressed as

GOS =



gsph(r1, r′, σ , ρR0(1))

· · ·
gsph(rM, r′, σ , ρR0(m))


 . (12)

The use of a proportional radii model allows for efficient implementation of the Berg
approximation. The fitting of sphere parameters using (11) requires a significant number of
lead-field evaluations using a multilayer sphere model. As noted in section 2.2, the Berg
approximation is a computationally efficient alternative to the truncated Legendre expansion.
Under the assumption that all spheres have the same fixed isotropic conductivities and fixed
proportional radii ρ = {ρ1, . . . , ρM}, calculation of the Berg parameters µj and λj need only
be performed once.

3.1.1. Approximation of potentials for sources external to a fitted sphere. Approximation of
the head volume with multiple spheres also presents the problem of incomplete head coverage.
As illustrated in figure 1, an anatomically fit sphere for an occipital sensor does not cover the
frontal regions. Thus a frontal neural source is undefined for the occipital sensor, since the
source is external to the model sphere. In general, for overlapping multiple spheres fitted to
each sensor, we will find regions of the brain that are undefined for some subset of the sensor
array. Typically, these ‘external’ sources are quite distant from the sensors for which they
are undefined, and one may argue that the small contributions of these sources to the distant
sensor could simply be set to zero. The problem lies in the resulting discontinuous jump to a
zero potential for dipoles just inside and outside all of these local spheres, which may cause
difficulties in source localization procedures using a nonlinear search algorithm. In practice,
we would like to have a model defined at all spatial locations that is compatible with nonlinear
directed search algorithms, so that for a dipole traversing any sphere boundary, the potential
described by the forward model is continuous. The directed searches are allowed to continue
across sphere boundaries to find a solution in a physically plausible location.

To achieve this continuity in potential, we first use the previously described Berg
approximation to reduce the EEG forward model complexity from a multilayer sphere to
a linear combination of simpler (closed-form) single-sphere models, as illustrated in figure 2.
We then apply the method of images (Brody et al 1973, Cheng 1989) to generate a plausible
solution that allows for a continuous approximation across the single-shell boundary. We
apply the method of images analogous to the electromagnetic problem of a point charge in
the presence of a spherical conductor. For our purposes, we represent a dipole external to a
fitted sphere by a ‘similar’ dipole that falls within the boundaries of the sphere. Referring to
figure 3, we consider a point current source of strength q0 located a distance r0 from the centre
of a homogeneous spherical conducting volume of radius R and conductivity σ . An image
source of strength qi = Rq0/r0 is located on the radius vector of the point source at a distance
ri = R2/r0 (Cheng 1989).

For dipoles interior to the sphere rq � R, we use the standard single-shell forward model
to compute v1(r; rq, q0). For those dipoles external to the sphere rq > R, we can approximate
the forward model in terms of the source image as

v1(r; rq, q0) ≈ v1

(
r; R2

r2
q

rq,
R

rq
q0

)
. (13)
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Figure 2. Graphical depiction of concentric sphere models and parameter definitions.

Figure 3. (Upper) Calculation of electric ‘image’ of an external current dipole. (Lower left)
Representative example where dipole traverses across sphere boundary. Electrical image is used to
represent dipoles external to the sphere. (Lower right) Computed potential versus dipole position
for representative example.

A representative example is shown in figure 3 using a dipole that traverses across a sphere
boundary. The resulting approximation, although fictitious, is plausible and continuous across
the sphere boundary, and the forward model is now defined at all spatial locations.
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Figure 4. (a) Spherical grid points denoted as + at level Z = 0. (b) Forward-field interpolation at
point (η, ε, R) based on weighted sum of eight nearest grid points.

3.2. Three-dimensional forward-field interpolation

The three-dimensional forward-field interpolation method is illustrated in figure 4. We first
define a set of grid points sampled in spherical coordinates (η, ε, R) throughout the inner
skull cavity. In our study we sampled both azimuth η and elevation ε at 10◦ intervals. This
corresponded to a maximum cross-range of 1.4 cm at a radius of 8 cm. Sampling in the radial
dimension was performed using a two-tiered scheme. The skull boundary for each azimuth-
elevation ray was readily determined by finding the intersection point on the surface triangle
penetrated by the ray. Within 1–2 cm of the inner skull boundary we sampled at 2 mm intervals,
and at 1 cm intervals elsewhere. We used a finer radial sampling in the vicinity of the surface
boundary to account for the increased sensitivity of the forward field to variations in source
locations within this region.

During the precomputation phase we use a BEM method to compute the forward field at
each grid position. We then store each result as an indexed table for use by the interpolator
during the inverse procedure. At run-time, we determine the EEG forward model at an
arbitrary location using a three-dimensional trilinear interpolation of the forward-field solution
corresponding to the eight nearest grid points

v({ri}, rq, q) ∼=
[ 8∑

i=1

wiG({ri}, rqi )

]
q (14)

where, from (3), G({ri}, rqi ) represents the precomputed m × 3 forward-field gain matrix at
the ith grid point rqi , and {ri} is the set of m sensor positions. For a dipole with spherical
coordinates rq = (η, ε, R), the trilinear interpolation weights wi corresponding to each of the
eight grid points rqi = (ηi, εi, Ri) shown in figure 4 are computed as

w1 =
[

1 −
(

ε − ε1

ε5 − ε1

)] [
1 −

(
η − η1

η3 − η1

)] [
1 −

(
R − R1

R2 − R1

)]

w2 =
[

1 −
(

ε − ε2

ε6 − ε2

)] [
1 −

(
η − η2

η4 − η2

)] (
R − R1

R2 − R1

)
(15)
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w3 =
[

1 −
(

ε − ε3

ε7 − ε3

)] (
η − η1

η3 − η1

) [
1 −

(
R − R3

R4 − R3

)]

w4 =
[

1 −
(

ε − ε4

ε8 − ε4

)] (
η − η2

η4 − η2

) (
R − R3

R4 − R3

)
(16)

w5 =
(

ε − ε1

ε5 − ε1

) [
1 −

(
η − η5

η7 − η5

)] [
1 −

(
R − R5

R6 − R5

)]

w6 =
(

ε − ε2

ε6 − ε2

) [
1 −

(
η − η6

η8 − η6

)] (
R − R5

R6 − R5

)
(17)

w7 =
(

ε − ε3

ε7 − ε3

) (
η − η5

η7 − η5

) [
1 −

(
R − R7

R8 − R7

)]

w8 =
(

ε − ε4

ε8 − ε4

) (
η − η6

η8 − η6

) (
R − R7

R8 − R7

)
. (18)

Although higher-order interpolation methods can potentially improve accuracy, we use a simple
trilinear method. The higher-order schemes involve greater computation cost and the results
presented below indicate that they are probably not necessary with the sampling density that
we are using.

The quality of the post-interpolated solution is highly dependent on the quality of the
original forward model used to compute the grid. As shown in (Mosher et al 1999), the
quality of various BEM solutions is highly dependent on the weighting function used. While
faster to compute, simpler models like linear collocation BEM show increased error and a
somewhat erratic solution near the innermost surface boundary (cortical region). Consequently,
interpolated results were also poor. For our experiments, we used the more accurate constant
and linear Galerkin BEM forms.

The grid sampling needs to be sufficiently dense in rapidly changing regions and must
cover all regions of interest in the brain. To ensure that all dipole interpolations fall within our
precomputed grid, we sampled the radial dimension to within 2 mm of the inner skull boundary.
In choosing grid sampling resolution, a trade-off exists between interpolation accuracy and
the required grid size. As noted earlier, we implemented a scheme using a denser radial
sampling in cortical regions where the potential function was particularly sensitive. We found
that the angular dimensions were far less sensitive and opted for an angular resolution of 10◦.
Tests in sections 4.1 and 4.2 were also performed using a finer grid angular resolution of 5◦.
While computation and memory requirements grew by a factor of four, the improvement in
performance was negligible.

Finally, the key to achieving fast recomputation times was an efficient grid indexing
scheme. For a dipole located at (η, ε, R), our gridding scheme was designed so that the
indices of the eight nearest neighbours could be determined at run-time using trivial modulo
operations, averting the need for complex searches and distance calculations to find the nearest
neighbours.

4. Results

We used the following metrics to evaluate pair-wise forward-field scale and subspace errors
between the true forward gain matrix GA and our approximation GB . We denote the m-sensor
forward field gain vector for the nth elemental dipole as gA(n) for n = 1, . . . , 3p elemental
dipoles.

(a) Pairwise forward field PVU (0 � PVU � 100%): the purpose of this metric (‘percent
variance unexplained’) is to evaluate scale error and serve as a predictor of forward model
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performance using least-squares based approaches

PVU(n) = ‖gB(n) − gA(n)‖2

‖gA(n)‖2
× 100% n = 1, . . . , 3p. (19)

(b) Pairwise forward field subspace correlation: the purpose of this metric is to evaluate
subspace error which serves as a predictor of forward model performance when using
subspace-based approaches like MUSIC (Mosher et al 1992) and RAP-MUSIC (Mosher
and Leahy 1999)

SBCFF(n) = subcorr(gA(n), gB(n)) = gT
AgB

‖gA‖‖gB‖ n = 1, . . . , 3p (20)

where subcorr(a, b) represents the cosine of the angle between the vectors a and b.
Whereas the PVU metric is dependent on both magnitude and orientation differences
between the two vectors, the subcorr metric is strictly dependent on differences in
orientation between the two vectors.

We avoided specifying performance in terms of localization accuracy, which is subject to
the influence of arbitrary design parameters (e.g. error thresholds, localization methodology,
etc). Instead, metrics (19) and (20) directly compare the forward model solution with our best
estimate of truth. These metrics, PUV and subcorr, reflect the base criteria used to localize
sources using, respectively, least-squares and subspace based localization methods, and thus
have a direct bearing on localization accuracy.

4.1. Spherical model comparisons

To evaluate the impact of errors directly attributable to trilinear interpolation, we conducted
a simple experiment using a three-layer sphere of increasing radius 8.1, 8.5 and 8.8 cm with
conductivities 0.33, 0.0042 and 0.33 '−1 respectively. A three-dimensional interpolative grid
was set up using the sampling scheme described in section 3.2. The potential at each grid point
was evaluated using a multilayer sphere model whose true forward solution was determined
analytically.

We then generated a set of test dipoles falling at the centre of each spherical voxel as
illustrated in figure 4(b). Dipoles within 3 mm of the inner layer boundary were included
to simulate gyral cortical sources. The true forward model for each test dipole was again
computed using an analytical multilayer sphere model. We then evaluated the interpolated
solution performance using the PVU and subcorr metrics described in section 4.

While not shown here, the pairwise scale and subspace errors were extremely small
(PVU < 1% and subcorr > 0.99) for all elemental dipoles. Our conclusion is that the potential
function is sufficiently flat that trilinear interpolation of the forward field over a reasonably
dense grid imposes little distortion with respect to the true solution.

4.2. Phantom experiments

We used surface data from the human skull phantom described in Leahy et al (1998) to
evaluate algorithm performance over a realistic head shape (figure 5). Using x-ray CT data,
three surfaces (inner skull, outer skull, scalp) were tessellated to a density of 1016 triangles per
layer. Measured brain, skull, and scalp conductivities of 0.40, 0.004 and 0.21 '−1 respectively
were assumed to be uniform and isotropic. A representative set of 1622 randomly located test
dipoles (4866 elemental dipoles) were generated, where all dipoles were internal to both the
inner skull and ‘best-fitted sphere’ volumes. To evaluate model performance in gyral regions,
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Figure 5. Physical model used in BEM modelling of human skull phantom.

we allowed dipole positions to fall within 3 mm of the inner skull boundary. The sensor
array consisted of 54 sensors distributed uniformly over the upper portion of the phantom
scalp. To establish a best estimate of EEG forward model ‘truth’, we computed the linear
Galerkin BEM solution for each test dipole. Comparisons of the linear Galerkin BEM solution
using tessellated multilayer spheres (where analytical ‘truth’ can be determined) show typical
PVU error of 1% and worst case PVU error of 6% (Mosher et al 1999). With performance
significantly better than other BEM forms; we therefore use the linear Galerkin BEM solution
as our ‘gold standard’ for the true potential over an arbitrarily shaped head.

Scale and subspace error metrics for each elemental dipole are shown in figure 6 for
the different forward models described above. To evaluate the dependence of error in the
EEG forward model on spatial location, scale and subspace error were also evaluated over a
fixed surface lying 1 cm below the innerskull surface (figure 7). To represent error over three
dimensions, scale and subspace metrics in (19) and (20) were modified as follows. For scale
errors, the PVU metric in (19) was computed for the (m-sensors×3-elemental dipole) forward
gain matrix G({r}, rqk); k = 1, . . . , p at each of the p dipole locations as

PVU(k) = ‖GB({r}, rqk) − GA({r}, rqk)‖2
Fro

‖GA({r}, rqk)‖2
Fro

× 100% k = 1, . . . , p (21)

where ‖G‖Fro represents the Frobenius matrix norm.
For subspace errors, we again compare the forward gain matrix G({r}, rqk) with our best

estimate of truth, where subcorr(GA({r}, rqk),GB({r}, rqk))min represents the cosine of the
largest principal angle between the two (m × 3) subspaces (Mosher and Leahy 1999). This
metric corresponds to worst possible subspace error over all possible source orientations at
any given spatial location.

4.3. Computational and memory comparisons

Timing metrics for various EEG forward modelling methods are shown in table 1. All
timing benchmarks were determined running double-precision MATLAB-based programs
(The MathWorks, Natick, MA) on a 500 MHz Pentium P-III PC with 512 MB of RAM.
These metrics correspond to the results presented in figure 6 for the phantom experiment
described in section 4.2. The results show a three-dimensional forward model recomputation
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Figure 6. Pairwise forward-field PVU (left) and pairwise forward-field subspace correlation (right)
between candidate EEG forward model and linear Galerkin BEM.



1278 J J Ermer et al

Right-Forward View Left-Rear View
3-D Interpolation (Constant Galerkin BEM) 
PVU error vs. location

PVU (%)

3-D Interpolation (Constant Galerkin BEM) 
Maximum subspace error vs. location

subcorr(g1,g2)
(worst case)

3-D Interpolation (Linear Galerkin BEM) 
PVU error vs. location

PVU (%)

3-D Interpolation (Linear Galerkin BEM) 
Maximum subspace error vs. location

subcorr(g1,g2)
(worst case)

Figure 7. Spatial representation of forward-field PVU and worst-case forward-field subspace errors
at fixed surface depth of 1 cm below inner skull for 3D interpolation cases. Error is minimal with
the exception of the eye socket region and frontal head area near the sensors.

time that is in excess of 30 times faster than that of a traditional multilayer spherical model.
One-time calculations required for each subject were also reasonable.
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Table 1. Computation and memory benchmarks for various EEG forward models using USC/LANL
human skull phantoma and 1622 dipole test set.

One-time Memory 1622 dipole
precalculations storage evaluation

EEG forward model method (s) (MB) time (s)

BEM 382.8 2.6 55.5
(linear collocation)
BEM 3141.5 2.6 490.9
(constant Galerkin)
BEM 24 778.3 2.6 1667.6
(linear Galerkin)
Three-layer sphere 0.0 0.0 41.2
(100-term Legendre expansion)
Three-layer sphere 34.2 0.0 2.36
(three-dipole Berg approx.)
Multiple sensor-fitted 23 035.7 0.0 5.97
spheres
3D interpolation 5748.1 11.7 1.34
(constant Galerkin BEM)
3D interpolation 33 712.6 11.7 1.34
(linear Galerkin BEM)

a USC/LANL Neuroimaging Website: http://neuroimage.usc.edu (University of Southern
California Signal and Image Processing Institute and Los Alamos National Laboratories).

Figure 8. Computational requirements for computing the EEG BEM transfer matrix and the EEG
BEM kernel evaluation at 8475 interpolative grid points for the four BEM methods described in
Mosher et al (1999). The above represents total one-time computations required for the human
skull phantom using a 54 sensor array. Timing benchmarks were determined using a 500 MHz
Pentium P-III PC with 512 MB RAM running double-precision MATLAB based programs.

Total grid precomputation time using each of the BEM methods in (Mosher et al 1999) is
shown in figure 8 as a function of the total number of tesselation elements. This metric reflects
total one-time precomputation required, for each subject and sensor geometry, to determine
BEM transfer matrices and evaluate the kernel for 8475 grid points.
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5. Discussion

Both of the three-dimensional spherical interpolation models shown in figure 6 significantly
outperform the traditional single multilayer sphere model in terms of subspace error and PVU
metrics. Constant and linear Galerkin BEM forms were observed to have subspace correlations
better than 0.95 in nearly all cases. In comparison, the subspace correlations using a single
best-fitted multilayer sphere often fell below 0.9. A reduction in PVU scale error was also
observed. A somewhat less dramatic EEG forward modelling improvement was obtained
using the multiple fitted-sphere approach in section 3.1. Realistic EEG forward models have
the added advantage of being defined over the whole head. In comparison, the surface potential
for a dipole located external to a locally fitted sphere, yet still inside the skull, is undefined in
a fitted sphere model, and requires some form of approximation as we have presented here.

Using a multilayer sphere and realistic skull phantom-based geometry, we observed that
three-dimensional interpolation of the EEG forward field over a reasonably sampled grid
produced very accurate approximations to the true forward field. This was the case even
within 3 mm of the boundary of the inner skull surface. Exceptions were found only near
rapidly changing surface boundaries (e.g. the eye socket region) where the numerical solutions
vary rapidly. In the case of less accurate BEM methods (e.g. the constant Galerkin BEM), we
also observed a slight increase in both PVU and subspace error in the superior-frontal regions
of the head.

The spherical three-dimensional forward-field interpolation presented is more than 30
times faster to compute than the traditional multilayer spherical forward model. We note
that the forward model recomputation time using the three-dimensional interpolation model is
independent of the specific BEM method chosen. While our presentation emphasized BEM
methods, the method can be generalized to other EEG forward models. Cast in this framework,
high-fidelity numerical solutions currently viewed as computationally prohibitive for solving
the inverse problem (e.g. our ‘gold standard’ linear Galerkin BEM (Mosher et al 1999)) can be
rapidly recomputed in a highly efficient manner. One-time computational costs associated with
determining the BEM solution over a pre-defined grid are not prohibitive (figure 8), falling
within the 1 to 10 h range depending on the BEM method chosen and the total number of
triangles used to represent all subject surfaces.

Although the three-dimensional interpolation method presented above focuses on the EEG
forward problem, the method is directly applicable to the MEG analysis as well. While not
presented here, our tests demonstrated MEG performance similar to the EEG results presented
in section 4. An exception was for sources near the centre of the head, where the MEG fields
diminish rapidly, resulting in increased interpolation error in our coarser grids. While this
area is typically of limited interest, these sensitivities can be countered using finer radial grid
sampling in the vicinity of this region.
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