

School of Engineering

BrainSuite Tools

Anand A Joshi

EEG and MEG methods multi-hub meeting

October 18th, 2023

SVReg (Surface-Constrained Volumetric Registration)

The processing sequence of SVReg module in BrainSuite

3D surface L2 alignment	flat mapping	curvature alignment	transfer of labels	boundary refinement	3D harmonic mapping	intensity registration	volumetric label transfer
~10 min	~l min	~10 min	<1 min	~10 min	~10 min	~20 min	~2 min

https://brainsuite.org/processing/svreg/

Consistent surface and volume labels

Outputs

Sulcal Demarcation

Sulcal regions are generated by zero crossing of curvature and

Connected component analysis in relation to the 26 sulcal curves

Sulcal vs Gyral regions

Labelled sulcal regions

https://neuroimage.usc.edu/CurveProtocol.html

Labeling of Lesion brains

Hemispherectomy subject

BrainSuite (SVReg) labeling works with lesion brains

Combining/Mixing Atlases

ROIs from multiple atlases can be combined to create a mixed atlas

Example: Insula subdivisions and subcortical structures from USCBrain are replaced by subdivisions from Brainnetome

Automatic delineation of Surgical Resections on MRI using Neural Networks

Post-operative MRI

Preoperative MRI

Registration of pre and post MRIs

U-Net

Error thresholding

Warp

Masked MSE

+ Bending Energy Regularizer

Connected component Analysis

https://github.com/ajoshiusc/auto_resection_mask

Other tools

Defacing

Defaces MRIs or CT in an EEG/MEG friendly manner

https://github.com/ajoshiusc/deface_mri

CT-MRI coregistration

Coregisters multimodality images using MI, MSE or CC cost functions

https://github.com/ajoshiusc/USCCleveland/tree/master/ct2mrireg

BFP (BrainSuite fMRI Pipeline)

- The BrainSuite fMRI pipeline (BFP) is an opensource software workflow for processing raw resting fMRI data.
- The pipeline processes resting fMRI and anatomical (T1) imaging data using a combination of software that includes BrainSuite, AFNI, and FSL, as well as MATLAB scripts.
- To facilitate interaction across software packages, the processed fMRI data are represented in a common grayordinate system.
- Unique features of the BFP pipeline include cortically-constrained volumetric registration, global PDF-based non-local means filtering (GPDF), and brainsync, a method for temporal synchronization of resting fMRI data across subjects.

BFP Processing sequence

Anatomical processing

Functional preprocessing

Deoblique and motion correction

Skull Stripping

Spatial smoothing 2mm FWHM

Grand mean scaling

Band pass filter (0.09 - 0.1 Hz)

Detrending (1st and 2nd order)

Nuisance regression using pvc label image (GSR, WM, CSF, motion)

Residuals are coregistered to 3mm isotropic BCI-DNI atlas

HCP compatible Grayordinates on BCI atlas

Inner surfaces of BCI atlas

Spherical map of BCI atlas

Spherical map of grayordinates

BCI atlas to BrainSuiteAtlas1 map

Grayordinates in MNI space

Transfered to BCI atlas

Brainsync transform

BrainSync is a transformation of fMRI signal

- Synchronize data across scans
- Retains individual information
- Allows pairwise point-wise comparisons of fMRI scans
 Scan 1
 Scan 2

Scan 1 synced to 2

1.5

Identifying Brain Networks Using Tensor Decomposition of Multiple Subject Asynchronous Task fMRI

Li, Jian, et al. "Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain." NeuroImage 270 (2023): 119944.

Identifying Brain Networks Using Tensor Decomposition of Multiple Subject Asynchronous Task fMRI

- Spatially overlapping and temporally correlated brain networks can be reliably identified from resting state fMRI data using the NASCAR tensor decomposition method and Brainsync temporal synchronization.
- These networks are highly reproducible across a large independent group of subjects.
- Using these networks as a set of spatiotemporal bases, one can better predict neurological/psychological measures (e.g., ADHD scores) or personal traits (e.g., IQ).

Li, Jian, et al. "Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain." NeuroImage 270 (2023): 119944.

Post-Traumatic Epilepsy (PTE) study using BrainSuite Tools

- D PTE is a common after TBI. The connection between PTE and TBI is not clearly understood.
- We aim to find anatomical and functional markers of PTE from MRI imaging data
- PTE prediction using these markers on individual level

Anatomical analysis

We use MR imaging data to compare PTE and non-PTE groups

We measured tissue type changes (lesions) and fMRI-based measure (ALFF)

We developed a machine learning approach for detecting lesions

Maryland Magnets (N=150)

- This is a prospective study involving longitudinal imaging and behavioral data on TBI patients ranging from GCS 3-15 (mild to severe TBI). FLAIR/T1,T2, Diffusion, and other contrasts are available.
- Imaging and behavioral data was obtained at four time points (within 10 days of injury, 1 month, 6 months, and 18 months following injury. Both MR and fMRI are available.
- Patients with seizures (=37), measured at various time point during the study (0 days to 5 years).
 - Our study population 37 PTE and 37 TBI datasets

Automatic Lesion Detection

- Variational Autoencoder (VAE) was trained on independent 138 non PTE TBI subjects
- When trained on relatively lesion free dataset, VAE learns to generate a 'normal' lesion free version of the input brain.

Variational Autoencoder for lesion detection

Lesion distribution

(a) average lesion distribution over non-epilepsy subjects

(b) average lesion distribution over epilepsy subjects

(c) std-dev of lesion distribution over non-epilepsy subjects

(d) std-dev of lesion distribution over epilepsy subjects

Lesion analysis results

- Voxel-based PTE vs. non-PTE group comparison of lesion maps overlaid on the USCBrain atlas.
- The color code depicts f-values, shown in a region where p-value < 0.05, resulting from the F-test (with permutations).
- Prominent significant clusters are located in the left temporal lobe, bilateral occipital lobe, cerebellum, and right parietal lobe.

ROI-wise analysis

Lobe	P-value (lesion) permutation test	P-value (ALFF) permutation test	
Right Temporal	0.010	0.003	
Left Temporal	0.021	0.081	
Right Occipital	0.031	0.035	
Left Occipital	0.127	0.009	
Right Frontal	0.221	0.243	
Left Frontal	0.326	0.177	
Right Parietal	0.574	0.003	
Left Parietal	0.654	0.069	
Right Insula	0.347	0.226	
Left Insula	0.546	0.724	
Cerebellum	0.047	0.072	

Prediction of PTE on Individual level

Method	Lesion	Connectivity	ALFF	Combined
KSVM	0.5486(0.0408)	0.6069(0.0691)	0.6230(0.0431)	0.7772(0.0373)
SVM	0.6294(0.0306)	0.5121(0.0351)	0.6321(0.0242)	0.6444(0.0333)
RF	0.5778(0.0461)	0.5514(0.0756)	0.6667(0.0324)	0.6389(0.0598)
NN	0.5002(0.0411)	0.6083(0.075)	0.5027(0.0547)	0.5625(0.0299)

Classification accuracy of PTE vs. non-PTE subjects using different classifiers and features types. Mean and standard deviation of AUC are shown for KSVM, SVM, RF and NN. The last column shows the performance obtained when the models were trained simultaneously on all three feature types

Feature Importance

The SVM Feature importance map shown as color-coded ROIs overlaid on the USCBrain atlas for lesion based prediction

Both the surface and 3D rendered ROIs are shown.

Acknowledgements

This work is supported by the following grants: **NIH:** R01 NS074980, R01 NS089212, **USAMRDC:** W81XWH-18–1-061, HT9425-23-1-0149

Thanks to Richard Leahy, David Shattuck, Takfarinas Medani, Justin Haldar, Chitresh Bhushan, Haleh Akrami, Wenhui Cui, Minqi Chong, Soyoung Choi, Suyash Awate, Shantanu Joshi, Jian Li, Divya Varadarajan, Alexander Serrano, for useful discussions and inputs

https://brainsuite.org/