
Brainstorm: MEG/EEG 
software since 2000

• Current team: Sylvain Baillet, John 
Mosher, Raymondo Cassani Gonzalez, 
Takfarinas Medani, Anand Joshi,
Dimitrios Pantazis, Marc Lalancette, 
Chinmay Chinara, Anshul Gupta, 
Richard Leahy

Sylvain Baillet (McGill)

Richard Leahy (USC) Francois Tadel

John Mosher 
(U Texas, Houston)



Brainstorm 
Overview 

• Matlab/Java software – highly interactive GUI environment & scripting 
capabilities

• Copious documentation through a large series of on-line tutorials: 
• https://neuroimage.usc.edu/brainstorm/Tutorials

• On-line video introductions
• https://neuroimage.usc.edu/brainstorm/Introduction

• Tutorial publications 
1. F Tadel, S Baillet, JC Mosher, D Pantazis, RM Leahy (2011) Brainstorm: 

a user-friendly application for MEG/EEG analysis. Computational 
intelligence and neuroscience, 1-13

2. S Baillet, JC Mosher, RM Leahy, Electromagnetic brain mapping (2001) 
IEEE Signal processing magazine 18 (6), 14-30

3. F Tadel, E Bock, G Niso, JC Mosher, M Cousineau, D Pantazis, RM 
Leahy, S Baillet (2019) MEG/EEG group analysis with brainstorm, 
Frontiers in neuroscience, 76
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Capabilities

• Import multiple commercial format (EEG, MEG, 
iEEG, fNIRS)

• Integration with eye-tracker data
• Pre-processing tools – noise filtering, bad 

trial/sensor removal, ICA/SSP artifact identification 
and removal

• Epoching, averaging, use of event-markers 
• Interactive viewing/editing time series
• Time-series and spatial analysis functions
• Volumetric displays, MR and atlas registration
• Group statistical analysis and decoding (SVM)
• Compatibility/plug-in capability with other matlab

and python software including Fieldtrip & MNE-
Python



The Brainstorm Community



Data



Post Mortem Anatomical

Imaging the Human
brain
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ImagingNeural Activity



Electromagnetic recordings

Depth
Electrode

ECoG
1-10mm 

EEGMEG 
1cm-10cm 

Micro 
electrodes

100-1000micron 



Electrical
Geodesics

NeuroScan

Electroencephalography (EEG)

Hans Berger (1929)

Wearable 
Sensing



Magnetoencephalography (MEG)

• MEG signals ~ 50-500fT (Earth’s 
magnetic field ~50mT)

• Detected using SQUID magnetometers
• Gradiometers and magnetic screening 

reduce interference



Data 
• Temporal: Averaged event-related 

signals - high temporal resolution 
monitoring of neural activation

• Spatial: Snap-shot topographic 
maps of external magnetic fields

• Problem: Explore relationship 
between neuronal sources in 
space and time and task or 
mental/neurological disorder

• Evoked or event related studies
• Naturalistic stimuli
• Resting-state
• Hyper-scanning Median nerve stimulation 

(MEG)



Challenges
• High temporal-resolution low spatial-resolution data
• Extraction of time-series features 

• Evoked potentials
• Time-frequency analysis
• Connectivity analysis

• Spatial localization
• Lead-field sensitivity and forward models
• Inverse solutions
• Identifying regional sources

• Statistical Analysis
• Individual vs. group analysis
• Parametric vs. nonparametric methods
• ANOVA and GLMs
• Machine Learning for regression, classification and prediction (tomorrow!)



Source Estimation



Sources of the EEG and MEG  Signal
Scalp potentials and extra-cranial magnetic fields 
are produced by current flow in apical dendrites 
in cortical pyramidal neurons

from Ritta Salmelin, low temperature lab, Helsinki 
university of Technology

scalp
skull

cortex

activation site

Columnar organization of cortex and 
spatial functional specialization on cortical 
surface lead to current dipole model fpr
focal regions of activation

Volume currents from dipole pass 
through the skull to produce spatial 
varying potentials on the scalp and 
the EEG 



Current source 
distribution in the 

brain

Electrical Potential 
variations across 

the scalp: EEG

Forward problem

Poisson’s equationPoisson’s equation

Forward and Inverse Problems

Source localizationSource localization

Inverse problem



Forward Models

• Use quasistatic EM model to 
map from current source to 
measured fields

• Interested in “primary” rather 
than “volume” currents

• Spherical head: closed form
• Real head shape & cond-

uctivity from MR: use BEM or 
FEM



Individualized Forward Models 
Detailed forward 
model based on 
segmented MRI with 
anisotropic diffusion 
from DW-MRI 

Lower panel shows 
lead-field sensitivity 
for a pair of electrodes 

In absence of 
individual MRI, use 

Polhemus localized to 
map scalp coordinates 

and warp atlas to 
individual subject 
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Explicit & Implicit Models

Multiple dipole 

Multipoles 

Cortical & orientation constrained imaging 

Cortical constraint only 

Volumetric imaging

LCMV
Beamformer



Phantom Study • 32 current dipoles in human 
skull phantom 

• Ground truth from CT scan
• MEG data from Neuromag-22
• Sources fit using R-MUSIC, 

spherical and realistic BEM 
forward models



Phantom Localization Errors
• Average error for 32 

dipoles using spherical 
head model: 4.1mm

• Average error for 32 
dipoles using BEM head 
model: 3.4mm

RM Leahy, JC Mosher, ME Spencer, MX Huang, JD Lewine
(1998) A study of dipole localization accuracy for MEG and 
EEG using a human skull phantom, Electroencephalography 
and clinical neurophysiology 107 (2), 159-173



Somatosensory Stimulation & Localization 

Electric stimulation of 4 digits of left and 
right hand

Locations

Time series



Source localization 
in Epilepsy
Automated noninvasive spike detection, 
localization and clustering from spontaneous 
interictal spikes 
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Distributed solutions: Minimum Norm Imaging

Inverse solutions based on regularized least-squares 

𝐖 𝐈

𝐖 𝐖𝐧𝐨𝐫𝐦 𝑑𝑖𝑎𝑔 1/ 𝑎 , . . . , 1/ 𝑎

𝐖 𝐖𝐧𝐨𝐫𝐦𝐁

Possible regularizers

- Problem is highly ill-posed (relative to CT/MRI)
- Alternatives use non-quadratic regularizers, sparse and Bayesian formulations….
- Data-fit error often weighted by inverse noise-covariance 

Simulated

Estimated
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MEG in an auditory oddball task
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Wehner, Ahlfors & Mody Neuropsychologia, 2007

Impaired readers

Normal readers

Phonologically similar words  (|bøt| vs. |pøt|)
Group analysis of the rare |pøt| in 7 – 13 year olds

(slide courtesy: Matti Hamalainen) 



We can quantify neuronal activity over ROIs in  
parcellated atlas 



Evoked vs. Induced Response

• Evoked response: Precisely phase locked to the stimulus, averaging increases 
signal

• Induced response: Variable latency, averaging leads to signal cancelation –
instead we average over the time-frequency magnitude



Spatio-temporal complexity
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EEG analysis using TF data
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Shift vs. sustain in visual attention 
task – effects on alpha power  

OM OL
IPS

SPL

Caudal

Ventral

OV

TPJ

SPL: Superior Parietal 
Lobe
TPJ: Temporal Parietal 
Junction
IPS: Intra-Parietal 
Sulcus
OL: Occipital Lateral
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D Pantazis, G Simpson, D. Weber, CL Dale, 
TE Nichols, RM Leahy (2009) A novel 
ANCOVA design for analysis of MEG data 
with application to a visual attention 
study, Neuroimage. 44(1): 164–174.



Detecting Statistically Significant Activation: Thresholding

Right Hemisphere Left HemisphereThresholded Activity

Simulated Reconstructed

Multiple comparisons 
• Control of False Discovery Rate
• Control of Familywise Error Rate

Assumptions 
• Parametric model – p-values from distribution
• Nonparametric model: p-values from permutations



Independent
Components 
Analysis

Dynamic causal 
modeling

Bayesian networks

Connectivity 
Analysis

PAIRWISE 
MEASURES

NETWORK MODELS

Correlation Partial correlation

Coherence Partial coherence 

Phase 
coupling

Partial phase 
coupling

Phase/ampl.
coupling

???

Canonical
correlation

Partial canonical 
correlation

Granger 
causality  

Directed transfer 
function

Computer interactions 
between two or more 
regions in the brain

x(t)

y(t)

z(t)



Summary

• EEG/MEG can provide unique insights into human brain function
through studies of fast temporal dynamics, focal and regional 
activation, studies of oscillatory activity and connectivity

• Cautionary factors: 
• Limited spatial resolution
• EEG/MEG signals are complex – mix of event-related and un-related activity
• Noise: environmental, cardiac, eye-blink, EMG
• Inter-trial variability 


