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Alzheimer’s disease pathology

Alzheimer’s disease (AD) is a brain network disease (connectopathy) with complex etiology and multiple
pathogeneses- Magnetoencephalography (MEG)

L

Neuropathological staging of AD with autopsy of 83 brains of individuals with dementia (Braak
and Braak, 1991)

Amyloid deposits Tau deposits
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Stage A: basal portions of the cortex Stage I-II: transentorhinal region
Stage B: all cortical association areas Stage IlI-1V: severe involvement of entorhinal and transentorhinal
Stage C: all areas of the cortex Stage V-VI: cortical destruction

enetic mutation an

i Misfolding of AB, and tau  Pathogenic
risk factors

followed by plaques and  neuronal activity
tangles
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Geometric (graph) deep learning
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Increasingly more fields have to deal with geometric non-Euclidean structured data such as graphs.
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Graph theory

Prior studies primarily focused on handcrafted, domain-specific (ad-hoc) graph topological

properties of brain networks constructed by MEG (node degree, node centrality, clustering

coefficient,...).

Box 2 | Network measures

A network is defined in graph theory as a set of nodes or vertices and the edges or lines between them. Graph topology
can be quantitatively described by a wide variety of measures, some of which are discussed here. It is not yet established
which measures are most appropriate for the analysis of brain networks. The figure shows a schematic diagram of a brain
network drawn as a directed (left) and an undirected (right) graph; both structural and functional networks can be either
directed or undirected (BOX 1).

Node degree, degree distribution and assortativity

The degree of a node is the number of connections that link it to the rest of the network — this is the most fundamental
network measure and most other measures are ultimately linked to node degree. The degrees of all the network’s nodes
form a degree distribution®. In random networks all connections are equally probable, resulting in a Gaussian and
symmetrically centred degree distribution. Complex networks generally have non-Gaussian degree distributions, often
with a long tail towards high degrees. The degree distributions of scale-free networks follow a power law®. Assortativity is
the correlation between the degrees of connected nodes. Positive assortativity indicates that high-degree nodes tend to
connect to each other.

Clustering coefficient and motifs

If the nearest neighbours of a node are also directly connected to each other they form a cluster. The clustering coefficient
quantifies the number of connections that exist between the nearest neighbours of a node as a proportion of the
maximum number of possible connections'®. Random networks have low average clustering whereas complex networks
have high clustering (associated with high local efficiency of information transfer and robustness). Interactions between
neighbouring nodes can also be quantified by counting the occurrence of small motifs of interconnected nodes™. The
distribution of different motif classes in a network provides information about the types of local interactions that the
network can support™®.

Path length and efficiency

Path length is the minimum number of edges that must be traversed to go from one node to another. Random and
complex networks have short mean path lengths (high global efficiency of parallel information transfer) whereas reqular
lattices have long mean path lengths. Efficiency is inversely related to path length but is numerically easier to use to
estimate topological distances between elements of disconnected graphs.

Hubs, centrality and robustness

Hubs are nodes with high degree, or high centrality. The centrality of a node measures how many of the shortest paths

between all other node pairs in the network pass through it. A node with high centrality is thus crucial to efficient
communication'™’. The importance of an
individual node to network efficiency can be
assessed by deleting it and estimating the
efficiency of the ‘lesioned’ network.
Robustness refers either to the structural

Q
integrity of the network following deletion of \ /
nodes or edges or to the effects of 0
perturbations on local or global network
states.

Modularity o

Many complex networks consist of a number
of modules. There are various algorithms that
estimate the modularity of a network, many of O
them based on hierarchical clustering®. Each

)
s

module contains several densely
interconnected nodes, and there are relatively
few connections between nodes in different
maodules. Hubs can therefore be described in
terms of their roles in this community
structure?. Provincial hubs are connected
mainly to nodes in their own modules,

whereas connector hubs are connected to

Provincial hub

nodes in other modules.

E. Bullmore and O. Sporns, Nature Reviews Neuroscience, 2009

Node degree =5

Community 2
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Inductive and automatic network representation learning from raw MEG functional imaging data remains an open
problem.

Recently, emerging graph embedding techniques (e.g., deepWalk, node2vec, Graph2Gauss, etc.) enabled automatic

learning of hierarchical, heterogeneous and latent network representations from original complex and high-dimensional
graphs in irregular domains.

Vector embedding

Vector

> ------ (e.g., deepWalk, node2vec)
Node embedding ! Y

]Rd
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NLP Example: Word embeddings

Natural Language Processing: For a computer to perform any "reasoning® with words, they need to be represented
numerically as vectors of numbers termed "embeddings".

. Vector . : T :
King > I Intuitively, if words are similar in some respect, this can be reflected by
‘ Y : certain values in their embeddings being similar.
R4

In recent years, astonishingly successful algorithms have been developed, that learn word embeddings by extracting
information from huge text sources such as Wikipedia. State of the art technology: chatGPT.
But... unfortunately there are machine learning biases

(gender, racial biases, etc)
Doctor- man+woman=? Nurse

King-man+woman=?  Queen

Programmer - man+woman=?  Homemaker
Neighbors of man and woman (K-nearest embedding)
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https://towardsdatascience.com/gender-bias-word-embeddings-76d9806a0e17



Graph embedding
Vector embedding (e.g. deepWalk, node2vec)

Vector

» NN

Node embedding ! Y ’

R4

Node f:u— R4

>
Embedding space

Stochastic Gaussian embedding N

i . . X e RN*D*P
High-dimensional N+D*P U € RN*L*P
graph data P brain graphs, N Aodes,’ heRr
D-dimensional : de jattributes — . mean l'li
------ ) ST
% Stacked 3D 3D Hidden N A i . '
. Attribute Encoder| representations |  }/*. ¥, € RN*+P variance 2 i
matrix 2N NN
variance _
"""" P,~N(u;,%;
Multiple Graph2Gauss Model N 20

L-dimensional latent space
Bojchevski, A., & Giinnemann, S. (2017). Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. ArXiv:1707.03815 [Cs, Stat].

Xu, M., Wang, Z., Zhang, H., Pantazis, D., Wang, H., & Li, Q. PLOS Computational Biology (2020). Gaussian embedding-based functional brain connectomic analysis for amnestic mild cognitive impairment patients with cognitive training.

Xu, M., Sanz, D.L., Garces, P., Maestu, F., Li, Q., and Pantazis, D. (2021). A Graph Gaussian Embedding Method for Predicting Alzheimer’s Disease Progression With MEG Brain Networks. IEEE Transactions on Biomedical Engineering 66, 10.



Participants:

76 mild cognitive
impairment (MCI)
patients (48 stable
and 28 progressive)
53 age-matched
clinically normal
subjects (all from the
Madrid cohort
database).

MEG data:

5 minutes of eyes-
closed resting-state data
in a 306-channel MEG

system.

A. MEG data and preprocessing B. Reconstruction of MEG sources C. MEG brain
Patients and controls Regional time series "8

10

20

30

68 ROIs

=

68 ROIls

uonewJojul [enny

Desikan-Killiany atlas

30 40 50 60

‘ 68 ROIs

F. AD progression prediction and E. Probabilistic embeddings D. MEG brain network
quantification of regional effects Gaussian embedding

Input

« IM} Hidden layers

varlance ‘O’ i

Detection of regional effects 68 ROIs
with W, distance metric

5 min resting-state MEG data Time

Multivariate Gaussian distributions *%’_

Discrimination of groups with
supervised learning

O-
covariance (Z)= l ‘. ‘ L2 U o2
Uf/z

N(u, )
Xu etal., 2021
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Mean Accuracy

B Node2vec(L=8,p=1,q=2) I Node2vec(L=16,p=1,q=4)
1 B Node2vec(L=8,p=1,9=4) I Node2vec(L=16,p=1,0=30)
I Node2vec(L=8,p=1,q=30) @EE MG2G(L=16)

Bl Node2vec(L=16,p=1,q=2)

i
(N}

0.0 : : : :
NC/sMCI/pMCl NC/sMCl sMCI/pMCI NC/pMCI

Classification type

Discriminate: Normal controls (NC),
Stable mild cognitively impairment (sMCI)
Progressive mild cognitively impairment (pMCI)

79% NC/sMCI
78% sMCI/ pMClI
82% NC/pMClI

61% NC/sMCI/pMCI

Brain regions with significant MEG
network alterations

1.79 GCl value 1.81

Regions largely include temporal and
frontal regions in the cortex, consistent
with previous studies using different

neuroimaging data. Xu et al., 2021
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Vector embedding
Vector
Node f:u— R4
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Node embedding ! Y
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Euclidean embedding space

Brain networks are scale-free graphs = tree-like

. I
structure. The graph volume grows exponentially 4 .
as a function of radius . ‘
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Graph volume: number of nodes within some radius to a center node




Embedding of a tree in Euclidean
space:

Embedding of tree in Hyperbolic
(Poincaré) space:
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Poincaré model

egative curvat

Polynomial
expansion: Space
increases by x?

Embedding of tree

Exponential
expansion:
Space
increases by
eX
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% Feature Weight Mean RelU Weight Mean
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Input Update Agg Update Agg
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A

Matrix-Vector Multiplication: Wax — W ®:1'
c
Bias Addition: x + b — = b

= Modified from: Chami, ., Ying, R., Re, C., and Leskovec, J. (2019). Hyperbolic Graph Convolutional Neural Networks. NeurIPS 2019



Hyperbolic graph convolutional netwo
HGCN
N
-
W Feature Weight Mean RelU Weight Mean
—_ -> — ->
Input Update Agg Update Agg
\ 1 f - f
O layerl e = . . .
. \ State-of-the-art in embedding networks in hyperbolic spaces
KH=w'®, x"'1@®,. b y! = Freche (negative curvature spaces)
L 1-171 -1 L

1. Yields the least distortion for scale-free data as in the case of
brain networks

2. Due to the low distortion, brain networks can be mapped in
) N Py low-dimensional spaces (even 2D spaces; MG2G encoder
= - ——m Il | il required 16-dimensions), which facilitates the downstream
ht* Co yﬂ task of classification of AD staging

i3 Important! Provides additional information on the hierarchy
| of brain networks

Matrix-Vector Multiplication: Wax — W ®.r
s

Bias Addition: x + ¢ x l
s ions b 6(9 ' Modified from: Chami, ., Ying, R., Re, C., and Leskovec, J. (2019). Hyperbolic Graph Convolutional Neural Networks. NeurIPS 2019



Posterior DMN
Anterior DMN
Dorsal Att Net
Frontoparietal Net
Visual Net
Ventral Att Net
Salience Net
Sensorimotor Net
No RSN

. rain n rks to study brain
ctive cognitive decline
Participants:

» 25 subjective cognitive decline (SCD) patients
* 19 age-matched clinically normal subjects (all
from the Madrid cohort database).

Mean Average Precision (in link prediction task)

# Embedding dimensions (L)
Method ’ 3 4 6 3

GCN (Euclidean) 0.563 0.701 0.791 0.818 0.827
Poincare embedding 0.723 0.748 0.75 0.751 0.755
HGCN (w/ fixed C =-1)| 0.799 0.939 0.949 0.951 0.951

0828 20952\ 0954 096  0.964
(C=-98) (C=-.58))(C=-.48) (C=-.44) (C=-.52)
pa—

HGCN (w/ learned C)

We chose to use the HGCN with 3 dimensions and learned C,
in order to maximize embedding quality while minimizing
dimensionality.



*
. Resting State Network Summary
2 ° RSN Name Abrv. Ex. RO ROI Abrv.
Posterior Default Mode Network pDMN Precuneus Precu

Anterior Default Mode Network aDMN  Cingulate gyrus, Anterior part ACC
Darsal Attention Network DAN Precentral gyrus PreCG
Fronto-parietal Network FPN Angular gyrus Ang

2.0
I + Visual Network VN Middle Occipital Lobe MOccL

- R

*
I .
? Ventral Attention Netwark VAN Inferior Frontal gyrus, Triangular ~ IFGt
1 Salience Network SN Amygdala Amyg
15 N 4 Sensorimotor Network SMN Supplementary Motor area SMA
1.0

Label

. B Healthy Controls
B Subjective Cognitive Decline

Cluster Radius from Origin

pDMN aDMN DAN FPN VN VAN SN SMN
p: 0.757 p: 0.826 p:.007% p:.195 p:.071 p: .019% p:.297 p: .045%

Hierarchy alterations:

= Participants with SCD had reduced distance from origin (increase in hierarchical centrality) in brain
subnetworks: Dorsal Attention Network (DAN), Ventral Attention Network (VAN), Sensorimotor
Network (SMIN)

Relationship of hierarchy alterations to cognition:

= DAN, VAN, SMN: Higher hierarchy correlated to higher scores on geriatric depression
scale

Radius of the node embeddings: A unique = SMN: greater impairment in completing daily functional activities
metric which effectively proxies the

hierarchical organization of the brain. = DAN: higher subjective rating of memory failures



Features from hyperbolic embeddings:

Radius from Origin - The average distance from origin for
each ROI. The smaller the radius, the more central the RSN 1is
to the network

Within Cluster Cohesion - Average pairwise distance
between each node within the same sub-network. Smaller
distance signifies a tightly packed network.

Between Cluster Distance - Average pairwise distance
between each node in different sub-networks. Smaller distance
signifies a tightly linked networks.

mbeddings

N

W

EEE PLVY Only
B Embedding Features
pg Wl FPLV + Embedding Features

0.82
0.8

0.7

Classification Scores

0.6

0.5

AUC-ROC

Hyperbolic features capture partially unique
features and improve classification scores over the
original PLV features.



NIH/NIA

NIHYY Sosose - A1oW cost ambulafory fest for early detection
National Institute John Mosher @I Alzil]@lm@_ds ﬂl\sea\s g
on Aging Michael Funke
$2,050,969

Sample Selection and Enroliment (5-years)

Recruit 200 patients with amnesic mild cognitive impairment (aMCI) from the Neurocognitive Disorders Center of the McGovern
Medical School of UTHealth in Texas.

We anticipate an average 17% conversion rate yearly from aMCI to AD (Luis et al. 2003; Fischer et al. 2007).

Brain Recordings
Gold standard: Combined 306-channel (MEG) and 128-channel wet-electrode EEG measurement in magnetically shielded
room, using a whole-head MEG system (MEGIN Triux system).

Ambulatory: A 256-channel dry-electrode EEG (aEEG).

Functional brain networks

Epileptiform activity Lo b
Epileptologist team will identify and characterize EA in the MEG/EEG data AR



Ongoing work - Discover aging traje

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) dataset
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Name N (Raw) Data

Adapt hyperbolic embedding pipeline to Cam-CAN dataset.

Magnetic Resonance Imaging (MRI) data (conforming to BIDS standard)

Structural Data

T 653 Incorporate cortical thickness and neuronal myelination as
T2 653 node features into brain graphs.

Diffusion Weighted Imaging (DWI) 642

Magnetisation Transfer Imaging (MTI) 623

Improve existing HGCN model: convert to fully hyperbolic
(current models formalize computations in an intermediate

Functional

;tivsithg :Z tangent Euclidean space, which leads to instabilities and
information loss). . ) i
Sensori-motor task 651 '/'('“..‘fqu (z) = (,Xl)('u-u! (,/'(10‘5(4”' (z)))
Magnetoencephalography (MEG) (conforming to BIDS standard)
REEhEEe 2 Study which features contribute significantly to aging using the
Sensori-Motor task 647 GNNexplainer, which identifies important subgraphs (network
Sensory (pessive) task 630 edges) and features (via a node mask) that contribute to

model predictions.

A Y
4

@)

Fully hyperbolic
GNN encoder

L ——

’
1
\

[

Node attributes: Cortical thickness,
Neuronal myelination

.\

Mengjia Xu Hugo Ramirez Davide Tabarelli
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Box §|50t of LEFT Hemisphere Hyperbolic Cluster Radii for Cortex Subregions Box P‘I‘%t of RIGHT Hemisphere Hyperbolic Cluster Radii for Cortex Subregions
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PV: Primary Visual EA: Early Auditory PO: Posterior Opercular
MT_CNVS: MT+ Complex and Neighboring Visual Areas TPOJ: Temporo-Parieto Occipital Junction IFO: Insular and Frontal Opercular
DSV: Dorsal Stream Visual DP: Dorsolateral Prefrontal AA: Auditory Association
EV: Early Visual SP: Superior Parietal IP: Inferior Parietal
VSV: Ventral Stream Visual PLMC: Paracentral Lobular and Mid Cingulate MT: Medial Temporal
SM :Somatosensory and Motor ACMP: Anterior Cingulate and Medial Prefrontal LT: Lateral Temporal
Pre: Premotor OPF: Orbital and Polar Frontal

PC: Posterior Cingulate IF: Inferior Frontal
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Hyperbolic Radius Across Age : Left Primary_Visual
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Hyperbolic Radius Across Age : Right Orbital_and Polar_Frontal
4.5

4.0 A

3.5 1

3.0

2.5

2.0

1.5 1

ROl Hyperbolic Radius

1.0 1

0.5 1

0.0 T T T T T T T

Age Decade

Hyperbolic Radius Across Age : Left Paracentral_Lobular_and_Mid Cingulate
4.5

4.0 A

ROI Hyperbolic Radius
o e B e R« G-
o L o w o (&)
! | | | L L
o
o]

bt
n
|

o
o

Age Decade



Madrid / Complutense Univ. Team Trento Team

\le

Mengjia Xu Cole Baker Hugo Ramirez Wiley Smith Fernando Maestu Isabel Suarez Mendez Davide Tabarelli

L

| & A

Paris / IM2A Team USC Team UTHealth Team MGH Team

Katia Andrade  Thomas Guieysse Sol Razafimahatratra Takfarinas Medani John Mosher Michael Funke Quanzheng Li

J-Clinic <

ABDUL LATIF JAMEEL CLINIC FOR
MACHIMNE LEARMNING IN HEALTH

m National Institute on Aging

MIT Global
\'d Experiences



	Graph representation learning of MEG signals opens a window to aging trajectories and Alzheimer’s disease
	Alzheimer’s disease pathology
	Geometric (graph) deep learning
	Graph theory
	Graph representation learning
	NLP Example: Word embeddings
	Graph embedding
	Predicting AD using MEG brain networks
	AD early detection and affected regions
	Euclidean embeddings are limited for brain networks
	Hyperbolic embeddings (negative curvature)
	Hyperbolic graph convolutional network (HGCN)
	Hyperbolic graph convolutional network (HGCN)
	Hyperbolic graph embedding of MEG brain networks to study brain alterations in patients with subjective cognitive decline
	Subnetwork hierarchy analysis
	Predicting SCD using hyperbolic embeddings
	A low cost ambulatory test for early detection of Alzheimer’s disease
	Ongoing work - Discover aging trajectories
	Hyperbolic embeddings and hierarchy of subnetworks
	Hierarchy of subnetworks across age
	Acknowledgements

