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Motivation for Automated Seizure 
Identification

Epilepsy is one of the most common neurological disorders.
Successful identification of early seizures can initiate antiepileptogenic 
intervention and therapies.
Electroencephalogram (EEG) recordings are commonly used for seizure 
identification yet are known to contain many artifacts.
Seizure identification via manual inspection is laborious and difficult, 
motivating automated methods for aiding experts. 

[Kanoga et al., 2017]



Manifold Learning Approach
Reduce the number of features while retaining the maximum amount of 
information
Compute a kernel with a specially-tailored distance measure
Employ manifold learning technique to recover the underlying 
information



Diffusion Maps
Eigenfunctions of Markov matrices are used to construct coordinates 
that generate efficient representations of complex geometric structures
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• Compute pairwise distances between data points.
• Construct affinity matrix K using Gaussian kernel.
• Formulate diffusion operator P.
• Perform eigenvalue decomposition on P.
• Embed data points using: 

yi=[λ1ψ1(xi),λ2ψ2(xi),...]yi=[λ1ψ1(xi),λ2ψ2(xi),...]



Benefit of Diffusion Maps over 
Related Methods
Nonlinearity 
▪ PCA, for example, looks for directions of maximal variance in a linear manner, 

whereas diffusion maps can uncover more intricate structures and 
relationships that may be missed by PCA

Geometric Representation
▪ Embedding respects the intrinsic geometry of the data manifold
Locality Preservation
▪ Emphasis on local relationships between data points (i.e., important in 

understanding local interactions, such as how a seizure initiates and 
propagates through neighboring brain regions)

Interpretability
▪ Simulates a random walk on the data’s manifold – can provide a more intuitive 

understanding of the data’s structure and how different regions communicate
Robustness to Noise
▪ Especially robust to noise when the noise is not uniformly distributed across 

the data space
Data Clustering
▪ Can highlight regions of high data density and barriers between them



Diffusion Maps Example

Duncan et al., Math. Biosci. Eng., 2013



Unsupervised Diffusion Component Analysis

Duncan et al., Discrete 
Continuous Dynamical 
Systems, 2019



Unsupervised Diffusion Component Analysis

Cross-correlation between segments is calculated to ensure minimal 
variance to ensure similar behavior between the channels that were being 
analyzed.

The Mahalanobis distance is applied to inverse covariance matrices that 
are computed using the SVD to identify outliers; the combination of the 
Mahalanobis distance and inverse covariance matrices has previously 
been shown to be a successful tool for denoising data.

Duncan et al., Discrete Continuous 
Dynamical Systems, 2019



Motivation for Unsupervised 
Learning

Supervised methods have been 
extensively explored.
▪ Spatiotemporal feature extraction
▪ More automation via deep learning 

models (CNNs, RNNs, …)

[Faghihpirayesh et al., 2021]

Stochastic nature of EEG limits access to seizure annotations that are: 
▪ Large enough to combat imbalance towards non-seizure data
▪ Consistent across different experts

Unsupervised deep models have been limited.
▪ GANs that require manual feature 

extraction
▪ CNNs that are not tailored for multivariate 

time-series data
[You et al., 2020]



Unsupervised Multivariate Time-Series Transformers for Seizure 
Identification on EEG
Ilkay Yıldız Potter (BioSensics LLC), George Zerveas & Carsten Eickhoff 
(Brown University, Computer Science Department), Dominique Duncan

First unsupervised transformer-based model for seizure 
identification on raw EEG
Pose seizure identification as an anomaly detection problem
▪ Train an autoencoder involving a transformer encoder via an 

unsupervised loss function on non-seizure signals
▪ Incorporate a novel masking strategy uniquely designed for 

modeling multivariate time-series (MVTS) data
▪ Identify seizures via reconstruction errors at inference time

Evaluated on three publicly-available benchmark EEG datasets
▪ Outperform supervised learning counterparts
▪ Particular benefit for learning from highly imbalanced data



Seizure Identification as Anomaly 
Detection
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Multivariate EEG signal 
(extracted as sliding windows)

Encoder: 
Reduce 
dimension

Decoder: 
Reconstruct

Latent features

An autoencoder to learn 
latent features that 
generate EEG 
Train on non-seizure 
signals (e.g. from 
healthy subjects)
Seizure windows belong 
to a different 
distribution: larger 
reconstruction errors!
Use the average error 
over channels and time 
as the seizure probability 
score of a window



Autoencoder Architecture and 
Training Objective 

A transformer encoder and a linear decoder
▪ Encoder architecture by Vaswani et al. (2017), with fully-trainable positional 

encoding and batch normalization [Zerveas et al. (2021)].

● Mask a proportion of each window (set 𝓜) and 
use for optimizing the reconstruction objective

● Alternate between masked and unmasked 
sequences, with lengths distributed geometrically

A training objective designed for MVTS data [Zerveas et al. (2021)]



Datasets

MIT-BCH [Shoeb et al., 2009]

▪ Scalp, 38 channels
UPenn and MayoClinic, 2014
▪ Intracranial, 72 channels

TUH [Obeid and Picone, 2016] 

▪ Scalp, 38 channels
Preprocessing
▪ Unify sampling rate with respect to the smallest
▪ Bandpass filter with range 0.5-50 Hz to eliminate powerline noise
▪ Extract sliding windows with 50% overlap and at length of shortest seizure 

▪ MIT: 13,600 non-seizure and 963 seizure windows 
▪ UPenn: 14,329 non-seizure and 1307 seizure windows
▪ TUH: 54,264 non-seizure and 2826 seizure windows

● Severely imbalanced towards non-seizure



Experiment Setup

Stratified partition of all windows, 60% training, 20% validation, 20% testing
Unsupervised Methods (Train on non-seizure windows only)
▪ Deep models

▪ Proposed autoencoder
▪ Convolutional variational autoencoder [Yildiz et al., 2022]

▪ Shallow models
▪ t-SNE dimension reduction [Van der Maaten and Hinton, 2008] => K-means

Supervised Methods (Train on both window types)
▪ Deep models optimized with cross-entropy

▪ Transformer encoder => linear classification layer
▪ Unsupervised pre-training => fine-tuning [Zerveas et al., 2021]

▪ Shallow models
▪ XGBoost [Chen and Guestrin, 2016]
▪ ROCKET [Dempster et al. 2020]

Seizure vs. non-seizure classification by thresholding 
at elbow of ROC curve



Results Against Unsupervised 
Baselines

Dramatic 
improvement 
against other 
unsupervised 
methods

● outperform 
state-of-the-art 
deep learning
counterpart 
VAE by up to 
33% AUC

● K-means 
classifies all 
windows as 
non-seizure 

* Our model in bold, best model in italics



Benefit Against Supervised 
Baselines

Despite the lack of 
seizure labels during 
training: 

● better than all 
supervised & 
50% fine-tuned 
models by up to 
9% AUC

● better 
precision-recall 
balance

* Our model in bold, best model in italics

● The most expensive transformer (unsupervised pre-training => supervised fine-tuning with all training labels) 
is naturally better, albeit by a smaller margin against unsupervised learning via our method.



Results on TUH 

* Our model in bold, best model in italics

TUH is particularly challenging (a compilation of several EEG databases collected over years)
● Our unsupervised transformer still fares better than the purely supervised counterpart
● Unsupervised VAE is the best, motivating unsupervised learning as we propose.



Benefit of Attention within 
Transformer

● Can successfully learn to pay more attention to seizure patterns including high-frequency spikes and 
waves evolving with large amplitudes

● When seizure is deemed to exist, patterns of focused attention, containing only few time points with 
large weights, aiding explainability 



Analysis of Example Predictions

● Seizure patterns cannot be easily identified using only amplitude/frequency, motivating a more 
sophisticated approach such as ours

● non-seizure windows in (d) have a larger amplitude range than the 
seizure windows (c)

● seizure windows in (c) contain similar spikes to the non-seizure 
windows in (b) w.r.t. amplitude and frequency



Conclusion

Summary:
Unsupervised method for seizure identification on raw EEG
Train an autoencoder involving a transformer encoder to reconstruct 
stochastically-masked EEG recordings 
Seizures are identified based on higher reconstruction errors 
Even outperform state-of-the-art supervised methods requiring expert labels

Potential impacts: 
Can alleviate the burden on clinical experts regarding laborious and difficult 
EEG inspections to provide labels indicating segments that contain seizures 
Can aid availability of seizure diagnoses for the wider public, especially in 
areas where access to well-trained healthcare professionals is limited
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